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The method originally suggested by Peierls and Yoccoz for treating localized states as approximate eigenstates
of translation-invariant Hamiltonians is discussed in a general way. For many-body systems interacting via

two-body potentials, it is shown that the effective mass is correctly given by the method. The translationally
best localized state is shown to give the exact energy in the two-body problem. Finally, it is shown that both
the strong-coupling and weak-coupling regimes of the polaron can be discussed easily in terms of localized
coherent states.

I, INTRODUCTION

where P is the momentum operator of the system.
Translation invariance of H means that

[H, P j=0. (1.2)

The general technique for utilizing translation in-
variance to obtain better approximate eigenstates
of H is given in Sec. II.

The techniques of Sec. II are then applied to
specific cases. For the shell model

H= (t'(r) (- )(t(r(dF

+ l f (r(F(("(r)(r(r r)((r)((r(dr dr—
P= —i tr V' rdr,

In several areas of physics, the Hamiltonian
of interest is invariant under translation, but the
approximate state vectors commonly used as trial
vectors are not eigenvectors of the total momen-
tum operator. Rather, the state vectors are local-
ized around some point in space, usually taken at
the origin of coordinates. After the parameters or
functions in the state vector have been determined
by using the variational principle, it is necessary
to attempt to correct for the over-all motion of the
system.

Peierls and Yoccoz' suggested a natural way of
using the set of localized states ~x) at all points
x to make this correction. The method seems not
to have been widely applied.

In this paper, the suggestion made in Ref. 1 is
developed first in an abstract way, so as to em-
phasize the general connection between localized
states and translation invariance. The essential
requirement is that states at different points be
related by

i.-&= -"'*-"'p&, (1.1)

where P(r) is a fermion field operator. (It should
be noted that in this case the use of field operators
is only a convenience that simplifies the notation. )
A shell-model state located at x is given by

~-;S&='
'

', „-(II&,
f, V-8

g(r)
~
0)= 0, all r (1 4)

at„-= ' r,. r -x dr.

Here S is a set of A integers i, and the f, are a
set of functions, usually chosen orthonormal. The
operator a~„- creates a particle in the orbital with
wave function f, centered at x. The fact that

[g(r), P) = -fVg(r)

guarantees that (1.1) is satisfied by the states of
the form (1.4). The shell model for two nonidenti-
cal particles is discussed in Sec. III, for A parti-
cles in Sec. IV. This application is the one to
which the suggestion in Ref. 1 was directed. Sec-
tion IV elaborates on the suggestion in Ref. 1 and
corrects the erroneous effective mass calculation
given there.

The other example considered is the polaron, '
where

H= r -2V' r r+ a pap p

—,„f ('(r)((r((r(()+r'(-(Hd(rd'

P=-i ~r V' rdr+ patpapdp,

y= nW2.

Here a is the usual coupling constant, H is in units
of u, the phonon frequency, and length and mo-
mentum are in units M ' and M, respectively,

1727



1728 M. BOLSTERLI

where

M'= m(d, (1.7)

with m the electron mass. In the case of the po-
laron, only one-P-particie states are of interest
here. The technique for constructing states Ix)
that satisfy (1.1) is given in Sec. V, where the
usual weak-coupling and strong-coupling approxi-
mations are discussed in terms of localized co-
herent states. The polaron is used as an example
to show the application of localized-state methods
in quantum field theory.

E„=&5IHI 0&/&OI 5&. (2.2)

A better value for the energy can be obtained by
noting that

II. TRANSLATION AND LOCALIZED STATES

Suppose that a localized state Ix& is given. Then
an upper bound for the energy is the localized-
state (LS) value

(2.1)

if E» is a meaningful expression (it will be seen
that there are cases in which it is not meaningful).
If the state x& satisfies Eq. (1.1), then it follows
immediately from the translation invariance of H
that

ETzs H(5)/N(5)

A(x)dx fD(x)dx. (2.8)

Now suppose that the state Ix) depends on some
functions f, (or parameters c,; the case of param-
eters is a simple restriction of the following).
Thana, A, and, hence, N, H, F», and FT» are
functionals of the f, . If E„s is meaningful, the
simplest approximation to the energy is the local-
ized-state energy EL~,

E„s=minf ELs(f;}
=E.s(f", ). (2.9)

If the functions f,"s are determined by solving Eqs.
(2.9), then Eq. (2.8) gives a translationally im-
proved localized-state energy ET«s,

+Tzzs=ETzs(ft" i (2.10)

Finally the translationally best localized-state
energy ET/» is

ETsz,s ming ETz s (f'$

(2.11)

In view of Eq. (2.10), which can be written

(2.12)
N(K= O,fLs

&xIy) =D(x —y),

&x I
H

I y &
= A(x —y),

(2.3)
it is tempting to use as an approximation for the
effective mass M*

where the dependence on the single variable is a
consequence of Eqs. (1.1) and (1.2). [Note that

E .=A(&)/D(&) 1 (2.4)

Now let

IK&=(2)z) ' ' e'"'" Ix&dx; (2.5)

it follows immediately from Eqs. (2.3) that

&K IQ) =N(K)5(K -Q),
&KIHIQ&=H(K)5(K Q),

N(K) = e '"'"D(x)dx, (2.6)

H(K) = e 'g'"A(x)dx,

so that an approximation for the energy that uses
these translated localized states (TLS) is given by

FT„s=ming [H(K)/N(K)j . (2.7)

For all cases to be considered here, the minimum
occurs at K= 0 and Eq. (2.7) will be used in the
form

1 . 1 H(K,fzLs) H(0,fzLs) '
2M.* «-0 K' N(Kf"') N(of"'j

Similarly, with

H (x, v) = &x
I
G(v)

C(x) = &x
I
P

I 5&,
(2.17)

and this is what was done in Ref. 1. However,
this must give too small a value for M*. For
K= 0, f ",

s actually minimizes &H) for states with

&P) = 0 (within a particular subspace). For KWO,

the corresponding minimization has not been done

yet, so that &H) will be too large, M,*will be too
small.

The remedy is clearly to use a Lagrange multi-
plier v and consider

G(v)=H-v P, (2.14)

where P is the momentum operator. For fixed v,

F„(v)=(x
I
G(v) Ix&/&x I x& (2.15)

gives an approximation for (G(v)) with momentum
expectation

Q„,=&x IP Ix&/&x Ix&. (2.16)
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it follows as in Eqs. (2.5) and (2.6) that

(K iG(v) iQ)=G(F~, v)5(K-Q),

&K iP"iq&=q(K)5(K-q),

G(K, v)= f s '" S«('xv)d,x,

Q(K) = e '"'"C(x)dx,

so that

FT L,(v) = ming[G (K, v)/N(K)]

= G(Kv, v)/N(K;),

QT Ls(v) Q(K p)/N(K v)

(2.18)

(2.19)

When x) depends on functions f„ then the f,"8'v

and f, "8"depend on v. Thus E» depends on v,

LS(V) =E» (f l
'

s V)+ V 'PLS(v),

PL8(v) =&»(f s
"f~

(2.20)

Elimination of v gives Z»(P„8) and, hence, M„,.
The quantities MTrLs and MT*BLS

ilarly.

III. TWO NONIDENTICAL PARTICLES

For two nonidentical particles, the Hamiltonian
is slightly different from E(l. (1.3):

2 2

Or(r) ( O(p)dr+ fpr(r) -~ p(r) dr fspr(r)pr(s)p(r —s}p(s}p(r)drds.
2M~ 2

The localized state centered at x is taken to be

~x;f,g) = $,(r)f(r -x)dr g', (s)g(s -x)ds
~

fl) .
Then

(3.1)

(3.2)

D(x;f,g) = (r —x}J(r)drfg"(s —x)g(s)ds,
(3.3)

2

d(x;fg)= f (r -x,)(- (r)dr g (s -x)g(s)ds
1

2

+ ~ r-x r dr g* s-x -- s d%+ * r-xg* s-x V r-s rg s drds.
2M,

The functional ELs is just the Hartree approximation for the energy functional. More interesting is ET».
With Fourier transforms

f(r) = (2))) ' ' e" ' f (p)dp,

V(r) = e+ '~V(p)dp,
(3.4)

it follows that

«(())= (»)'f if(p) ' ig(-p) I'dp

2 2

«(o)=(»}'
(sM +»( f(p)I'lg(-p) *dpv(»)'fi "(p)g( p)v(f-o)&(o)g(-o)dodo.

1 2

(3.5)

Let

4(p) = (2~)'"f(pR(-p), (3.6)

and, therefore, Q(p) is just the Fourier transform
of the relative two-particle wave function that sat-
isfies the Schrodinger equation

so that

N(~)= IA(»l &p

Q2

2p,
+ V(r) P(r) = e(t}(r) (3.8)

(3.7)

4(p) V(p -%)@((l)~p~C,

+
p, M, M, '

p'
«(o) ass I p(p) I*dp+=

1 1

and

@TBr.S= ~ ~ (3.9)

That is, ETBLs is the correct energy for two par-
ticles interacting via the potential V.
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Further light on this amusing result is obtained
by considering the state

K = 0;f,g) = (27) ) '1'
I
x;f,g)dx; (3.10)

the details are left to the reader.

D (x)=(x;S l5;S ),
A ~(x)=(x;S IHI~'Sa)

(4.1)

With the usual orthogonality properties, it follows
that

IV. SHELL MODEL

The Hamiltonian and states
l
x) are given by

Eqs. (1.3) and (1.4). In this case it is easy to see
that E» ff,) is the Hartree-Fock energy functional,
so that ELa and fLa are the Hartree-Fock energy
and single-particle wave functions. In this case
ET«s contains the correction for center-of-mass
motion originally proposed by Peierls and Yoccoz.'
The TBLS formulation, which was shown in the
previous section to give the correct answer for the
two-particle system, seems likely to give inter-
esting results for systems with relatively few par-
ticles.

It is interesting to consider various states
lx;S ), where S for varying n are different sets
of occupied orbitals. Then D(x) and A(x) must be
extended to

D~()(o)=5+() s (4.2)

so that the use of just A ~(5) and D ~ (5) leads to
the usual situation in which configuration interac-
tion is used to improve the Hartree-Fock ground
state.

More interesting is the TILS approximation in
which the f,". a from the Hartree-Fock calculation
are used to compute D ~ (x) and A 8 (x) and then

N (()0) = D ()(x) dx,

H ~(0)= A, ~(x)dx.
(4.3)

(4.4)

is zero; then X is the desired value of (H)/(N).
Excited states can also be calculated. As was
noted in Ref. 1, this scheme will eliminate in a
natural way the "spurious states" that occur when
excited configurations are used in E Ls.

The effective mass is simply computed here.
Using the G of Sec. II and making the transforma-
tion

4(r) = e'""X(r)
in H and P of Eqs. (1.3) gives

(4.5)

Here the superposition of states n that minimizes
(H)/(N) is computed by choosing X so that the low-
est eigenvalue of

H (d(0) —P(N q(5}

2
G= X (r)(-bM X(r)r X (r)X (s)(r(r —s)X(s')r(r)drds —,Mv rr(r)b(r)dr,

P = Mv y (r)y(r)dr —i y~(r) Vy (r)dr .
(4.6)

Since the number of particles,

d (r)d(r)dr=f r (r)b(r)dr, (4.7)

as it should be. The same result also holds in the
TILS and TBLS approximations. The value M,* of
Eq. (2.13) was used by Griffin and Wheeler' and
also in Ref. 1 and gave an incorrect result.

(4.8)

and since

(P)'='= 0 (4.9)

is a constant, G and P for v4 0 differ from G and
P for v=0 only by constants. Therefore, the so-
lution f~La" is obtained from Eq. (4.5)

g LSsV e NVerg LSsOJ~ -e J~

V. POLARON

The Hamiltonian is given by Eq. (1.6). The t/r

part of the localized state lx) will be as in the
shell model. For the phonon part, associated with
the boson operators a(k), the coherent state' lo-
calized at x will be used:

it follows that

P»(v}=AMv s

2

E»(v) = G»(v}+v P„,(v}= E»(0}+

and

(4.10)

(4.11)

lx;b)= w,'-(b)ln, ),
Sr;(b)=ssb --,f ib(k)~(dk'

+ bka ke~"'"dk

where
l Qa) is the phonon vacuum

(5.1)
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a(k)
~
Qe) = 0, all k . (5.2)

Since the a(k} satisfy Bose commutation relations,
it follows that

Pa'(k) = at(k)(P+ k),

e-&y'e&F-&()at(k) at(b)e-&&) &b) &()e-&Pe(-y-k) (5 8)

e-&5e&&r-x)WI(b)eil &&r-x) Wt(b)X

The localized coherent state for the polaron is

~x;b,f)= gt(r)f(r -x)dr Wj(b)~ n), (5.6)

a(k)
~

0)= 0, all k

P(r)
~

0)= 0, all r .

In this case D(x) factors into a fermion part and a
boson part,

(5.4)

as required by Eq. (1..1). From the form of Eq.
(5.1) it follows that

[a(k), W,'-(b) ]= e '"'"b(k)W„-"(b)

D(x) =D, (x)D (x),

Dz(x) = f (r x)f(r)—dr, (5.7)

so that

a(k)
~

x;b) = e '"'b (k) x; b) . (5.5)

D, (x)=(n,
~

W„-(b) Wt(b)~ n, &

=exp — b k ' 1 —e'" "dk
This equation makes the evaluation of matrix ele-
ments a simple matter. and di(x) is given by

(5.8)

(5.9)

where f(r) is required to satisfy the condition

1 /2 ky ~ x

A(x)=De(x) ff "(r —x)( er' — [b(p)eb "( p)e"')dp -f(r)dr+D(x) f Ib(k)I'e'"'dx.
2r p

Now two cases can be distinguished: (a)f has no 5-function part and A.(0)/D(0) is meaningful, and (b) f
has a 5-function part so that A(x) (k- '(d'5(x} and D(x) CC 5(x) and therefore A(0)/D(0) is not meaningful.

Consider the first of these. Since De(0) = 1, it follows that

/2 )Pc ~ P

E [ fx)e=bf"(r)(lV* '
b

[b(k)+b ( k)ldk+ —b(k)I'dk)f(r)dr,

r Jr=1,

Then the equation for b„s(k) is

~X /2

bb„"' = o=b„,(k)-"kb f e-'"'ly(r) l'dr.

Substitution gives the LS energy functional

d e[f) ff'(r)(- b)=f(r)dr b„'b. -If. (r)l[y'(r') 'drdr'

f'( &( kr)f("&d" kf If(')I' (-r -r
(,

If(")I'd'd"'

(5.10)

(5.11)

This is the usual "strong-coupling" expression for the energy functional, which was first given by Pekar. '
It has the solution

@~s= 0 054y2= -0 109n

Now suppose that

f(r) = 5(r) .
Then

D(x) = 5(x)

~X/2
d(x& = -l (x) '

( )rr(ferI bb(kx)
eI

dk J[b(k')e b-"( k&I b(X). -—
The functional E~ does not exist, but FT~ is easily obtained from

(5.12)

(5.14)
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N(0)=1,
(5.15)

+$ Q k 2dk Q k +gg

so that

y dk
Ts Ls 4&2 y(1+ y2)

(5.16)

f(v); this extent goes to zero as o. and y go to zero.
This sort of singularity might well explain the sin-
gularities that occur in other quantum field theo-
ries.

VI. SUMMARY

which is the usual "weak-coupling" result.
In this case, it follows that the TBLS approxima-

tion will give the weak-coupling result if the range
of f(r) is much smaller than the logarithmic deriv-
ative of Ds(x). It must always give an energy that
satisfies

ETBLS ~(

where the equality holds only for n = 0. Of course,
e @TH Ls~+Ls it follows that ETBLs

sarily less than the usual strong-coupling energy.
It is interesting to note that n = 0 is a singular

point in this approximation in a novel way. That
is, the singularity is in the extent of the function

The translated -localized -state methods discussed
in this paper have been shown to give exact results
for the two-body problem and to give a simple way
of understanding the connection between strong and
weak coupling in the polaron. The apparent dis-
crepancy in the shell-model effective mass de-
scribed in Refs. 1 and 3 was shown to be illusory;
the translated-localized-state methods give the
exact answer in the case of many particles inter-
acting via two-body forces.

The TBLS method of Sec. II is simple to use in
the case of the weak-coupling polaron. However,
it appears promising for the polaron in general and
for light nuclear systems.

*Work performed under the auspices of the United States
Energy Research and Development Administration.
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