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We devel. op a technique for attaching quark quantum numbers to world lines joined
by relativistic strings. We are able to describe spin-0 and spin-& U(n)-symmetric
quarks attached to world lines. One spin-& theory based on the Dirac equation yields
a classical particle with helical motion, interpretable as Zitter be& egung. Another
spin-& model. has no helical. motion, but yields an algebra resembling that of super-
symmetry. Motivated by dual. ity diagrams and some general properties of quark-
gtuon models, we then construct quark-string model. s of mesons and baryons. The
analysis of the meson. model, with unequal quark masses implies a stringlike spectrum
with broken trajectory intercepts. A simple baryon model suggests a dynamical
reason for diquark configurations in the lowest states. Physical weak and electromag-
netic currents for the quark-string system follow from a minimal-coupl. ing scheme as
in gauge field theories.

I. INTRODUCTION

The quark model has provided a successful
framework for understanding many properties of
elementary particles and their interactions, such
as classification and spectroscopy, deep-inelastic
scattering from nucleons, and possibly e'e anni-
hilation into hadrons. The details of the strong
interactions between quarks, and consequently be-
tween elementary particles, are presently un-
known. However, some general features of the
interaction such as Regge behavior and approxi-
mately linear trajectories have emerged. There
are at present two philosophical approaches to the
strong interactions, the dual resonance models'
and the quark-gluon color gauge theories. '

The dual resonance model provides a reasonably
successful approximation to the required prop-
erties of the strong-interaction S matrix even in
the "Born approximation. " Mandelstam' has shown
a direct connection between dual models and inter-
acting strings, ' thus providing an appealing physi-
cal picture for the dynamics underlying the dual
models.

In the interacting-string picture a meson is rep-
resented by a string with two free ends. During
interaction, two such strings (mesons) join ends
to form a single continuous string with two free
ends; this object is interpretable as a resonance
which can in turn split (decay) into two or more
strings.

As shown in Fig. 1, the spacetime paths of the
string ends thus form a realization of the duality
diagrams which were used originally' to keep track

of the quark-model quantum numbers of the inter-
mediate states in dual scattering amplitudes.

This picture strongly suggests that the quark and
antiquark inside the meson are bound together by
a string. Then we are led to the interpretation
that in the interacting-string model the propagation
of the string is dictated by the string action of
Nambu, while the interaction between strings is
a local interaction between quarks on different
strings. Two end quarks annihilate during the
formation of a larger string, and a pair of quarks
is created when the string splits. Thus the meson
interacts only through its "valence" quarks. We
note that in Mandelstam's model the interior of the
string does not interact. Although the local quark
interaction is sufficient to reproduce the dual mod-
el amplitudes, it is not clear a priori that the
string does not interact also in other ways.

Another popular approach to the strong inter-
actions of elementary particles is the non-Abelian

FIG. 1. Dual. ity diagram for the s-t contribution to
meson-meson scattering. The dotted area represents
the surface swept out by the string.
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gauge theory of SU(3)-colored gluons and quarks.
Calculations in this framework are still at an ele-
mentary stage, but there are several indications
in the literature that some form of the string mod-
el may emerge from such theories: Nielsen and
Olesen' have argued that vortexlike classical so-
lutions of field theories may be identified with dual
strings, and Wilson' and Kogut and Susskind' have
suggested a form of string in their lattice formal-
ism for gauge theories. Both proposals imply that
strings are made of color glue. If this picture is
correct, then color singlet mesons can be made
only if the string terminates on color "mono-
poles —that is, the quarks must be attached to the
ends of the string. The end points would therefore
carry all observable quantum numbers such as
spin, charge, isospin, etc. , while the body of the
string carries none. In addition, 't Hooft' has
proposed a two-dimensional color gauge-theory
model for mesons. The model which mill be pre-
sented here yields results very close to those of
't Hooft, thus establishing a further connection be-
tween the string picture and color gauge theory.
Other pictures may also emerge from the color
quark-gluon model, but the color model does not
seem to be inconsistent with the idea of placing
quarks on the ends of strings.

With these motivations in mind, we will propose
here models for mesons as strings with quarks at
the ends and models for baryons as strings with
three quarks. The nem feature in our approach is
the introduction of quark spin and internal-sym-
metry degrees of freedom in the string formalism.
Our. new variables are not related to the Neveu-
Schwarz or Bardakci-Halpern variables" previ-
ously introduced in the string formulation, but ra-
ther they directly correspond to the usual spin and
internal symmetry of the quark fields. Our formu-
lation makes a close connection between the stan-
dard phenomenological quark model and the string
model.

The physical picture that emerges is appealing:
The string action produces a relativistic potential
which binds the quarks together. Furthermore, a
two-dimensional analysis indicates that the potent-
ial energy of the system depends linearly on the
separation between the quarks; the quarks are
thus trapped in a manner reminiscent of the pro-
posals of 't Hooft, ' Wilson, ' and Kogut and Suss-
kind. '

Our formulation has nontrivial implications that
follow from the introduction of quark internal-sym-
metry variables. First, the internal symmetry is
broken by the unequa/ masses of the quarks. This
then leads to a spectrum of Regge trajectories
with nondegenerate intercepts. These trajectories
curve at lom energies but are asymptotically es-

sentially linear. The amount of curvature in-
creases with the masses of the quarks determin-
ing the quantum numbers of the trajectory. Sec-
ond, creak and electromagnetic interactions can
be coup/ed directly to the quarts following the
same prescription as unified gauge field theories.
This then leads to the definition of the physical
currents in the string formalism. Weak and elec-
tromagnetic interactions couple only to the quarks,
not to the string, just as in the quark-gluon model
where the colored gluons do not possess weak and
electromagnetic interactions. The string, just like
the gluons, is the medium of strong interactions
between the quarks. Weak and electromagnetic
interactions can be treated perturbatively as in the
standard field-theory approach.

We remark that there are two very different mays
of regarding our model. On the one hand, the
quarks and the color gluons interacting with them
could be considered as the fundamental basis for
strong interactions. Then our picture mould be a
phenomenological approximation to the stringlike
vortices of, say, Nielsen and Olesen. ' On the
other hand, one might believe that some more so-
phisticated version of the interacting-string model
will give the exact solution to the strong-interac-
tion problem. If this mere the case, then the known
connection between the zero-slope limit of dual
models and non-Abelian gauge theories would sug-
gest a different viewpoint: Vector-gluon field theo-
ries of strong binding mould be phenomenological
approximations to the richer structure of a string-
like theory. From this second point of view our
model is an attempt to incorporate the quark quan-
tum numbers into the picture.

We should point out that the observable quantum
numbers of the quarks could conceivably arise
from topological properties of more complex geo-
metrical models, e.g. , "membrane" or "jelly"
models. For example, the left-twisted and right-
tmisted Mobius strips could be associated with two
different values of a quantum number. Such con-
nections between topology and internal quantum
numbers also occur in field theory. " Thus our
model with quarks on the ends of the string could"
be an approximation to a theory based on a geo-
metrical structure more complicated than the
string. In such a theory purely topological quark
quantum numbers might appear in some limit to be
joined by an extended stringlike structure.

In the end, it might even happen that a perfect
quark-gluon model and a perfect geometrical mod-
el were "dual" to one another in the sense that both
would give equivalent descriptions of physical pro-
cesses.

The present paper deals mainly with the basic
principles of our general formalism. We will dis-
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cuss various simple examples to develop intuition,
but will leave for later work a number of difficult
problems presented by the most realistic models.
We begin in Sec. II by discussing a new approach"
to the incorporation of field-theoretic degrees of
freedom into point particles lying on a world line.
We develop models for spin-0 and spin--,' particles
carrying internal symmetry. These then form the
basis of our technique for attaching point quarks
to the string. In Sec. III we summarize what is
known about the relativistic string with massive
ends, "since some cases of our model reduce ef-
fectively to this one. Much of our intuition is
based upon our knowledge of the string with mass-
ive ends. Section IV deals with our essential prob-
lem —that of building mesons by replacing the ends
of the string with massive quarklike point particles
of the type discussed in Sec. II. We also suggest
a model of baryons with three quarks. In Sec. V,
we generalize the field-theoretical minimal-cou-
pling principle to couple external electromagnetic
and non-Abelian gauge fields to our point quarks.
We are then able to define the physical currents
of our model in a natural way. Suggestions for fu-
ture investigations and a summary of the current
work are contained in the final section. An appen-
dix is devoted to a general technique for restrict-
ing fields to a subspace of the physical spacetime.

II. POINT PARTICLES WITH INTERNAL-

SYMMETRY AND SPIN

In order to describe quarks as point particles
following world lines attached to the ends of the
string, we must find a way of attaching spin and
internal-symmetry indices to a world line. Since
it is clear how to describe conventional fields
possessing these extra indices, we will accomplish
our goal by starting with conventional fields and
restricting them to a world line. We begin for
simplicity with a free spinless U(n)-symmetric
quark. Next, we treat the more realistic case of
s. spin- —, U(n)-symmetric quark. Here two models
are considered: the first, following directly from
the Dirac equation, possesses a classical Zitte~-
bezoegung while the other does not. The quantum
theory of the second model leads to canonical
qunatization rules reminiscent of supersymmetry.

A. Spinless particle with U(n) symmetry

The standard ~- reparametrization invariant ac-
tion for a free, spinless, relativistic point particle
is

(2.1)

where p is the mass of the particle and x)'= sx"/&w.

x"=q" +p "s(r)/( —p')' ~'. (2.2)

Here the T-reparametrization invariant function
s(~) may depend also on the integration constants
q~ and p~. Choosing a gauge, for example, the
proper-time gauge x'=p'~/(-p')'~', fixes the form
of s(w) and q)'. In general, we may write

(2.3)

We thus have a correct classical description of
the motion of the particle, but are able to say
nothing about its internal symmetries. In order to
describe a particle which carries internal-sym-
metry indices, it is clear that we need more vari-
ables in addition to the position x)'(~). We begin by
introducing functions Q„(~), o. = 1, . . . , n, which
form a basis for the spinor representation of U(n).
As described in the Introduction this U(n) symme-
try refers only to observable symmetries of the
quark at the end of the string rather than hidden
color symmetry. The )p„are also taken to be
scalars under Lorentz transformations and v re-
parametrizations. The simplest action for a
massive point particle which is invariant under
U(n) symmetry, Poincare transformations, and
7. reparametrizations is

«&,()p (&),s,p„(&)),

where the point-particle Lagrangian is

Hereafter, sums over e will be implicit.
This Lagrangian is closely related to the stan-

dard field-theoretic description of a free spinless
particle with internal symmetry. " To see this,
consider the spacetime Lagrangian density for a
free U(n) Klein-Gordon particle:

S = —
q,y'(x)s "y(x) -I'y'(x) y(x). (2.5)

To restrict the field to a world line, we require
that x" be replaced by x"(y), where v parametrizes
the world line. The Cartesian Minkowski metric
q~" = diag(- 1, 1, 1, 1) can be decomposed at any

point on the world line into a complete set of vec-

Our metric is such that x'= —x,'+x' .The canoni-
cal momentum is

p"= px)'/( —x,')'~'

and obeys the constraint p'+ p.'= 0. Minimizing the
action, one finds that p~ is a constant of motion.
We may thus solve the equations of motion for x~

in the form
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tors consisting of the timelike tangent to the
world-line, x,"= sx"/sv, and all of the spacelike
normals n", (v). Thus we have

~""=x"(i)P" (~) -H (~)P"(~),

g=II~(~)II(~)+m'yt(v )y(r).

(2.14)

(2.6a)

P P 2
7 OPvX7. XT' 4 0~

P I/ (2.6b)

where a sum over the index i is implied. Note
that

We also identify the following constraint, which
results from g -reparametrization invariance:

p'+p =0 (2.15)

For arbitrary x"(v), we can solve Eq. (2.12) for
pgx(v)) using the parameter s(r) defined by Eq.
(2.3). The result is

(2m)l/2P (r) a e ims+ bye (2.16)

The metr1c 'g ls g-reparametrlzatlon 1Dvar1ant
and raises or lowers indices in Minkowski space
as usual. Using Eq. (2.6a) we can write

where a, b„* are dimensionless complex con-
stants. Replacing (2.16) in (2.14), we find that the
constraint takes the form

p = (-p')'/'=m(a*a„+ b*b„). (2.17)

n,'e„y(x.) = 0. (2.8)

Furthermore, we note that by the chain rule of
diff erentiation

(2.7)

If the field p(x) is not to leave the world line, we
cannot allow any nonvanishing normal derivatives.
Thus we take

Furthermore, using (2.11) and (2.13) we may
solve for x"(~):

x"(~) = q" +f"e( )/(-p')". (2.18)

This is the same as Eq. (2.2).
Finally, we note that if the U(n) symmetry is

broken by assigning different masses to the com-
ponents of P,

x,"s„y(x(T))= s,y(~) (2.9)
0 %2 0 o s' ~

BL, Bgg(y,

s(s yi ) ( x 2)1/2 (x& (2.10)

", = (11'll+m'y'y) '„„,=-P", (2.11)

and the Euler equations

s, 11„+(-x„')'/'m2y„= 0,

B~p" = 0.

(2.12)

(2.13)

The constants of motion of this system are the
total momentum p", the Lorentz-transformation
generators

Therefore, we may now consider p to be effective-
ly a function of r, and substitute Eqs. (2.7), (2.8),
and (2.9) into Eq. (2.5). Multiplying by (-x,')'/'
(which effectively is a Jacobian), we obtain Eq.
(2.4). The general technique for restricting an
arbitrary field theory to a subspace of arbitrary
dimension such as a world sheet instead of a
world line is discussed in the Appendix.

The equations of motion are obtained by varying
the action in the standard way with respect to both

Q„(r) and x"(r). We find the canonical momenta

(2.19)

Equation (2.17) becomes

p = (-P')'/'= a Ma+ b mb. (2.20)

It is straightforward to quantize the theory in a
given gauge such as x'=7po/( p')'/' by a-ssuming
standard commutation rules for p and q and taking

[a„,a', j = 5„,= [b„,b,'] (2.21)

and all other commutators zero. This is then con-
sistent with the canonical commutation rules
[p, lie] = i 5 e etc.

The interpretation of the solution (2.18) and
(2.20) is that the center of mass x moves like a
free particle, while the effective mass of the sys-
tem, (-p')' ', is equal to the sum of the number
of quanta at the Point x times the appropriate free
mass nz, The more quanta we put at the point x,
the heavier the system becomes. The effective
mass of the system also depends on the kind of
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quanta we put in if the U(n) symmetry is broken as
in Eq. (2.19). This is a satisfactory description
of free scalar particles. with (broken) internal
symmetry.

Although we have restricted ourselves to a
U(n) multiplet for the purposes of illustration, it
is clear that the treatment can be extended to any
representation of any internal-symmetry group.
It is also clear that our approach could be gener-
alized to interacting theories such as p' etc. ,
which would change the solution (2.16) as well as
the spectrum of (2.20). We will not attempt to
treat these matters here.

B. Dirac particles with internal symmetry

Since it is believed that free quarks would obey
the Dirac equation, we now proceed to derive the
Lagrangian for a Dirac particle restricted to a,

world line using the methods of the previous sub-
section. We begin with the spacetime Lagrangian
density for U(n) quarks,

(2.22)

To simplify our expressions, we now define

~ p dX XtP ~ 2x = =,,/, (x= —1),ds (-x, )

~ d
ds (-x ')'/' '

(2.26)

where s(~) is the parameter (2.3) defined earlier.
The Euler equations then become

(2.27)

(2.28)

where A„ is any U(n) matrix which commutes with
the mass matrix,

q+ y(-,' j'j7-mj') = 0.

We may thus derive a number of constants of mo-
tion, including the total momentum p" and

Hereafter sums over the indices o. will be implic-
it. Hecall that the indices a refer only to observ-
able symmetries, not to color. Our y-matrix
conventions are, e.g. , those of Weinberg. "

We now restrict x" (v) to a world line parame-
trized by z and forbid g(x(v)) to leave the world
line by imposing the condition

n,"(r)su((x(v)) = 0. (2.23)

Then when we replace the metric qu" in Eq. (2.22)
by the expression (2.6a), we find the following
Lagrangian for a classical pointlike Dirac parti-
cle:

It is convenient to define the constant mass para-
meter

p=gmg= -p x. (2.29)

Integrating this equation we find

P 'x= —ps+d~

where d is a constant.
The generators of the Lorentz group are also

constants of the motion. To derive an expression
for them, we note that x", g, and p transform
under Lorentz transformations as

5x" = (u""x„,

—(-x, ') '/ y(~2) m y(v) (2.24)

The canonical momenta may now be identified
as

Z p p
6|I'a=

4 +u~0b &aa ~

where

I p+
2( 2)i/2 4r ~ 0,

r

sLO
S (S ~) 2( x 2)1/2

(2.25) Noether's theorem then implies that

(2.30)

(2.31)

BLO
X s(s ]) 0 2( 2)i/2 ~

is the constant generator of Lorentz transforma-
tions and the spin matrix is defined by
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and

A"'A„„=-2W'/p' =S""Sq„—2r p' (2.44)

= —.g(o""k+Xo"")4.4i (2.32)

We note the total momentum can be written as

p" = p.x" +S"'x, .
From Eq. (2.32), we see that

S"Vx = 0V

where we have used the fact that

&P y k+ y X&V &X.Py + y &XP

gV XyP +ylf gVX

(2.33)

(2.34)

Equations (2.31), (2.33), and (2.34) are recogniz
able as the basis of Frenhel's theory of spinning
relativistic particles. " However, our theory dif-
fers substantially from that of Frenkel because
our p, is a dynamical variable defined by (2.29).
We also have additional equations of motion (2.27)
which determine g, and hence the properties of

The variables g„(y) are absent in Frenkel's
theory. "

We also find the following relation among our
variables:

~ p'S""S„,+p„S"'S„qp~= ——'(S"2'Sq„)((m))'. (2.35)

An analysis of the Poisson brackets of the ele-
ments of A"" indicates that they generate a
little group which leaves the momentum P" in-
variant. Thus the constraint equation (2.44) re-
lates the ratio of the two Casimir operators of
the Poincare group W' and P' to the Casimir
operator (A"")' of the little group. Using Eqs.
(2.34) and (2.39), we find

0 =p„S""x„/p' =r ~ x. (2.45)

We may now find an equation of motion for r"
by examining

0 =S"'x, = (8""—r"p'+r"p")x,
Av x + pxu (2.46)

8""i„+p,r" =0.

Examining the expression

S~"S„p'= S~'S„,S"X.
= ——,'(S'S„,)S""x,
= ——,'(S S„8)(p" —p, x")

(2.47)

(2.48)

where we have used Eqs. (2.29) and (2.45). Since
Eqs. (2.41b) and (2.43) imply A""q„=0, we finally
obtain

Def ining the Pauli-Lubanski vector

W" = —'e"" M p —=M*""p

we find that Eq. (2.35) may also be written

(2.36)

px" =p" —S""r,p'/(-'S"8S 8). (2.49)

which follows from Eqs. (2.33) and (2.34), we
may use Eq. (2.39) to express x" as

W'= —,'(S~"S„„)(pm')'. (2.37)

x"(s) = q" (s) +r"(s),

where

r~(s)= S"p„/p,
so that

p e=p x p &=0.

Examining M"', we find

q'=(M"'p„+p"p x)/p',

q =p"p x/p'= —pp"/p'.

Now we define

(2.38)

(2.39)

(2.40)

(2.41a)

(2.41b)

We next find it convenient to separate x"(s) into
two parts,

This information combined with Eq. (2.47) allows
us to write

r'"+y'~" =0,

where

W'=-2p /(S" Sns)

(2.50)

Since P x= —p. is a constant, Eq. (2.41b) implies
q" =0. Thus if we differentiate Eq. (2.49), we
find

p, X" = p. r"= —S"'"r,p'/(-'S'8S ')
where we used (2.40), (2.42), and (2.45). But
Eq. (2.47) indicates r r'=0 and Eq. (2.40) makes
p r'=0. Thus from Eq. (2.42),

gPV M@V ~PpV + ~VpP

= X"pv X"p" S"'

where

(2.42)

(2.43)

= —P p /W

(2.52)

= 2g'/(B "8A„8). (2.51)
The variable r"(s) thus executes harmonic motion
with angular frequency y, so

r" =(a "e*'+a*"e '")/(-2p') '"
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From the definition (2.36) for W" and the ex-
pression (2.34) for r~, we see that

The equation of motion for P can now be written

P+Mg =0,
P r=O

w ~= -p„s*j"s,„p'/p'
(2.53) where the s-independent matrix M is given by

M = 4o ""R„„+[ ——,'g (0)j7(0) +mg(0)]

and

g(s) =U (ys)((s).

(2.61)

where S""S„*„=Ofollows from S""i„=0. Thus
r" moves in a plane perpendicular to both P" and
W". From Eqs. (2.47) and (2.53), we see that
a" and W" are eigenvectors of R~'. g(s) =U(ys)e (2.62)

This equation can now be solved directly by quad-
ratures to give

a =0 P a =0, 5"a =0.

iR"'a, +a"(,'R 8R )' —'=0,

iR~'W, =0.

Furthermore,

(2.54)

(2.55)

where ~ is an s-independent spinor.
The solution of our classical spin-& Dirac par-

ticle problem is now complete. The quantum
theory, however', is nontrivial and will be de-
ferred to a later investigation.

x"(s) = [iif" P~+P"(d p~ )]/P'-
+ (a pe lgs +a

gable

-lies)/( 2p2)1/2 (2.56)

so x"(s) consists of periodic circular motion in
a plane superimposed upon a pure translation.
The over-all. helical motion is identifiable as.
the effective classical Zitteybeggeggng resulting
from the quantum-mechanical interference of
positive- and negative-frequency components in
the Dirac equation. The Zittexbeseegung is a
familiar consequence of attempting to localize
a Dirac particle, as may be seen explicitly from
an appropriate wave-packet construction. "

Now we turn to the solution of the equations of
motion (2.27) for g. Equation (2.54) can be used
to show that

(e'")'"a„=a"exp[i6(-,'R" R„B)'~']. (2.57)

Next we define the Lorentz transformation in the
space of Dirac matrices as

U(8) = exp[ —,'&o„,R"'/( —,'R R z)' '].
Thus

(2.58)

Here a", a*", and 8'" are analogous to the m
= +1, m= —1, and m= 0 components of a spin-
one vector. P" is invariant under rotations by
R"", so R"' generates a little group of P".
This becomes clear from an analysis of the Pois-
son brackets of R"". Thus we may finally write

C. Supersymmetric spin- 2 particle without Zitterbewegung

S~"P =0 (2.63)

where S"" is the spin part of the Lorentz-group
generator. " This condition guarantees that the
particle's spin degrees of freedom consist only
of spatia) rotations in the rest frame. That P"
is parallel to x" can be seen directly from Eq.
(2.63) by writing

M""p. =(x"p' x"p" +&"')p. —

=x"p' —p"x. p,

and taking a derivative to yield

p" =x"(p'/p x)

The spin-& Dirac particle discussed in the pre-
vious section possessed a classical Zittn beseegnng
with the result that the particle's velocity did not
vanish in the frame where p = 0, as seen from
Eqs. (2.49) and (2.50). One might therefore ask
if there exists a spin-2 particle Lagrangian which
gives the particle's momentum PxoPoxtional to
its velocity; such a particle would correspond
more closely to the traditional picture of a pos-
itive-energy classical spinning particle.

A sufficient condition to make a particle s mo-
mentum and velocity proportional. is the con-
straint

U(e)a'U (g) =e' a',

U(6)PU (&) =P.

We can therefore write

(2.59)

S""= —.g o""—+ —o"' p
1 — . P P

4i tn m
(2.64)

One way to ensure that 8""P,=0 is to search
for a Lagrangian implying that

——,"g(s)x'(s) + mg(s)

= U(y&) [ —~g(0)jt'(0) +mg(0)] U t(ys). (2.60)

instead of Eq. (2.32). This can be achieved if our
canonical momenta conjugate to g and g take the
form
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X= —
2 0, X 42 (2.65)

We now find the explicit solutions for (1)(s) in the
form

--.'(px. p)(,"-p, p, x"p). (2.66)

The canonical momentum conjugate to x" is

(- I")'"
7~P +2

( Vx2)l/2 2~ (2.67)

instead of Eq. (2.25). We have constructed a
Lagrangian with all the required invariance prop-
erties; it is given by the expression

2' Z/2

L, = ——,'[(T()y "mg)2]'/2 — x," q — s, y "y
L

im2
p(s) = exp(- x x,

2g
(2.75)

where s is the parameter defined by Eq. (2.3),
and A, is a constant spinor. The coordinate x"(s)
consists of a pure translation,

+
( p2)1/2 S (2.V6)

The quantum theory of this system is straight-
forward. We find in the x'=pox/il gauge that the
canonical commutation rules are satisfied pro-
vided

where

V" =iyy "my,
(2.66)

Ie', p't= i5",

fXn P) i (PB ab.2m

(2.77a)

(2.7Vb)

x)'-q a y "g.-T
2m T

The equations of motion are

g PP 0

( Vx2)1/2
ie, g —m' (,)1/, /=0,

.(-~')1™-—ispg —m2
( 2)1/2 ((t) =0.

We see that

g2 —= i(Xm2$+7()m2X) =iT))itmlt)

(2.69)

(2.70)

Furthermore, p" commutes with A., and A.» but q'
does not. However, both x' and p' commute with
(I) and X in accordance with the canonical commu-
tation rules.

We note the similarity of Eq. (2.7Vb) to the su-
persymmetry commutation relations. ' This is
why we call P the "supersymmetric" quark. Here,
however, the X, are simply canonical variables.
We remark that the p on the right-hand side of
Eq. (2.77b) is essential to obtain only positive
norm states. This is best seen in the rest frame
(p=o), where we calculate the norm to be

is a constant of the motion.
The constraint associated with 7 reparametriza-

tion can now be written

(o~x:xstI0)=+,"p,(y' y, ).,
0

p2+p2 0 (2.71)

After some calculations using the equations of
motion and the constraints, we find first that

T)(+x2 y))( TI2)1/2/( y2)1/2 0 (2.72)

so that Eq. (2.67) may be written

tl" = x "(-I")"/2(- T')'"
Squaring this equation, we finally obtain

~

( y2)1/2/( Vx 2)1 /2
( P2)l /2/( x 2)1 /2

~/( x 2)1/2

so

p" =px", /(-x ')' ' (2.73)

The equations for (I) can now also be simplified:

m'(- x ')1'
is, (1) — '

Q =0,
(2.74)

m2—ispg —(-xp ) T() =0

(Remember that T()=(1)~y~, y~ =iyo )A sim. ilar
ghost-eliminating factor was previously discussed
in connection with Chan-Paton-type spin factors
in the context of dual models. "

III. REVIEW OF STRING WITH POINT MASSES

Before proceeding to attach quark fields to
world lines connected by strings, we review the
closely related problem of attaching structureless
point masses. " For simple quarks, like those in
Sec. II A and DC, the dynamics of the two systems
are nearly equivalent. " Some of the results of
this section will therefore be directly applicable
to our quark models for mesons and baryons to be
given in Sec. IV. In subsections A 1 and A 2 we study
mesonlike cases and in Sec. IIIB we analyze a
baryonlike system. The structureless point mass-
es which appear in this section correspond to those
of the quarks attached to the ends of the string, as
will be demonstrated in the next section.
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A. Two-mass case (mesons)

We first consider the action for two masses, at
the points x'(0) x="(r, o = 0) and x'(x) = x-"(7, o = x),
joined by a relativistic string,

s= I zrI-~, (x,'( )0')™-u(*,(-~),*)
"T1

(3.1}

M.= (k'+ p,')' ~'+ (k'+ p, ')' ~'+ yI) ~,

where k and r are canonically conjugate relative
variable.

The periodic classical motions and the Bohr-
Sommerfeld approximation to the quantum theory
follow from the analysis of the k-r phase-space
diagram for fixed M in Fig. 2.

The action variable J is

Here

x,"= 8x"(o, &)/8o,

x„"= 8« (o T)/8T

and

-y(-g)'~'-=-y[(x, x,)' —x,'x,')' ~'

is the Nambu Lagrangian density for a free rela-
tivistic string. The string contribution to the ac-
tion is effectively a relativistic potential exerting
a force on the two mass points. This will become
clearer below.

The action (3.1}has been extensively analyzed
in Ref. 13, so we will give here only an outline
of the main results. The equations of motion are

J= t) kdr= —t) rdk,

and may be computed to be

—2p. ln M +p. —p,
2 1

2M', 0
0 2'

where

2M', ,
(3.6)

&(M, ~., ~,) = [~'- (u. + v,)'1[M' —(u. —~.)'l.

(3.V)

The Bohr-Sommerfeld quantization rule is then

,8If( ,o)r+8+"( ,o)7=O, 0&a&&

8,p"(0) —yN"(o =0, 7') =0, a=o

8,p"(x)+ yX"(o =m, ~) =O, o= ~

where
Z" =(x,"x.'- x,'x x )/(-g)' '
X'=(x."»;— x;x. x )/(-g)'~',

P"(O) = l,x,'(0)/[-x;(0)] '",
p'(1r) = p,x,"(7t)/[-x,,'(7r)] ' '.

1. Timelike gauge

(3.2a)

(3.21)

(3.2c)

(3.2d)

J= 2))k(n+ const); n =0, 1, 2, . . . . (3-6)

0 = ydk'G(k, k') g(k')

+ [(k'+ ~.')' "+(k'+ V.')' "-M]4(k), (3.9)

k

2M ~{M -{po+p ~}2){M -(p -)uw& )
I

The exact quantum spectrum of this equation
can be found by solving the nonlocal Schrodinger
equation

We examine the simplest possible longitudinal
motions of this system, which occur when the
string lies always along a single line, thus we are
effectively in 2 spacetime dimensions. We may
then choose a timelike gauge such that

«'(7, o)=~

and x, is independent of 0;

(3.3a)

x(v, o) =x(v', 0)+ —[x(v, x) — x(7', 0)]. (3.31) l—{M-po-p, ~}

All other components of x"(7, o) are assumed to
vanish. The Hamiltonian in this gauge is

a= fp'(o)+ p.o']' '+[p'(&)+ p,,']' '
+ y~x(x) —«(o) ~. (3.4)

In the center-of-mass system where p(0}+p(x) =0,
H reduces to the invariant mass

FIG. 2. Phase-space diagram following from Eq.
(3.5).
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where

G(k, k') = lim — drr cos[r(k k-')]e '"
sP

Ql 2 (3.10)

and P denotes the principal value. Exact solu-
tions of this equation are not known.

x =x +x ='r)

x- -=x'- x = x-(0)+- [x-(v) —x-(0)].
(3.11)

The Hamiltonian in this gauge is

p =-p'-p
2 2

=
2p (0) '2p'( )

' l" '
and the total (+ ) momentum is [p+(0),p+(v)) 0]

(3.12)

p' =p'(0) +p'(]r). (3.13)

We note that the quantum theory is Loxentz co-
vaxiant for this 2-dimensional system. The boost
operator M' is derived from the Lagrangian via
Noether's theorem and in the lightlike gauge the
operators are ordered to ensure Hermiticity. We

obtain

M'- = ~p- ——,'[x-(0)p'(0)+ p'(0)x-(0)]

,'[x (w)p-'(]r)+p'(v)x (n)],

2. Lightlike gauge

We now repeat the analysis of the previous sub-
section in the lightlike gauge

and it satisfies

[M', P ]=+iP

where P', P are given in E(ls. (3.12) and (3.13).
We now make the canonical transformation

)('= [p'(]r) -p (0)l&2p',

a=p'[x (v) -x (o)],
(3.14)

so that the invariant mass-squared can be written

(3.16)
where G(x, ~') is given in E(l.(3.10). 't Hooft' has
derived this equation using a color gauge theory
in two spacetime dimensions. We find it remark-
able that such similar results arise from such dif-
ferent origins. Exact solutions of this equation
are unknown.

B. Three masses (baryons)

Now we join three masses, at the points x"(0)
=x'((r=0), x'(l)=x'(o=o), x"(r) =x'(0=w), with
two strings. We take the action to be

2 2
M'=2p p-=, "o +," +2ylpl, l, (&,

2 " 2+"
(3.15)

The Bohr- Sommerf eld quantization procedure
yields the same result as before, E(ls. (3.6)-(3.8),
while the exact quantum spectrum follows from
the Schrodinger equation

2y d~C~, ~ e+," +," I' & =0,

(3.1V)

/

( T2 ( Oy

s= dv —g [—x, (0)]'~' —)('[~ (1)]'~ —g, [—x, (w)]' '-y de( g)'~ —y de( g)'~'I— —
0 Q fy~

We now restrict ourselves to longitudinal motions of the string lyimg on a straight line: We use the time-
like gauge

x'((r, 7 ) = ~

and choosvthe o gauge so that x, is independent of cr between masses,

(3.18)

0 & o & o,: x(~, o) = x(7, 0) +—[x(~, (r,) x(7', 0)]. —

(r, & (r & v: x(~, o) = x(~, (r, )+ ' [x(~, )r) —x(~, o,)]m-o,

All other components of x"(v, o) are taken to vanish. The Hamiltonian then becomes

H= [p (0)+ p,, ]'r'+ [p'(1)+ p, ']' '+ [p'(n)+ g,']'r'+ ylx(1) —x(0)l+ylx()r) —x(1)l.

(3.19)

(3.20)

Going to the center-of-mass frame and choosing appropriate canonical pairs of relative coordinates, H
becomes the invariant mass

M = [-.'(k, +k.)+ uo']'"+ [l(k, k.)'+ ~,']'"— (k'++ [ i')'"+ yl~~+ ~2t+ yl~. —~21~ (3.21)
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X{o.=O, v)
«««««X{o «g f)
-"""X{o.=o. ~))s

FIG. 5. Model for meson consisting at a given time
of a point quark and a point antiquark connected by a
string.

on one edge of the system, while J, gives an os-
cillation with a "diquark" periodically crossing
the middle of the system. The lowest modes are
then purely of these two types.

The experimental data on baryon spectra favor
the 56 and VO representations of SU(6). Such rep-
resentations have a natural interpretation" in
terms of diquark correlations inside the baryons.
The string model discussed here then seems to
give the dynamics required for these correlations
to occur.

FIG. 3. A typical motion resulting from the Hamil-
tonian (3.21) in the zero-mass limit.

M =y(J, J+). (3.22)

The action variables J, and J, correspond to the
normal modes of the system. When the initial
conditions are such that J2 =0, the motion de-
scribed by J, is plotted in Fig. 4(a). When J, =0,
the motion is that of Fig. 4(b). We see that J, de-
scribes an oscillation with a "diquark" remaining

X (r,o.=0)
----- X(r,o.=m. )
~ ~ ~ ~ ~ ~ ~ X(g g «o )

I

It is simpler to examine the motion of this system
in the zero-mass limit. A typical motion is plotted
in Fig. 3.

Analysis of the action variables for vanishing
masses gives the result

IV. QUARKS ON THE ENDS OF STRINGS

We are now ready to apply the methods of Sec. II
to attach quark quantum numbers to world lines
joined by the relativistic string potential. These
systems constitute our proposed model for had-
rons.

Mesons will be represented by a quark and an
antiquark attached to opposite ends of the string,
as shown in Fig. 5. Our model Lagrangian for
mesons gives a v- and 7-reparametrization in-
variant action with the form

T Tl

S = dv Lo Cr=0 +Lo V =a —y -g~2
T] 0

(4.1)

where L, is one of the point-quark Lagrangians
examined in Sec. II and —y(-g)'~' is the string
Lagrangian density treated in Sec. III.

Our baryon model consists of three quarks con-
nected by strings. Of three possible configura-
tions shown in Fig. 6, the simplest is probably
that of Fig. 6(a), with all quarks lying on the
string. The motions exhibited in Fig. 3 apply to
this case and show that each quark spends some
time at the edges as well as the middle. The con-
figuration of Fig. 6(b) is intuitively an excited
state with respect to the one in Fig. 6(a), thus its
low-energy spectrum is probably included in this
latter case. The action corresponding to Fig. 6(a)
takes the form

T2

S = dr L (o =0)+L,(o=o,)+L,(o =n)
TJ

+ d(T -g (4.2)

(a) (b)

FIG. 4. (a) Pure J& mode, (b) pure J2 mode, indi-
cating diquark correlations inside low-mass baryons.

where L, is again any point-quark Lagrangian.
The three. point Lagrangians are functions of the
coordinates x"(r, o =0), x"(7, o = o, ), and x" (v, o = w),
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(a}
vanish. We thus obtain the equations of motion

0=8 Z&(T, g)+ 8.X&(~, o), 0&o&w (4.4)

(e)

FIG. 6. Three possible configurations for the quarks
on the string, giving model baryons.

A. Model for mesons

We begin our investigation of meson models by
examining the action (4.1) with L, taken as

L (x(0))=s, pts, p,[-x '(0)] ~'

—y,'m'y, [-x,'(0)] ~2, (4 3)

and similarly for Lo(x(8)) with o = m quantities sub-
stituted for o =0 quantities. Our action principle
is defined by requiring the variations

64,(~), 64, (~), 6x~(~, O), 6x~(...),
6x" (v, (r), 0 & (x & w

' respectively. The action corresponding to Fig.
6(c) will have an additional potential connecting
a=0 to o= m. We will not study the other possible
models for baryons in this paper.

We will impose good triality upon our systems
from the outset as a phenomenological principle;
only one quark will be assigned to each world
line, and we will allow only strings attached to
three quarks, or to one quark and one antiquark.
This principle is ordinarily dictated by color-
symmetry arguments' which play an implicit
rather than an explicit role in our treatment, as
described in the Introduction.

Clearly the most desirable course at this point
is to analyze the quantum spectrum of each of our
models for mesons and baryons using the spin-&
point-quark Lagrangians in four spacetime dimen-
sions. As one might expect, this analysis be-
comes exceedingly complex. Since our main goal
here is to introduce the basic ideas of our method,
we will be content to develop a feeling for the im-
plications by analyzing the simpler, but less real-
istic models. In the rest of this section, we will
treat mainly the spinless quark model for mesons
with motion restricted to a two-dimensional sub-
space of spacetime. The model for baryons will
be outlined at the end.

d rh ~ +m'P =0 o =0
d8 0

0

d'
~; +m'P, =0, v=w.

(4.6}

Thus we see that $0 possesses the solution

y,„(s,)=, s,(0)+, f *,(0), (4. f)

with P„having a similar expression.
Equations (4.6) also imply that

~0=8. A. s. 4 +So™40~
&~=8, 4~~, 4m+4~~'4'~

(4.8)

are constants of motion, so that Eqs. (4.5) may be
reexpressed in exactly the same form as Eqs.
(3.2b), (3.2d). The other constants of motion are
the Poincare-group generators P" and M"' and the
U(n}-symmetry group generators

Qn8 = A~a, ,lo8+ 4'one. ,lw8 (4.9)

which commute with the mass term in the Lagran-
gian Lo.

B. Longitudinal motions and their spectrum

Restricting ourselves to motion in two spacetime
dimensions and choosing the timelike gauge analo-
gous to Eqs. (3.3), we find the Hamiltonian

[p2(0) + ~ 2]lh + [pm(+) + ~ 2]1/2

+yeux(w) —x(0)i . (4.10)

Here p(0},p(8) are identical in form to Eq. (3,2d),
except that p.o and p, „are the nontrivial canonical
variables (4.8).

While the quantum theory of the variables P and
x is nontrivial, as we saw in Sec. III, we may
quantize the fields $0 and P„ in a straightforward
manner. From Eq. (4.V), we deduce that for @=0

[n.(0),~8(0)1=6.8 =[&.(0), &8(0)] (4.11)

are acceptable commutation relations implying

e, ', „, Il, rr, +,m2, +ye~ ~, a=0 =0,
(4.5)

x",(8)
=0,

where K" and N" are defined by Eq. (3.2c}. In-
troducing the s parameter of Eq. (2.3), the P
equations of motion, essentially the same as Eq.
(2.12), may be written

to be arbitrary except at ~ =v„~„where they 0 '48] 8 (4.12)
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where Ilo is the canonical momentum, e.g. , (2.10).
Similar equations hold at o =w. Thus Eq. (4.8)
may be written

p, =at(0)m„8as(0)+b~t(0)m«b8(0)+const, (4.13)

and similarly for IL(, , It is possible to cancel all
or part of the normal-ordering constant in Eq.
(4.13) by adding an extra term to the Lagrangian
proportional to [-x„'(0)]~' (and [-x,'(m)]'~'). We
will set the normal-ordering constant equal to
zero in the analysis which follows.

We see that our meson system has been reduced
effectively to that of Sec. III, except that the mass
variables g„p., are now oPexatoxs which take on
different values depending on the different masses
of the quarks in the multiplet. Symmetry breaking
thus appears in a natural way, and the masses at
the ends of the string are now identified diyeetIy
with the masses of the quarks making up a given
meson.

For example, the m' meson will be a string with
@ and X quark masses on the ends, while for a
K' meson, the 6' and ~ masses appear. The in-
ternal-symmetry content of mesons is described
by the states at(0)be(n)~0), where at(0) creates a
quark of type n at x(0}, while b~z(w) creates an
antiquark of type P at x(w). The particles n', K'
etc. and their excitations are described by the
states, e.g. ,

~Z') =a,'(0)b', (w)(0) . (4.14}

The spectrum, e.g., of the K' family, is then
given by

a,.= (z'off)z "}

=[p2(0) +m ]~+ +[p (g) +m ]~

+y[x(w) —x(0)( . (4.15)

We see from the form of Eq. (4.15)that (a) the sys-

+yeux(w)-x(0)i . (4.18)

The resulting spectrum has the following prop-
erties:

(a) If m, =m, =0 (e.g. , pion, with massless
quarks)

2w}fy(n+ const) =M„', n =0, 1, 2, . . . . (4.17a)

(b) If m0=0, m, =m WO (e.g. , kaon),

2nhy(n+const)=M„'-m' —m' ln(M„'/m') . (4.17b)

(c) If mo =m, =m,

2''y(n+ const) = M„(M„2 —4m )' '

—4m'ln ".+
(4.17c)

tern becomes heavier for larger quark separations,
(b) the lowest mass occurs for a shrunk string
[x(0)=x(m)] and corresponds to the ground state of
the standard quark model where the quarks are
approximately at the same spacetime point. The
quark masses determine the intercept of the tra-
jectories, which are therefore in general nonde-
gener ate.

We can calculate approximately the quantized
radial excitation spectrum of the m', K', etc.
families from our longitudinal-mode Hamiltonian
(4.10). This spectrum would correspond to the
mass states with fixed spin in a Chew-Frautschi
plot. To obtain the angular excitations one would
have to include the transverse modes of the string
as well, which we have not yet done. We now

apply the semiclassical Bohr-Sommerfeld quan-
tization procedure as in Sec. III and Ref. 13. Pro-
ceeding as for Eq. (4.15), we find for a meson
with quark masses m, and m, the effective Hamil-
tonian

If = [p'(0) '1".[p'( ) ']"

(d) If

modem„00,

2ggy(n+ const) =b, ' '(M„, mo, m, ) —2mo ln " ' ' +
2mp Mn m p

(4.17d}

where h is defined in Eq. (3.7).
This shows that with massive quarks the spec-

trum is not linear. However, for mesons con-
taining small quark masses, m ', m, '& 0.3 GeV',
the deviation from linearity is very small and the
spectrum quickly becomes essentially linear. On
the other hand, if the quark mass is large, such
as the conjectured charmed quark with m, =2 GeV,

then the curvature is substantial. This may be a
welcomed feature if the new resonances'4 are in-
terpreted as charmonium states. "

We remark that since we have included neither
spin nor spin-spin interactions at this stage, our
present results are not necessarily realistic.

If we assume, however, that the above formu-
las are applicable to the octet of observed pseudo-
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scalar mesons, and take, e.g. ,

I
v'& =s~(0)&~(v)[0), [&') = ~,'(0)& ~(v)l o),

(4.16)

~ q) = [a~~ (0)b~t(m) + a~t(0)bz~(v) —2a ~(0)bt), (v)] ~ 0),
1

while setting (n+ const) = 0 in Eq. (4. IV), we obtain
the following masses for the ground states:

my+ m(p +m~p

mg+ m(p +mg

m„=-', (m~+m~+4m„) .
(4.19)

For m6, =mz, Eq. (4.19) leads to the linear mass
formula

m + Sm„=4m (4.20)

which is in reasonable agreement with experiment.
Given our crude model, we consider this result
encouraging. The coefficients in Eq. (4.20) are the
same as those in Gell-Mann and Okubo's quaCratic
mass formula.

We will not attempt to treat baryons in detail
here. The basic procedure would be to construct
baryonic states analogous to Eq. (4.18) and take
matrix elements of the Hamiltonian following from
an action like Eq. (4.2). In this case the Hamilton-
ian would take the form of Eq. (3.20). The Bohr-
Sommerfeld spectrum for massless quarks would
then be given by Eq. (3.22), while for massive quarks
the trajectories would in general be nonlinear.

for dealing with weak and electromagnetic inter-
actions. We propose to extend the procedure of
Sec. II to include quark fields coupled minimally
to a set of vector mesons, where the gauge group
may in general be non-Abelian. The string itself
will not be coupled to these vector mesons because,
as discussed in the Introduction, the string is as-
sumed to have the same properties as color glue.
Provided the meson-quark coupling is small, as in
the unified theories of weak and electromagnetic
interactions" we may treat the interaction pertur-
batively. Thus the successes of gauge theories in
their application to weak and electromagnetic in-
teractions would be expected to persist in our mod-
el. The picture that emerges is one in which the
strong interactions mediated by the string are
solved in the absence of weak forces, which are then
considered as small perturbations on the system.

For the purpose of illustration, let us consider
the model of Sec. IV with spinless quarks. The
point-quark Lagrangians I.,(x(0)) and L,(x(v)) will
be modified in the presence of interactions. The
new form of L, at each point follows from exam-
ining the gauge- invariant spacetime Lagrangian
density

&(x) =- [D"4(x)]'ID, A(x)]- 0'(x)~'0(x), (5 I)

where D" is the covariant derivative defined by

V. WEAK AND ELECTROMAGNETIC INTERACTIONS
L)'y(x) =s"y(x) —— xg. A( )xy(x}. (5.2)

The close connection between the present model
and field theory suggests a compelling approach

Following the same procedure as in Sec. IIA, we
find the modified point-particle Lagrangian

I 0(x) =(,),g, (0,—,'i g~~ A~ x„P) (P, ——,' igo~A ~ x—„(f))—
T

+'g'( x ')' 'Q x x P Q(n';A n'A ) ( x ')''Q I'(II) (5.3)

y 5A (x)=i[y A(x), ~ A"(x)]+~.a"A(x),

5{t(&) = i!( i1(x)4 (&),
(5.4)

where

n~(~) s„A"(x) = 0 (5.5)

This latter condition is necessary to keep (t)(7) on

where A" (x(7'}) may be considered as an external
field. The Lagrangian (5.3) is invariant under the
infinitesimal gauge transformation restricted to
the world line:

the same world line following the gauge transfor-
mation. The normal components of A.~, namely,
n",A„(x), cannot be gauge-transformed away in
general.

We observe that the above procedure for coup-
ling gauge fields to the ends of the string is quite
different from that of Ademollo et al. ,"who did
not use field theory as a starting point.

The current that couples to the gauge fields is
located only on the world lines of each quark,
where x~=x"(r, o'=0) or x"=x"(r,o=v). The local
current at x~=x"(0) is then given by

I
0".(.(0)) =-' '„".

,
' (0!'," 0, 0. ', 0'.{=' ")0.~.(.(0))0.-..(0)),. *!',„".To-

+/(~00', {x',d)0,A, (x(0))n, (x(0)))n', (x(0)),"„ (5.6)
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and a similar expression gives the current at x"
=x~(m). The coupling scheme described here al-
lows us in principle to calculate hadron form fac-
tors. We have not yet carried out this program.

VI. CONCLUSION

Motivated by the many parallels between the
dual-string picture of hadrons and the quark-gluon
field theories of hadron dynamics, we have sought
a method of attaching quark quantum numbers to
world lines joined by relativistic strtngs. We be-
gan by developing techniques for restricting class-
ical quark fields, with any desired measureable
quantum numbers, to a world line. Very simple
point-particle theories resulted when we consid-
ered spinless quarks and spin-& quarks without
Zittexbesoegung. The latter spin- —,

' model contains
an algebra reminiscent of supersymmetry. A
much more complex and interesting theory pos-
sessing Zittexbesoegung arose when we restricted
a classical Dirac field to a world line.

By attaching structureless masses to the string
as in Ref. 13, we developed an intuitive picture
for the dynamics of the simple longitudinal string
oscillations. The string with masses on each
end gave a roughly linear mass-squared spectrum
as expected of a mesonlike system. In a lightlike
gauge, this system is described by an integral
equation found also by 't Hooft in a totally differ-
ent context. A baryonlike system resulted from
placing a third mass in the middle of the string;
for small masses, the normal modes of this sys-
tem simulate diquarks oscillating against a third
single quark.

Next, we analyzed the longitudinal spectrum of
a model for mesons consisting of spinless SU(3)
quarks on the ends of the string. Systematic de-
viations from a linear spectrum were found in the
Bohr-Sommerfeld approximation to the quantum
theory, while symmetry breaking appeared in a
natural way. The SU(3) pseudoscalar-meson
masses were found to obey a formula similar to
that of Gell-Mann and Okubo, but with masses
replacing squared masses. Our technique for in-
cluding internal symmetries therefore has non-
tr ivial implications.

Finally, we observed that we could couple ex-
ternal fields to quarks on the ends of the string in
a straightforward way. The essence of the tech-
nique consisted of examining the spacetime field-
theoretic Lagrangian for a quark coupled to a vec-
tor gauge field and restricting the quark fields to
a world line. The gauge fields were then inter-
pretable as external field potentials and the sys-
tem was invariant under a restricted class of
gauge transformations. Furthermore, the point
quark Lagrangian permitted us to identify clearly

the physical currents.
Only the simplest aspects of our proposed mod-

els have been worked out in detail here. There
are clearly many other facets which would be in-
teresting to explore. The baryon spectrum needs
to be investigated more thoroughly, as do the
problems of using Dirac quarks for both mesons
and baryons. Understanding the quantum mechan-
ics of these models will surely be challenging.
Many additional effects will occur when one allows
arbitrary motions of the string, instead of con-
sidering only longitudinal motions as we did here.
Calculating form factors for models with Dirac-
like point quarks will give stringent conditions on
the phenomenological validity of our proposals.

It is also possible to replace or supplement the
relativistic string potential by more complicated
interactions. For example, an Iwasaki-Kikkawa
spinning string, ' corresponding to the Neveu-
Schwarz model, wouM be expected to generate
spin-spin interactions between the quarks. One
could also conceive of stringlike potentials that
would generate more eomplieated spin-spin in-
teractions, or even isospin-isospin interactions;
such "strings" would then have a close phenom-
enological correspondence to the effects of field-
theoretic quark binding.
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APPENDIX: FIELDS ON A WORLD LINE,
A WORLD SHEET, ETC.

We outline here a new method to treat a local
field on a space smaller than physical space-
time. We use the induced metric on the sma11-
er subspace to generate Poincard-invariant
Lagrangians. Parametrizing the subspace by the
variables 7', we write the spacetime position of
any point in the subspace as x'(r'). The induced
metric is defined in terms of the tangents Bx"/Bv
as

x~ exv
gab g7a 4v 87b a b& (A1)

we find the invariant volume element in 7 space
to be

(d(u) =(dv)(-g)'i'. (A3)

where the x'-space metric g"" is taken to be flat,
but could depend on x", e.g. , in polar coordinates.
In Cartesian coordinates, q~" = diag(- 1, 1, 1, 1).
More generally, if q"" were the metric of a curved
space it might be possible to include gravitation
in this formalism. Writing

g = det(g„), (A2)
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If we now define g ~ as the inverse of g,», we
can examine the metric q~" written in terms of a
complete set of vectors following a suggestion of
Giles and Tye"

'g =X g X + SgS (A4)

Vn; q~„n~ = 6)~,

+i ~ pvxa

VX gp VXb ~ gffbo

(A5)

The metric g,b has one timelike direction, while
n, ' is always spacelike. We confirm that

g „becomes the inverse of q"" provided the n~& are
an independent set of normals to the subspace,

„, ,i, 84(7')—X g (Aa)

The rest of the Lagrangian remains unchanged,
while the volume element gets replaced by d4x- (-g)'i'(«)

In a one-dimensional timelike r space corre-
sponding to a point particle's world line, we find

Then we take Q to depend on v' through the vari-
ables x (r'). This gives effectively p =Q(r'),
where each point 7' corresponds to a particular
point on the subspace embedded in x" space.

The result is that derivatives of P with respect
to x„are replaced by

8"0 = q" "& 0 =(xg"x"+ Em'n" 8$
v e b

i V

x"=x"

i i'
(A5) grab

= g =X~ g~v X~:—X~ )
V V — 2

(A9)

ri, S,y(x(w)) =0. (A7)

Now let us consider a local Lagrangian field the-
ory with fields Q(x), and restrict Q(x) to live only
on the v' subspace. We demand that the normal
derivatives out of the subspace vanish,

,„sy x,' sit (7.)

The invariant line element is simply

ds =de'(-g)'t'=d7( x ')'Z' (A10)
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