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A multiperipheral amplitude with elementary particle propagators is written in a form containing only pair-
wise finite-range rapidity-dependent terms, and transverse-momentum terms (in the central region). A potential
is defined that represents, on the average, the effect on a particle of all the other particles. This potential
confines each particle to a certain region of rapidity (with respect to nearby particles on the chain), and
transverse momentum. The potential is shown in turn to result from the averaged effects of all the other
particles, each confined by the same potential. It is argued that the approximation becomes exact for high
densities (large coupling constants); and transverse momentum and multiplicity distributions, as well as Regge
exponents, are computed in this limit for three cases: I. rapidity order corresponding to chain order; II. no
rapidity restrictions but the same order on both sides of the multiperipheral ladder; III. no restrictions (all
crossed rungs). The results are seen to be quite different in each case.

I. INTRODUCTION

We consider a new approximation for obtaining
inclusive single-particle distributions, Regge ex-
ponents, and multiplicity distributions in a multi-
peripheral theory, where single particles are em-
mitted at the vertices and elementary pions are ex-
changed. The model is essentially a ¢ theory ex-
cept that the emitted and exchanged particles may
have different mass.

The complete solution for the above quantities in-
volves taking the ¢{-channel factorizable N-particle
amplitude, summing over all permutations of the
particles for a given set of rapidities and trans-
verse momenta, squaring the sum, and integrating
over all (or all but one) transverse momenta and
ordered rapidities. As with most such problems,
we do not have the exact solution, and various ap-
proximations are used. We first mention a few
methods that have been developed, and then de-
scribe ours.

It is well known that multiperipheral models, at
least in their original form with pion propagators,’
lead to multiparticle distributions that resemble
those of a classical fluid of particles interacting
with short-range forces, where longitudinal and
transverse dimensions correspond to rapidity and
transverse momentum. Cambell and Chang® have
shown that in a ¢3 theory, if transverse momenta
are integrated over, the resulting N-particle prob-
ability function satisfies a cluster-decomposition
property. Lee® has also reduced the function (in
the standard ladder approximation) to that of a one-
dimensional gas interacting with short-range
forces, which he then explicitly computes in a cer-
tain approximation.

The above properties have led to approximation
schemes for solving for various quantities, such
as the Regge exponent o and the multiplicity dis-
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tributions. Since in the low-density, or weak-cou-
pling limit each particle is far away from the -
others, on the average, we can have an approxima-
tion® where each particle is only weakly affected
by the others and, to first order, only interacts
with at most one other particle. This is the first
term of the cluster expansion, familiar in statisti-
cal mechanics, and by considering more particles
interacting we can develop an expansion in either
the coupling constant or the density. In another
scheme, as a first approximation, we can consider
only interactions between nearest neighbors in ra-
pidity, since other particles will be mostly beyond
the range of the force if the density is low. The
probability function then factorizes into products of
functions of neighboring rapidity differences.? We
can then consider next-nearest-neighbor interac-
tions, and so on, and also develop an expansion
for various quantities with this method.

It is interesting to compare the above schemes
with the well-known integral-equation method.*
With this method (assuming the equations can be
solved), all of the “interactions” can be included,
but only for a fixed type of diagram, which cor-
responds to the iteration of the kernel. Thus, the
first approximation would involve only the single-
rung kernel, which would be a good approximation
if densities are not too high. Further terms could
then be added in the form of crossed-rung dia-
grams.? All these methods are exact only in the
low-density limit, and are useful for not-too-high
densities, when few correction terms are re-
quired.®

In this paper we complement the above set by
providing a technique that becomes exact in the
high-density limit. In this limit each particle is
strongly influenced by the others, there are many
particles within the region of interaction of each,
and many high-order crossed rungs (interference
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terms) are important. Our method, therefore, is
radically different from the others, and may prove
to be an important alternative.® Since the mathe-
matics in our approximation is simple, the high-
density limit may be a starting point for an expan-
sion (perhaps in inverse powers of density or cou-
pling constant) that can be used at intermediate
densities, even if the amplitude itself is not real-
istic at high densities. Also, the technique may
prove to be useful for other, less simple theories.

We have also three other reasons for studying
this limit:

(i) The multiperipheral amplitude is the simplest
field-theoretic production model that we have, and
the results of such a theory should be known, not
only in the low-density limit.

(ii) Since experimentally measured large-trans-
verse-momentum (p,) inclusive distributions seem
to fall only as a power of p,?, there is the chance
that a simple model that contains only power damp-
ing in momentum transfers is correct if the pro-
duced particles are p’s, for all events where ra-
pidity gaps are not too large (so that Regge effects
can be neglected). If we then look at events with
higher-than-average multiplicity, at available en-
ergies, we see that energy-momentum conserva-
tion “compresses” the particles into a small re-
gion of phase space, and densities there are quite
high. Thus, with some simple conservation con-
straints and resonance-interference effects” (which
we neglect here), our technique may be directly
useful in comparing theory with experiment.

(iii) It may be that coupling constants arve quite
large. In that case absorption would be important
and the diagrams that we consider would be inter-
nal elements of the theory (the terms with exactly
two vertical propagators), as in eikonal models.®

The approach that we will use is similar to a
self-consistent field technique: The N-particle
amplitude is represented by a product of single-
particle terms. With one of the momenta fixed,
the terms in the actual amplitude which depend on
the other momenta are replaced by their average
values, assuming the above factorized form. The
resulting function of the remaining momentum is
then equated to the term assumed in the factorized
form. In general, an integral equation results that
can be solved for this function. When the terms
that were replaced by their averages depend on a
large number of momenta, but only weakly on
each, and are well behaved, the statistical fluctua-
tions that were ignored in computing the averages
become small and the method should give good re-
sults.

There is an interesting analogy to a classical
N-body problem where particles interact through
weak, long-range potentials®: Each particle
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moves in a field that is a function of the positions
of the other particles. When there are many par-
ticles in the range of interaction the statistical
fluctuations are small and the field can be replaced
by its average value at each point. The N-particle
probability function then becomes a product of sin-
gle-particle functions.

The above technique will be used to calculate the
partial cross sections o, the Regge exponent o,
and the transverse-momentum distribution p(®,)
in the limit when Y ~1Ins =« first (so that leading-
particle or end effects can be ignored) and then the
density N/Y becomes large (or alternatively the
coupling constant becomes large).

Three cases will be treated:

Case I. Rapidity order corresponding to chain
order;

Case II. ladder approximation, no rapidity or-
der but the order of momenta on the left side of the
diagram corresponding to that on the right side (no
crossed diagrams);

Case III. no restrictions (all crossed diagrams).

It will be shown that cases I and II do not give the
correct results at high density and that, if the only
assumption is our multiperipheral form for the
amplitude, case III gives the correct results. The
three cases, however, will be treated in a unified
way, each requiring successively more complica-
tions.

Our main results will include an analytic limiting
form for p(p,) and an integer v and constant ¢ such
that

oy=(cg)"Y"¥/(vN)! (N/Y =)
or

a"’(ng)l/y (gz"°°)’

where g is the coupling constant. We believe that
these results are new for the case with all crossed
diagrams.

Suranyi'® has also studied the multiperipheral
amplitude in the high-density limit, but with a
more general dependence on the momentum trans-
fers. Although his approach was more analytical
than ours (we rely heavily on the classical fluid
analogy) he used similar variables and in some
cases gets similar results. In particular, he
treats the ladder model [case (ii)] in detail and gets
the same results for p(p,) and the behavior of o
as we do. He then briefly treats crossed diagrams
and incorrectly concludes that they do not modify
the momentum distribution (our reasons for dis-
agreeing with him are given in the footnotes). He
does, however, arrive at the correct value of v
in this case (this quantity is not sensitive to the
momentum dependence and will be derived in a
simplified one-dimensional model in Sec. IV).
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FIG. 1. Multiperipheral amplitude.

II. THE MODEL

Denoting momentum transfers k;, i=1,...,N~1,
momenta of the produced particles p;, i=1,...,N
and incoming momenta p,,p v . , (see Fig. 1), the
N-particle amplitude is

N-1

AN(pmpn'-- D+ 1)= H (Miz'—kiz)_ln (1)
1

We label the masses of the produced particles m,
the incoming ones M, and the exchanged ones p,
and we define rapidities by the equation

py=(m; coshy, m,;siny,,D,;), 2)
where
m‘u:(mz-l--f)‘-z)l/z, i=1,o..,N

and P; is the transverse momentum,
We can write A, in a more suggestive form by
using energy-momentum conservation. Define

o;=m;/m, i=1,...,N

o;==M/m, i=0,N+1 (3)
pi=biothyy =moe*i.
Then since
i N
k{=Po'ij="<PN+1_ZPj> (4)
1 i+l

and
kf:k:k;‘_k’iz’
i N -
ki2=_(p;_2p;>(p;,+l— Ep;‘) -k;?
1 i+1

or

et Y Dage il

i=ik>i
We also have the energy-momentum constraints

N+1 N

Y ogeti= 3 B =0. (6)
0 1

It can be seen that, as Y =1ln(s/m?)- «, the con-
straints in y each separately affect only the par-
ticles near each end of phase space. Looking at
one end, we have

N
Z g.e”Yi =£—W—er/2
1 ' .

or, with 6y, measuring the distance from the end
at —Y /2 to the ith particle,

EN:oie“”i =M/m. (M

Thus, particles far from the end will have large
8y; and can be neglected in the sum. We will in-
tegrate over the rapidities of the end particles in
any quantities that we consider, and if a particle

is a large enough but finite distance from the walls,
as Y -« these constraints can be neglected.!* Also,
since P,” will turn out to be damped by the ampli-
tude, the constraint in p; will have a vanishing ef-
fect on each particle as N—-«, and can be neglect-
ed. These approximations are convenient in ob-
taining certain asymptotic limits, but probably are
important at finite energies. Our amplitude is then

N-1
Ay} {BH =m =¥ H (T +7)7, (8)
1
where
T, = Z E 008" kI
i<=iK>i

v, = (2 +K2)/m?.

We will need the N-particle cross section, o, for
fixed N/Y as Y -« in three cases:

Case I. Rapidity order corresponding to chain
order;

Case II. no rapidity restrictions, but the order
of momenta in A, corresponding to A% [this is the
standard Amati- Fubini-Stanghellini (AFS) ladder
approximation];

Case III. no restrictions,

Then, with the notation of Ref. 12,

ol =Se/16n" [ T dvidb,605+1-3)
x4y {B:H?, 9
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FIG. 2. Terms computed in cases I and II.

o3=2/16n)" [ TT dudbilaiy . (832,  (10)

ow__.g(gz/lsﬂ:a)wz J' H dyid-ﬁiAN({yi},{f)i})
’ <Ay 3 {5}),  av

where ¢ is an irrelevant constant, we ignore en-
ergy-momentum conservation but restrict rapidi-
ties to the interval (-Y/2, +Y/2), and 2, denotes
a sum over all permutations that take the set
{y{},{D} into {y,},{D;}. The transverse-momentum
distributions are similarly computed by keeping
one of the P, fixed.

III. THE APPROXIMATION

A. Case I: Rapidity order corresponding to chain order

This is the simplest case in our approximation
(see Figs. 2 and 3).

1. Case I: 1+ 1 dimensions

It is interesting to first ignore transverse mo-
mentum, as in a theory with 1+1 dimensions.
Then, in this case (1+1 dimensions),

N -1
QNEIANIZ'—'H (T, +7)7%, (12)
1
where
,},___IJ'Z/mZ
and
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FIG. 3. An allowed set of y;’s in case I: p=p;.

T,:E Ze‘(”k‘”). (12’)

i<ik>i
We have
01{,=006_YX1NJ‘ H &6 (v, +1"y¢) H(Ti"'r '-2’
(13)
where

X, =g%/167°m*

and o, is an irrelevant constant of dimension 3/~2,
Since y, >y, for k>j, @y is of short-range form in
y: K |y,~y,|>>1for any two particles &, j, then
@y becomes independent of this quantity.!?

We write

Ti

=71}, (14)

where

T:= Ze-(wg-y,‘),

R>1i

T = E e~ i=vp),

i<i

If p=N/Y becomes large, each 7/ will be O(p),
since the number of particles in its “range” is p.
The important simplification that happens then is
that, since the statistical fluctuation in the number
of particles in this range is only O(p'/?) (assuming
correlations can be neglected, which will be veri-
fied later), then the 7 can be replaced by their
mean values:
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(T =(r"=1=

k=1i+1

fII dy ©(y; +1—y1)

i fn dyje(yj+l_yj)e-(yk—yi)

(15)

Alternatively, by fixing the positions of the particles at their mean values,

y;=ai, a=Y/N=p7',

we get

<7__> z<7_+> - ZN: e (k—i)a=e—u(1_e— a(N—t))(l _e—a)—l.

i+l

Then, since we let Y -« and N -« firs¢, for most
values of i (those not near N) we can ignore the

factor e~®¥=% Then, we let a=Y/N become

small and
(77 ={t%) =pa”t+0(1)=p + O(1). 17)
Then, for most of N-particle phase space, we have
7, =(1) =p* (18)

and, since 7<<p?

QN=<T —2N7

19

of,,=ooe‘y)¢1N<T>'2Nf deie(yi-l-l_yi) "
or

o =0e" N, MY Y/ N1, (20)
Using Stirling’s approximation,*

ol =0, (n,e)Y (Y /N)¥ (21)
and

ol =0,e7(a,Y)*/(5N)!, (22)
where

@, =5¢"/5(¢%/167°m %) /3.

Defining the partition function, or normalized
cross section

Q0,,Y)= Y 04/0, (23)
N =0
we have
Lim InQQM,Y)=(a, - 1)Y, (24)

which can be verified by the method of steepest
descent, or by realizing that we have a multiplic-
ity distribution that is Poisson in steps of five.
The mean multiplicity is

<]
(V) =A15A—11n9(x1,y) (25)

and the mean density is «,/5. Going back to Egs.
(12) and (12’), ‘'we can fix all positions but one at

(16)

—
ai, compute the change in @, caused by moving
one particle a distance ~a (which is the order that
it moves, with respect to the surrounding parti-
cles, in the phase-space integration), and verify
that it is insignificant, so that the free-particle
approximation is justified. The function @ ,{y,})
in 1+1 dimensions thus becomes similar to that
for a uniform system of classical particles inter-
acting with weak forces, with range much longer
than the interparticle distance. The approximation
we have used is therefore essentially a mean-field
one, familiar in statistical mechanics.®

2. Case I: 3+ 1 dimensions

When we include transverse momentum, the
problem is no longer trivial, but the mathematics
is still simple. We write

Qy({y:}1,{d4p= I:I (T +7)7%, (26)

where

- = (v = ¥;)
‘r,-—z:zojcke k= Y5)

isik>i

v, = (u/m)2+l_zi2,
K:Z g, (267)
1

o, =(1+§;3)'?,
and

4;=D;/m.
With this notation

ofvzooe—ylﬁf H dy;dq;0(y; + 1 -y;)
xQy{y:}{&D, @7

where
A =g%/167%n2.
Again, the y dependence is short-range,' but the

g dependence appears in “charges” 0,0; multiplying
the e~ ¥ =*) terms, and in the 7; terms. We no
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longer have a uniform-particle distribution, mere-
ly bounded by walls, and instead of a mean-field-
type approximation we have to use a self-consis-
tent-type theory to describe the (damped) trans-
verse-momentum dependence.

We first simplify the denominators of (26). It is
argued a posteriori in the Appendix that, for large
p, the K;? terms are O(p), and we have 7, << 7, for
most of phase space. Also, since it will turn out
that the probabilities of the §;, and hence of the o;,
are independent the arguments of the previous sec-
tion can be repeated and the 7; remain close to a
mean, (7). Thus, for the important region of in-
tegration @, stays close to (1) ~¥. The phase-
space integration does not just give us a Y¥/N!
term, however, since we have a transverse-mo-
mentum integration to do. We accordingly look for
a form

Qi=m*I] »@» (28)

to represent @ .

We ignore the y dependence (which again can be
seen to be insignificant), substitute a factor YV/N!
for the y integrations, and set y,=ai. Then,

T = Z Z o'jo-ke— (k —j)G.
i<ik>i
We consider the effect of varying one of the ¢,, say
forj=1, on Q.
As seen in (26), the term in 7, that depends on
o, is

67;(0,) =0, Z g;e” (t=d)a (29)
i<i
if 7>¢, and
67;(0,)=0, ), 0pe” (k- De (30)
B>

if I<i. If |i-1I|ais O(1), there will be a number of
terms in (29) or (30), each of which will be O(1)
[assuming each o, is O(1)]. The number of these
terms will be O(p), and hence 67,(c,), the part of
7, that depends on o,, is O(p). Since 7, is O(p?),
as seen in the (1+1)-dimensional case, each 7,2 for
which |7 - I|a is O(1) will only have a small depend-
ence on 0,. There will, however, be O(p) values
of i where 7; will be perturbed by O(p) and the to-
tal effect will be to damp o, exponentially, even
though there is only power damping of the 7;’s.

We write

7, =(1) +87;(0,) ={07;(0,))
and to lowest order in (67,/7;)

-2 -2 OTi(Uz) (67i(01)>
7,72 =(7) exp{—2 ) +2 o ] (31)
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Then, as a function of o,

Gaton)=(m-exp| -5 L ori(o- T (o) .
(32)
From (29) and (30),

Z 67,-(0,)=0,Z Il—j|cr,e‘l""|“. (33)
i j

Since the sum contains a large number of terms,
we replace it by its average,

<E Il_jlcje—ll—j|a> =(o) Z lk|e—|k|a

=2(o)p%+ 0(p) (34)

since the o; are by hypothesis independent. We
also have

(D=3 e %s0,)

ji=<ik>i
=(0)%p2+ 0(p). (35)
Substituting (34) and (35) into (32),

Qx(0,) = (pf0)) *Vexp[ — 40,/(0) + 4].

If the 0,’s are independent, we should get the same
result for each, and (28) is

Q4{a,h= (p(O})"‘”exp( -5 2 o+ 4N>. (36)

Since the average (o) is defined with the above
probability function, we have the self-consistency
condition

<0,>:Jdaae—w/(o)/fd-qe—cm/(c). (37)

We see that the only quantity that has to be de-
termined self-consistently is the strength of the
“field” which damps the 0,’s. The technique that
we have used, however, usually results in self-
consistency conditions for the functional form of
the field, as well as the strength: If we take an
N-particle probability function with arbitrary pair-
wise “potentials” v(0,,0,) we would get, in general,
a nonlinear integral equation for the function (o)
in Eq. (28). In particular, if we had v(0;,0,)
instead of o, 0, in (26’), we would get

4qu’v(o,o')h(o')+4>, (39)

h(0)=exp<‘ <7J>qu'h(0")

where
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< >_fdo’ldﬂzv(o'l,oz)h(ol)h(cz)
v = [qu,h(o_z)]z M

It is only the fact that v(¢,0’) is a separable po-
tential in our case (oo’) that enables us to imme-
diately determine the functional form of z(c). It is
also this fact, of course, which would enable us to
write a linear integral equation, whose solution
would give the exact exponent and inclusive dis-
tribution in this case.

From the form of Eqgs. (36) and (37), we can see
that %z(o) attains a limiting form as p becomes
large.

Solving (37), we have

gdq=0do (39)

and
(© f do ge=19 /40 f do 0%e=19/40) (40)
1 1

Substituting
B=4/{o)

and doing the integrations,
4 sl 1\ i_sli>
B° (B*BZ)"aBe <B+BZ (4D

F-23-2=0. (42)

or

Solving this simple self-consistency equation,
B=B=1+V3. (43)

Our first result is that the (normalized) single-
particle distribution approaches a limiting form:

p(@ =1(@)/hy=e B /me™Po, (44)
where

A =e7%" ™%, (447)

ho=me~Bo* ",

Then, from (27),
oy=00e WY Y/N)(plo)) VR (45)
Using (44’), and Stirling’s approximation,
oh=0,e" AN (Y /N)* e (8,/4) ¥ (me Bo)¥
or
oh=0,e Y (a'Y)*"/(5N)!, (46)

where
4 1/5
al=5[(%> e-ﬂo] (@*/167°m?) /5, (467)

We then see that the exponent is

a-al
and the mean density
p=al/5, (47)

where the multiplicity distribution is again Poisson
in steps of five.

B. Case II: Ladder approximation-no rapidity order
(see Figs. 2 and 4)

The exponent and inclusive distributions can also
be derived, in this case, from the solutions of the
Amati-Bertocchi-Fubini-Stanghellini-Tonin
(ABFST) integral equation.! This equation is very
difficult to solve, in general, and even if it were
solved exactly we would still only have an approxi-
mate solution to the general problem, because we
have ignored interference terms.

By constraining rapidities to have the same or-
der as the chain order, we can define a modified
amplitude [with 6(y; , , ~v;) terms] that results in
our case I, Also, case III corresponds, of course,
to the exact amplitude. There is no simple set of
approximations, however, that we can make in the
amplitude in order to arrive at case II, and from
our point of view its solution does not give us as
much insight into the kind of multiparticle distri-
butions that result from a certain kind of ampli-
tude.

There are, however, many advantages to this
case, since properties of the solutions can be ob-
tained from the integral equation. From an ana-
lytical point of view, for instance, this case can
give us a 2 -2 amplitude, through unitarity, that
can be continued in s and {£. Contact can then be
made with the Bethe-Salpeter approximation for

FIG. 4. An allowed set of y;’ s in cases II and III: p
=5p;.
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dealing with bound states. Also, in this case, the
exponent has been computed in the high-density
limit in the integral-equation formulation,® and
our technique can be checked.

The probability function @, is given by Eq. (26),
as in case I. Here, however, there are noy; re-
strictions and the correspondence between @ , and
the probability function of a classical gas of par-
ticles is not as direct as in case I. We can, how-
ever, relabel the particles by their rapidity order
and sum over all chain orderings (configurations)
for a given set {y,;},{§;}. Then, it can be seen that
if the distancey,-y;, k>j is large, the configura-
tions split into two sets. In one, %’<j’, where
k'’ (j') is the chain position of particle & (j) and
the @,’s for these configurations vanish. In the
other set &’ > j’, and the rapidity order for these
two particles is the same as the chain order. This
latter set of @, do not vanish but, as in casel,
become independent of (y,— ;). Thus, the sum of
all configurations has a short-range form in y

The N-particle cross section is now (labeling
chain order)

olf =g e" A" j deidaiQN({%}, {a:h (48)

and we have to take account of overlap of the par-
ticles (y;>y,, but £<j). Instead of using a mean-
field type of approximation and ignoring the y;
dependence, it will turn out that we also need a
self-consistent field type of approximation for
this variable. Separating out the dependence of
T, 0n 0;7y; as inthe last section, we have

87;(0,v,)=0,e% E o, (49)
1
if I<4 and
67;(04,9,)=0,™1 Zo evi (50)

ist

if I>4. It will turn out that 67, will be O(p) and
7; will be O(p?), as in the last section. Then, the
variation of 7, with o,,y, is

7,22 (T) 2 exp(-267,/(T)+ 2(67,)/47)). (31)

For a given set {y;},{3;}, we can then get the de-
pendence of @y on y, and 0;:

Qu(01,3,) = (7" exp <-%%’ (e*w}+e™wy3)

+<—% ) <5r,.>), 1)

where
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3 kZ); o, vk= 2 (& —1)o,e™r
V= D 0= E (T -j)osei.

i<l jsi
We write
e*w+ e ;i =2(vw;) /2 cosh(y, - ¥9), (52)
39 =% In(;/v}),

and”
Quloy, y,) =(7)2¥ exp[-B,0, cosh(y, - y)
+(B,0; cosh(y;—y], (53)
8= 4l 2/ ).

Since B;, ¥, depend on the coordinates of many nearby
particles, we have the picture of each particlebeing
confined in a “potential well” in 0;,y, formed by
a large number of nearby particles.

We write

vy = E Z; (I =§) (ke = 1)0,0,8™ k7, (54)
Kl R
T, = f; Ea,oke'“’k’”f’, (55)

r>1

and assume that these quantities do not vary too
much. Replacing them by their averages, @),
(1), we have the independent-particle approxima-
tion

Qn= (Ty2m th(au ¥2)s (56)
where
hy(d;, ¥,) = expl-Bo, cosh(y, —9)
+ B{o; cosh(y; - y)], (56")

B=4(@iwP)/2/(T).

The average of a function is given by

<U(E;, )= f dﬁ;dyzhx(ﬁz, y;)U(ﬁz, yl)/ho: (57)

ko= I d&:dy;hz(ﬁu 1) (57"
Rewriting
vipy= Z; (1 =)ot 3 (b = Do,
< Y]
(58)
T, = Z aje"”?'”j’ Z crke"yk'fx’z (59)
=1 1

We see that we need the averages

0 0 0
et Dy=L [ a5y o, e et monsine,
0
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Defining
b= (0, cosh(y, — 32)) = (o,e* *+*R), (60)
we have

(oke*(yk-y‘f W= beé(yg-y?)’

c=pb,

b=% I d&dxo(&) coshy gBocoshx+c (61)
Then,

@iy =b% E (k= D)o~ 0D Z a —j)e'(”?'y(}’

B1 5
J (62)

and

<Tz>= b? kZ); e“”%‘y?) ; e-(v?-:e-)' (62')

Also, for a given set of y‘}, we have the average

o%=41n @; -je) -3 tn( 3 - 0eF).
(63)

If we replace each y‘} with its mean value, we
have

3’3" (y‘}):aj; (64)
which can be checked by substitution in (63).

The main point is that y}, as given by (63), does
not vary too much from its mean value as we in-
tegrate over the y,’s. This small variation does
not affect any of the integrals that we do, and we
can set each 3 at its mean value. Of course, this
approximation is only used locally, for regions in
y of O(1), as in Eq. (61): The picture of particles
confined to regions centered at aj is not correct
over large distances and there is no long-range
order. Figure 4 describes a configuration in y,.
The approximation is that each particle “feels” a
force from a uniform fluid of nearby particles.
With this substitution we have

) =b%p*, (65)

(1) =b%0%, (66)
and

B=4/b, 67)

b= (o coshx).

We then have the self-consistency condition,®
using (61),

f dﬁ dx U(a) coshyx e™Bodcoshx+4
f da dx e~Bod coshx+4

4/B8,= , (68)

which can be rewritten

(69)

40 -2
4308, 8],

Doing the { integration in (57’), with ¢ dg=odo,

0

no(B)=4met | dxeh*(1/Bcoshx+ 1/82 cosh?x).
° 0

(70)
Forming p%h,(B) and differentiating,
_3_ 2 = 4 ® =8 cosh x
aﬁﬁ ho(B) = —4me BJ; dxe
= —4ne*BK,(B). (11)

But
;,%BKI (8) =~ BK, (),

where K,(B) and K, (8) are modified Bessel func-
tions.'®
Since both B#,(B) and K,(8) -0 as p -,

ho(B) =41¢*K, (B)/B. (72)
The self-consistency condition then requires that
at g= Bo

-}

‘,,—ﬁB-“‘KI(ﬁ)L0 =0 (73)
or

2K1(Bo) = BoKo(Bo)y (74)

ho(Bo) = 27Te4Ko(Bo) .

This is precisely the condition that Chang and
Rosner'® obtained. There, however, B was re-
lated to the radius of a classical orbit in the ¢
channel, obtained as a large coupling solution of
the Bethe-Salpeter equation, and the condition was
that the angular momentum be maximized.

Our first result is that the (normalized) single-
particle distribution approaches a limiting form.
Since

@)= dxn@,x)=e*| dxePoocohr=20%K (B.0),
_ . o\Po

(75)

the transverse-momentum distribution is,?° using
(74),

p@ = Ko(Boo'(a) )/ 7'fKo(Bo) . (76)
Solving (48), with (56), (57’), and (66),

o.IIVI = O'Oe-y)lN(pb)-‘lNhoN. (77)
Using (67) and (74)

oy =0, AN (Y/N*(B,/4)Y ¥ [2me*K o (B,) 1Y (78)
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or

oit=0,e”Y(alY)*V/(4N),

where
2 1/4
a“ = [2604K0(Bo)]1 /4<16§2m2> . (79)
The exponent is then
a-al (80)

which agrees with Ref. 16 and the mean density

p=all/4, (81)
where the multiplicity distribution is now Poisson
in steps of four.

C. Case III: No restrictions (see Figs. 4 and 5)

We start with a probability function similar to
(26), but with an amplitude without correlations,
instead of A% multiplying A y({3;}, {y;}). Then,

QL bih ﬁ (747 ﬁ A (82)

The idea is that if @% can be approximated by a
function

= I1F@) (83)

without correlations, after all (left-hand) permuta-
tions are summed over, then we can make the
identification

F@=r*@, (84)

where we use [1£(@) to represent A%({q;}, {».}),
with all (right-hand) permutations summed over.
Proceeding as in the last section,

o
(
)
{

;

FIG. 5. One of the terms computed in case III.
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Qa=m I r@n, @, ), (85)
where
hy(d;, v,) = exp[—Po, cosh(y, — y) +c], (85")

B=2(@iw) 2/(),
¢ = p{o; cosh(y, - y3)).

We have a factor of 2 instead of 4 for B, since T3,
instead of 7%, was expanded. The average
{0, cosh(y ; - 39)) is now
1 el -
b=zg I dq,dy,o, cosh(y; -y £(;)%,(q;, 3,), (86)

where

= [ didy F@I(E, ). (86")

To accomplish the summation over permutations,
we first integrate over all y; without restrictions,
where, as in the last section, ¢ labels the chain
order. Since we get an uncorrelated probability
function then, it does not matter if the labels on
the §; refer to chain or y order, and the function
would be the same if we had summed over all
chain permutations first and then integrated over
ordered y,’s (y;,,>v;). If further, we assume that
for each permutation the amplitude does not change
very much if each y; is changed by O(a), as in
Sec. IITA, then the sum over all permutations
without the (ordered) y, integrations is just the
above function divided by Y¥/N!. We then have
the product approximation for the complete func-
tion

Qy=A NAE (87)

summed over both left and right permutations for
ordered y;, but not integrated over y;;

TRICGRELS | {cAIACR) (88)
where
(@)= [ dyiti@, v)- (89)
Using Stirling’s approximation, we then have
F@ =)W/ Ye)h, @, (90)
=TI r@F
= (ry2¥ v/ vey* T [n, (@) . (1)

We then have

.—_-}:; f dqo@) I dx coshx ¢80 coshx+e

X j‘ dx’ e-Bu coshx '+c’ (9 2)
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h0=j- d‘dJ‘ dx j dx’ e B (coshx+coshx')+2c’ (93)
where we redefine

o= [ dd [ dxhy @@ %)

- | diln@F. (04)

Also, as in the last section,

B=2/b,

c=pb=2, (95)

(T)=0%p%.
We have

2 109

B o(B) L2 _aEhO(B)LO (96)

because of symmetry in x and x’ in (92), and we
get exactly the same form

4 8
Eho(B)Lo— ~55/(® (69)
or

7

]
—1B*h, =0
a5 )],
for the self-consistency condition. The function
ho(B) is different, though. Doing the q integration
we have, with c¢(x, x’) =coshx+ coshx’,

32h0(5)=2ne4f dxf dx e-Betn s

x [Be(x, x)™ + c(x, x°)"2]
(98)

and we can see that
355 (6) = ~81ABK7(B). (99)

It finally turns out that
ho(B) = dme?[ K 2(B) - K2(B)]. (100)

The self-consistency relation (99) can then be
written in a simpler form:

K, (By) =V2 K4(B,) (101)
and
ho(Bo) = 4me*K 2 (B,). (102)

The normalized transverse-momentum distribu-
tion is now?!

P(@) = 12D/, (103)
where from (85’), (89), and (95)

7, (@) = 2¢%K,(8,0(@) (104)
and
p(@) = K2 (Bo0 (@) )/ 7K 2(8,). (105)

Using (94) and (91), doing the g integrations, and
introducing a factor Y¥/N! for the y integrations,
we have the N-particle total cross section:

0’}“=00€-Y)\N<pb>-4N(N/Ye)Nh0N.
Using (95) and (102),

o3 = 0e™ AN (/NN (B,/2)*V[47eK 2 (B) 1Y

or

o§11=ooe‘y(aIHY)3N/(3N)!, (106)
where

4 1/3 2 1/3
II1_ Eo_ 2 _8

a = 3[ 4 Ko (ﬂo)} <1 67"21112) . (107)
Also

a-all (108)

which is the Regge exponent, the mean density
p=a/3, (109)

and the multiplicity distribution is Poisson in
steps of three.

IV. DISCUSSION

We first rewrite the formulas that we have ob-
tained for 3+1 dimensions. For all three cases
we have the normalized transverse-momentum
distribution:

1 H(yo)

P(§)= P H) ’

(110)

where

U=(1+ﬁ"’)1/2,
H(z)=f dxj dx' F(x,x")
X exp<—52 (coshx + coshx')).

The condition determining v can be written

j’dap(a)=l (111)
and the exponent

a- VK%)‘}H(y)]Wx;/" (112)
where

A, =g2/161%m?2,
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The multiplicity distribution can be determined
from (112), and

p-—a/v, (113)

and the distribution is Poisson in steps of v.
The quantities v, F(x,x’), and the resulting
H(z) are
case I.
v=5,
F(x,x")=0(x)d(x"),
H(z)=e™,

case II.
v=4,
F(x,x')=06(x -x'), (114)
H(z)=2K(z).

case III.
v=3,
F(x,x')=1,
H(z)=4K *(z/2).

It is easy to understand the form of F(x,x’) and
@ in the three cases: Lﬁ)eling the particles by
their y order, we can define an “internal” variable
x (x') for each particle such that x,/a (x!/a) is the
difference between the y order and the left (right)
chain order. Introducing a factor that corrects for
overcounting, in the high-density limit we can
label the permutations of the indices in the chains
with the set of numbers {x;}, {x!}. Then, in case I
we set x; =x]=0; in case Il x;=x} and integrate
over each x; independently; and in case III inte-
grate over each x; and x} independently. Since each
x; turns out to be O(1), we get a factor ¢ in oy
for case II and an ¢™?¥ in case III when converting
the sum over permutations to integrals over the

x; . Then, we have
case I,

oy~ t"FYY/NI~a®Y, a~215

case II,

oy~a*¥, a~aA (115)
case III.

oy~a*®, a~n1P.

It is interesting to interpret these results in
terms of a fluid “pressure” p. Regarding A, as a
dummy variable, we can define

PO =alr + 1)=lY1n[eYsz(xg, Y)],

where £(A,,Y) is defined in Eq. (23), and we have
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p=X,(3/9),)p. Eliminating A,

p=vp, (116)
where k

a—-c\Y,

For a noninteracting gas, which we have in our
system in the low-density limit,?

p=n, (117)

so that in the three cases as p increases dp/dp
changes from 1 to v. The fact that v>1 means
that there are effectively repulsive potentials.
Also, the fact that p depends linearly on p for
large p means that the potential that each parti-
cle feels saturates, or reaches a limiting value,
as the density increases. This is also evidenced
in the limiting forms of p(d). This “soft” behavior
of the amplitude results from the power damping

in the #;’s. If we instead had a form®

af=]] e (118)

it can be seen that

Qx=exp (— B gj: (G —i)o;0,e 50 = BZ_: Ez)

(119)
and in the high-density limit
N dN
Oy ~<7> exp(- B'N°/Y?), (120)
0.1}
0.01f
p @
0.001}
il
I
I
0 . . .
0 1 2 3

gl

FIG. 6. Normalized transverse-momentum distribu-
tions in cases I, II, and III. :
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where d is an irrelevant constant. The pressure
can be computed and turns out to be

p - const X p®, (121)

which means that the particles feel an ever-in-
creasing potential. Also, there is then no limit-
iting transverse-momentum distribution.

The normalized transverse-momentum distribu-
tions are presented in Fig. 6 for cases I, II, and
III. It is seen that the results do not differ signif-
icantly at smaller values of |§|. These results
are meant to hold if, for fixed §, p becomes large.
For fixed but large p, however, as we increase
4 we eventually reach a point at which correla-
tions cannot be neglected. Our approximation
breaks down for these events, even though most
of the distribution would be well represented if
p is large. For instance, for sufficiently large
4 we would expect to recover the scaling in
x,=m|qd|/Vs described in Ref. 22. Perhaps the
technique could still be used here, if the high
'ﬁ[ particle were treated separately, with the
other particles moving in a self-consistent field
together with a fixed external field resulting from
this particle.

Also it should be mentioned that we have only
presented the technique for a simple ¢* theory.
Before any detailed comparison with experiment
can be made, energy-momentum conservation and
resonance decay should be treated. These prob-
lems exist in most multiparticle calculations, and
in this work we have dealt with the basic multi-
peripheral mechanism-independent damping in the
t;, rather than with these questions.

In conclusion, we have represented the multi-
peripheral amplitude with power damping in ¢; by
a probability function that is factorizable in the
momenta of the particles. It was shown that this
form becomes exact in the high-density limit,
where each §; is damped by an average “poten-
tial” which results from many nearby particles.
A self-consistent form was obtained for this po-
tential when rapidity orders were the same as
chain orders, only the left and right chain orders
were restricted to be equal, and in the unrestrict-
ed case (withall interference terms). It was seen
that the addition of the interference terms signi-
ficantly affected the exponent, but not the inclusive
spectra. In allthree casesthetransverse-mo-
mentum distribution was found to have a limiting
form as p—,

Two extensions of the theory should be looked
into.

First, finite density corrections should be found,
so that the technique can be applied to the multi-
peripheral model in more general situations.

Second, since our model, considered as a par-

ticular set of Feynman diagrams, has proved
amenable to the technique, perhaps other, more
general sets of diagrams will also simplify in the
large-coupling limit. The crucial property here
seems to be that damping in the ¢; be only power-
like for large ¢;. If that should be the case, we
would be in a better situation than classical many-
body workers, who must generally deal with po-
tentials that become infinite when particles are
close, or densities are high.

APPENDIX

We argue heuristically that the I.Eiz terms in the
probability function (26) can be neglected. First,
we assume that i&iz is small compared to 7;, and
then calculate the mean value, which will turn
out to satisfy our assumption. With these terms,
the function defined in (28) becomes

QHE P = [Tn@)[Je &>/ . (122)

The terms h(§) provide damping in |g;|, and K;
varies in random-walk fashion, and would increase
indefinitely as ¢ increases, were it not for the

last term. The question then is does the last term
affect any of the integrals? Instead of using the
form (44’) for n(§), we use a Gaussian. Then, we
have the form

Q¥ab =<§>NH6"’EiZHe"2"”’Ei2 , (123)

where we ignore the (1) term, and introduce a
p-independent constant b which is O(1). Without
the last term, we would have

of= [TId@Qy=1.
Defining

0@+ [Tlaes@ho®-2a), 20
we have the relation

- o 2 e
Oy (B) = % /TR f dge T o & -F).  (125)

Since
- b 2\ =,
0,(K)= S exp| - b+<—7_> K2, (126)
we take a Gaussian form for UN(K);
oy (K) =2 ,en %, (127)

Using (125) and (127) and completing squares,

= _ b bby 2 »2]
One(K)= b+bN)\Nexp[—<——b+bN+ <T>)K , (128)
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or
- bby 2

bwa =g Y T (129)

and
b

)\.Nﬂ:m‘;hN.
Since

n=b/m,

b,=b+2/T),
we see that, as N—x

by~ by=B, (130)
where

B<b.
We then have

B=B(1+B/b)+2/1)

or
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Bz<<2—_’l_)>>1/2 (131)
and

Xyey~ Ay(1 =B/,
We then have

o N(K) - l:l - (—I;?—;)—)l /Z}Nexp [—(<2—Tb>>l /212{] . (132)

-
Thus, integrating over K, we have now

i )T

- exp[—(b(z—,r>>1 /QN} (133)
instead of 1, and
(X3~ (52%)1/2}«7). (134)

As (1) becomes Iarg_g, we conclude that the error
made in neglecting K,? becomes negligible.
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