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Various aspects of quark confinement are considered. First we show in the context of potential theory that
steep confinement potentials lead to mass formulas which are similar to those obtained for confining boundary
constraints imposed on the free quark motion. We then consider the field-theoretic model of a scalar quark
field which is subjected to a strong self-coupling in a finite domain of a three-dimensional lattice space. We
show that the strong self-coupling prevents the quark field from spreading easily, but that by itself it does not
suffice to confine quarks. A confinement constraint or equivalent potential is still required. We also show that
the mass of a single quark grows with increasing self-coupling and becomes infinite in the continuum limit

(thus necessitating the use of the lattice).

I. INTRODUCTION

Quark confinement has attracted considerable
interest recently. The reason is that despite nu-
merous successes of the quark model all attempts
to isolate and observe single quarks have failed
so far. The suggestion made by Johnson,! that
the elementary constituents of hadrons possibly
never appear singly and instead are confined per-
manently to bounded regions of space, has there-
fore aroused a large number of investigations
and the construction of sophisticated model theo-
ries. All these investigations (an incomplete list
is given in Refs. 1 to 8) attempt to understand the
quark-confining mechanism while preserving the
known properties of hadrons.

A particularly ambitious model of quark con-
finement has been developed by Wilson.® This
model involves an Abelian gauge field coupled to a
spinor quark field, The theory is quantized on a
discrete four-dimensional space-time lattice.
Using the Feynman path-integral method, Wilson
then finds quark confinement for the case of strong
coupling in which the theory is invariant under
local gauge transformations.

One of the main advantages of the formulation
chosen by Wilson® is stated to be its easy general-
ization to non-Abelian gauge theories. However,
even in its Abelian form the theory is already
sufficiently sophisticated in order to make it diffi-
cult to understand various basic aspects such as
those posed by the questions: Has the lattice only
mathematical significance or is it related to the
confinement? What is the source of the confine-
ment mechanism and why does it arise only in the
strong-coupling domain? Does strong coupling
(e.g., self-coupling) by itself suffice to entrap
quarks? These questions (and others) prompted
us to consider a purely scalar self-coupled field
theory on a three-dimensional spatial lattice.

This model, based on the work of Schiff,® exhibits
general features similar to those of various con-
finement theories, but makes an understanding of
our questions more transparent,

In Sec. II we begin with some simple considera-
tions in potential theory in order to demonstrate
the equivalence between quark-confining potentials
and boundary constraints imposed on the free-
quark motion.

In Sec. III we consider quark confinement in the
lattice space. The model is defined by the usual
Hamiltonian density for a self-coupled neutral
scalar field integrated over a finite volume V. The
energy of the confinement is an additive constant.
We then introduce the lattice which makes the
theory violently noncovariant, and investigate the
lattice Hamiltonian and its expectation value for
states of single quarks and quark-antiquark pairs.
Finally we summarize our conclusions,

II. QUARK CONFINEMENT IN THE CONTINUUM SPACE
A. Quark-confining potentials

For a better understanding of our lattice-space
arguments we begin with a brief look at potential
scattering as defined, for instance, by the non-
relativistic Schrddinger equation

d? (1+1) 2
o |e- G - yei-o, e
where ¥ =2uE/f% Here u =mm,/(m, +m,) is the
reduced mass of two quarks, 7 their separation,
and ¥ is the radial wave function defined such that
the solution of the Schriddinger equation is

¥ =Q1/rW@r)P7(cos)e'™?,

We now assume that the unscreened quark-quark
(or, more precisely, quark-antiquark) interaction
is given by the power potential
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V) =Gr,
2.2)
G*=g?/r,°, g%>0, 7,#0, s=1,

Here 7, is an important part of the coupling con-
stant. For confinement of one quark in the neigh-
borhood of the other we require® s=1, Solving
(2.1) for the potential (2.2) one finds the Regge
trajectories or, better, the energy-—angular-mo-
mentum relationship®

1= a,(E)

1 T(1+1/s) E \¥ (l)
+7175 F(%+1/S) k’i"o(g:!) +0 nl)’

(2.3)

ojw

=-2n -

where #=0,1,2,.... This result gives the com-
plete set of eigenvalues associated with the power
potential (2.2). In the following we will refer to
formulas of the type (2.3) as mass formulas be-
cause their values of E, i.e. E,, determine the
masses M, of the excited states, i.e.,

M,=m, +m, +E,

(ignoring an arbitrary additive constant in V).
From (2.3) we deduce that power potentials of the
type (2.2) lead to Regge trajectories which rise
with increasing energy. Interesting cases are the
linear potential (s =1) which yields the fastest rise
(proportional to Ea/z), the harmonic oscillator
(s =2) and the limiting case s -~ which yields the
trajectory with the slowest-rising behavior:

§ =~ lEoz,,(E)=—2n—%+z—li:"1 +O<%> . (2.4)

This last and seemingly academic example s -
corresponds, in fact, to an infinitely steep poten-
tial well, as Fig. 1 demonstrates.

Considering relativistic kinematics for quarks
of the same mass m, we have the so-called rela-
tivistic Schrodinger equation

B2 +m?) 2 =4 (E- V)Y,

i.e.,
32\11+%[%(E—V)2—m2]\11=0, 2.5)

where P is the momentum of one of the quarks in
the center-of-mass frame, and E the total energy
of the pair. It is clear that—assuming the poten-
tial is again given by (2.2)—in this case the calcu-
lation of the discrete eigenvalues is more compli-
cated. We shall not go into details but will return
to a discussion of Eq. (2.5) at a later stage.

B. Quark-confining constraints

We consider again the motion of one quark rela-
tive to another as described by the Schrédinger
equation. But this time we do not assume a specif-
ic form of the potential. Instead we argue that the
effect of the quark-confining force can be de-
scribed equally by constraints on the wave func-
tion of the free-particle equation. This is an al-
ternative way of formulating the same dynamics.
Of course, in practice it is an extremely compli-
cated mathematical problem to establish a one-to-
one correspondence between a potential and a cor-
responding boundary condition. A well-known ex-
ception is the potential of the form of a 0 function:
In this case it is easy to construct the equivalent
constraints. Thus, the examples that we consider
are difficult to relate to specific equivalent poten-
tials. However, we can use some loose arguments
in order to make the connection plausible,

We consider the free Schrodinger equation, i.e.

V2U 4+ k2T =0,

2 I(l+1
%—T—zﬁ+|:k2_%_]¢=0,

2

(2.6)

where again k2 =23, E/i2, Suitable constraints of
confinement of one quark near the other are those
which exclude their scattering and hence require
the vanishing of the outgoing particle current at or
beyond some finite nonzero quark-quark separa-
tion 7, i.e.,

P(r,)=0 @.m

V(r)/gz=({;)5

8 ma
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FIG. 1. The relative behavior of power potentials.
The parameter 7, represents something like the radius
of a hadron. Thus, assuming a suitable energy (i.e.,
mass) dependence of 7,, the relation (2.4) corresponds
to a linearly rising Regge trajectory.
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or

=0. (2.8)

"o

ay
ar
We consider first the case (2.7). The solution §(7)

of the radial Schrédinger equation (2.6), which is
regular at the origin, is

¢(7)=71172-J1+1/2(k7), (2.9)

The constraint (2.7) therefore requires
Jy12(R7) =0 (2.10)
The nth zero of this Bessel function is given by

1y _
kry=@m+3l)m - llg(iz——)zr—}-

e ) (2.11)

for n>1+%. Solving this equation for ! we obtain

l=—2n+—2%°-

.o

. (=2 +2k7 /1 +3)(=2n + 2k7, /T — 3) "
k7,

(2.12)

for (n>1+3). We observe that this mass formula
is similar to (2.4), which we obtained for the in-
finitely high potential well. Thus we can argue that
the effect of the quark-confining constraint (2.7)

is roughly equivalent to that of the infinitely high
potential well. Of course, we do not expect this
correspondence to be unique., In fact, the con-
straint (2.8) also leads to a mass formula of the
type (2.4). For the solution (2.9) the constraint
(2.8) yields the relation

L=, Jus6(R70)
0 J1+1/z(k1’o)

=kvytan(kry — 3lm - 31) + O((k7,)°). (2.13)
Extracting I, we obtain
114 2% _ 2 tan‘l(—l>
T T kr,
=—2n—1—%+2—?,-‘1+0(1/n) 2.14)

for |1/kv,|<1, where we have used
tan™'x =n7+arctanx ,
O<arctanx <37 for x>0,

and
—37<arctanx<0 for x<O0,

Thus the constraints (2.7) and (2.8) which are much
stronger than the usual bound-state boundary con-
dition at infinity include the effect of quark-con-

fining potentials. In fact, the confinement range
7, is intimately related to the coupling strength
of the corresponding potential, as (2.2) indicates.
In the nonrelativistic case discussed so far k is
proportional to El/z; however, in the relativistic
case k is proportional to (E? — m?)“2,

Finally, we consider the free-field Hamiltonian
H of a real (i.e., neutral) scalar field ¢ of mass
m which is confined, by a boundary condition

@, 6,9) or i@_(%,;@*ﬂ =0 at r=7,, (2.15)
to a finite region V of the infinite continuum space,
i.e.,

H= f AF A%+ 3 (Vo) +2m2 ¢ + B]. (2.16)

v
Here [I(f)=8£/0$, $=3¢/dt, is the momentum
canonical to ¢(¥), and B is the constant energy
associated with the constraint per unit area of the
surface enclosing the confinement domain. Also,
we set 7 =c=1. The classical equation of motion

(9,0 +m*)¢p =0

is solved by expanding the field ¢ in terms of a
complete set of solutions ¢,;(x) of the equation

(8,0" +m?)¢,;(x)=0. (2.17a)
The expansion is
B(x) =2, 0,0,(x) (2.17b)
i
where 0; are constant operator coefficients.
The spherical-harmonic solutions
o;(x) =e* Bt Y, (r) PT(cos )e'™?, (2.18)

having E2=p2+m?, p=—-ikV describe particles in
eigenstates of angular momentum. It is clear that
Eq. (2.17) is identical to (2.5) for V =0. Thus,
imposing the constraints (2.15) on each of the wave
functions ¢,;(x) we again expect solutions and mass
formulas of the type discussed above.!°

III. QUARK CONFINEMENT IN THE LATTICE SPACE

A. Lattice Hamiltonian

Our starting point is the continuum field Hamil-
tonian?*

H:f [§H2+§(-V'¢)2 +%m2¢2+% a2¢"+BJ dr ,
\4
3.1)

where ¢ is again a real scalar quark field, m is
the field rest mass (or bare mass of the quark,
which may be taken to be zero), V is a finite vol-
ume, and o (a?>0) is a parameter of the nonlinear
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self-coupling of the scalar field. We choose the
Hamiltonian (3.1) because it represents the sim-
plest model which enables us to investigate the
essential physical aspects of quark confinement
without the enormous complications of spin and
several fields. It will be seen that in this model
of confined scalar quarks it is neither the strong
self-coupling of the field nor the exchange of n -2
quarks which provides the confinement gluon force
but a constraint of energy BV which restricts the
quarks to the region V of space. We shall need
the canonical commutation relation

[o(F, ), )] =0 (F - T'). (3.2)

It is well known that the scalar theory is renor-
malizable in the case n=4.

We now consider the ordinary three-dimen-
sional space to be a cubic lattice of Z%=(L/a)?
points.!! Here «a is the lattice constant (i.e., the
distance between adjacent lattice points) and L
is the length Za of one edge of the world cube. It
should be noted that this lattice is different from
that used by Wilson® (who uses a four-dimensional
Euclidean lattice in which an imaginary linear
lattice is allocated to the variable of time). The
concept of a lattice space offers a convenient or
even natural way to incorporate the cutoff neces-
sary in calculations for nonrenormalizable inter-
actions.

In the lattice space a field is defined only at the
lattice points 1 =¥/a (counted from, say, the cen-
ter of the world cube) where it is characterized
by quantum-mechanical operators ¢ (), II(7). A
convenient way to define® ¢ (@) is by means of the
average (in some sense) of the continuum field
over a distance of length a about the lattice point,
i.e. we define the lattice field by the correspon-
dence

T o= 0= [ E-F)o@aF, 6.9
and similarly
L 1@ -n,)= f E-FEF, (3.4)

where f(f -7,) is an averaging function, and K,
implies integration over a sphere of radius a about
the point with position vector ,. The factors 1/a
are inserted for convenience.

Next, in order to be able to use momentum-
space representations, we require the reciprocal
lattice. Thus, if b is the lattice constant in the
reciprocal space, and if bh is the lattice vector
corresponding to the momentum vector P in the
continuum, we define the Fourier transform ¢(h)
of ¢(n1) by

66)= 2 X 3@exp( 2 ),
h

so that

(3.5)

56)=1 o@exp (- 22E-E),

Here
p=oh, (3.8)
and b is related to a by

27
b__Z..Zl_ . (3.7)

In this way we will be working in terms of the
four-vectors

xH =(t,an), p*=(w, oh), (3.8)
where w = (52 +m?)"2, The rules for transcribing
formulas from the continuum (coordinates T, p) to
the lattice (coordinates ii, h) and vice versa are

- 1 —

6O~ ~ 6@,

1)~ - 1),

- > 1
5(1‘—1")“ E‘s— 5;;’3

fE =)= =5 @),
f dF-a'y, (3.9)

&(ﬁ)“ a2¢;(ﬁ) ’

=y 1 - -

f@-p)— 37 fE-R),

f =02y,

i

where f is the Fourier transform of f. Of course,
the correspondences (3.9) are not unique. Terms
can always be included in the lattice formulation
which vanish in the limit a -0,

If the averaging function f is taken to be the 0
function, we have

f(?‘"— Fpr)= G(Fn_Fn’)
B (2117)3‘ f dpexplip- F,-F,)], (3.10)

and so [using (3.9)]
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fE =) =053

1 Z <2niﬁ-(ﬁ-ﬁ')>
=—z Q) exp——————1), (8.11)
Z 7 Z

Using (3.2) and (3.7), it is readily seen that the
canonical commutation relation of the lattice field
is

(o@, 1), 0@’ £)] =057 . (3.12)

The last point we have to deal with in order to be
able to transcribe the Hamiltonian (3.1) into the
lattice-space formulation is the gradient term
fv (—V’cb)2 df¥. Using Green’s theorem we may write
this term in the form

T )2 = g.9 3 SR
fv(wp) a7 fv(¢v V¢)dr+fsv¢‘7¢> figds,

(3.13)

where fig is a unit vector along the normal to the
element dS of the surface S, enclosing the volume
V. In the following we will be concerned with a
volume V which is finite and nonzero even in the
continuum limit a - 0.

For permanent confinement of quarks we now
impose the constraint

f ¢V HgdS=0. (3.14)
Sy

This relation is satisfied if ¢ or V¢, i.e., the
corresponding wave function [see (2.17)], is zero
everywhere on the surface S,—this is, in fact,
the constraint equivalent to (2.7) and (2.8) in our
earlier considerations. Of course, in the case of
strong self-coupling of the scalar quark field, the
surface integral is small compared with the inte-
gral over the self-coupling. But without the con-
straint (3.14) (imposed with energy BV) the field
would gradually radiate beyond V and finally be
distributed over the whole of space. Thus the
strong (but noninfinite) self-coupling of the field
does not by itself entrap the quarks permanently.

Using the rules (3.9) we can transcribe (3.13)
into the lattice-space formulation:

= o g 1 7 R AYY 1A} Y
fv (V¢) dr —~ —27TaZ5 %fv(ﬁ h )¢(H )E (p(ﬁ)’
(3.15)
where f,(h-1’) is derived from
FG-5)= [ dFei®-pT
Jo@-5)= [ aFel®P
- Sin[j(Pi —Pli)] (3.16)

iTXY.2 "(P,‘ —P;)
and V = (2x)(2y)(2z). In the limit x,y,z -,
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fv(ﬁ— p’) becomes 6(p — p’). Using the transforms
(3.5) we may rewrite (3.15)

J, @orat- g 2o Az o@o®), @17

where

Azz ny(ﬁ F)Ezexp[ Z

C i

LY n)].

(3.18)

It is clear that the terms of (3.17) represent the
kinetic energy of the field at the points of the lat-
tice. Again the lattice representation (3.17) is not
unique but convenient for our purposes.

The Hamiltonian (3.1) can now be written down
in the lattice formulation. We have

H=H,+H'
where
H Z [ZHZ(H).;.L m2a? +—n-nz~ 4)2(’)
2 217
neV
+ T b (ﬂ)} +BV (3.19)
and
o1 - .,
"= 27maZ? ;ZE:, Arnio@o(@’). (3.20)
nEnlev

From (2.17) we know that the field ¢ is associated
with a wave function which is (conveniently) rep-
resented by the same letter ¢. Physically, H’
represents the energy of propagation of the scalar
field through the lattice. Our condition of con-
finement requires the wave function ¢ or its gra-
dient to be zero on the surface of V [see (3.14)].
Now we observe that the lattice Hamiltonian H,
is separable and describes a set of uncoupled os-
cillators, one at each lattice point of the volume V.
This decoupling was achieved with the strong self-
coupling of the field. The term H’ then couples
these oscillators together, in general [i.e., without
the constraint (3.14)] both inside and outside V.
We shall consider H' as a perturbation on H,. It
is plausible to expect this perturbation procedure
to be valid for sufficiently large coupling con-
stants @, at least for n=4, because then the ex-
pectation value of H, is larger than that of H’'.
Thus, inside V the field at each lattice point be-
haves like a free self-coupled anharmonic oscil-
lator.

Next we adopt

n@)=-1 (8.21)

9¢(’)

as a convenient representation of the canonical
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momentum, which is compatible with (3.12). The
Schrédinger equation may now be set up and sepa-
rated as follows:

HY =EV¥,
H¥,=E,¥,,
where
\If0=II uzy, E0=Z 8, (3.22)
nev ncv
and the 87 are given by
1 o2 (. 2.2 ﬁi-l)z* _o? n]¢
a |:- 9¢%(n) *3 (m &+ onze $o@) + na""4 ¢"(@)] u
=(8z-BV)uz, (3.23)

where we have used the orthonormality of the wave
functions u;. The energies &7 are seen to be the
eigenvalues for the one-dimensional motion of a
particle in a potential of the type of an anharmonic
oscillator. Physically Eq. (3.23) describes the
independent excitations of the self-coupled quark
field at each point i of the region V of the lattice
space.

B. Isolated quarks

In confinement theories the mass of a quark can
be a concept of very dubious meaning. Hence, be-
fore we can talk about it, we have to say what we
mean, The most immediate way to define the mass
of an isolated quark assuming that one exists some-
where is to identify it with the total energy of the
quark in its rest frame. This seemingly precise
definition becomes vague if we require the quark
to be imprisoned in a certain bounded region of
space or equivalently held fixed at a specified point
in space. This is due to the fact that the confining
potential V may include an arbitrary additive con-
stant so that the total energy E in the relation

(E - V)Z =p2+m2

has no well-defined zero point. This is also phys-
ically plausible. Because if a quark is held fixed
at (or near) a point, it is difficult to distinguish
between the mass of the quark and the energy of
confinement. More important, there is probably
no need for the distinction. Also the difficulty can
presumably be removed if vacuum-polarization
effects which in Abelian theories screen the bare
interactions are taken into account and scattering
becomes possible. At present it is not clear to us
how this difficulty (which is essentially a problem

of renormalization for large coupling'?) can be
overcomne.

In the following we take the world lattice with the
quark field ¢(f) confined at the point il as our pic-
ture of an isolated and confined single quark. We
use Eq. (3.23) to describe the various states of
this system. Thereby we ignore the terms in
Az, ie., H'.

As noted above, this approximation is legitimate
only if the self-coupling of the field is sufficiently
strong, i.e., o, the coupling constant, suffi-
ciently large. We could also consider non-self-
interacting quarks which are confined within a
volume V. However, in that case the Hamiltonian
could not be approximated by a countable number
of independent oscillators. Phrased in a different
way: The strong self-coupling of the quark field
is responsible for its approximate localizability
(which in turn implies particlelike solutions) owing
to the fact that the energy associated with the prop-
agation of the field through the lattice (H’) is much
smaller in magnitude than the energy associated
with the self-coupling of the field (the term pro-
portional to o® in H,). This picture of confinement
looks similar to that described by Wilson,® who
also does not obtain quark confinement in the weak-
coupling domain.

In the Hamiltonian [e.g., (3.19)], m describes
the bare mass of the quark field. The dressed or
physical mass of the quark is its mass which
would be observed if it (i.e., the single, isolated
quark) could beobserved. This is simply the ground
state of the single-particle expectation value of
the Hamiltonian, i.e.,

o - 0o @Il 6™ @]0)
1 0leT @ @I0)

(3.24)

where ¢¢’() is the configuration-space repre-
sentation of the creation operator of a single sca-
lar quark at the lattice point fi, i.e., ¢(R)=0¢‘" @)
+¢ (). We write

ut = (i, il ) @) 0)

for the configuration-space wave function, and
84" for the corresponding energy E,, the super-
script ¢ enumerating the excited states ( ¢ =0 for
the ground state). For the sake of generality we
consider first the volume V enclosing N, lattice
points at each of which the quark field is defined.
We ignore the propagation of the quark field
through the lattice which, as we have seen, is a
plausible approximation in the strong-coupling
domain. Thus, neglecting H’ and using the ortho-
normality of the wave functions, we have Eq.
(3.23), i.e.,



1710 BOSE, JABS, MULLER-KIRSTEN, AND VAHEDI 13

o*u'? ) 1/ 2 - ﬁﬁ.ﬁ.) 2 _
567 +[a(8 - BV) - g \ma+ 5 $* =~

at each lattice point ie V. This equation describes
the state of the self-coupled quark field system

at each point ne V as the value of the quark wave
function at that point changes as a result of the
strong self-coupling of the field at that point. For
our present purposes it suffices to obtain an ap-
proximate form of the eigenenergies §‘*’, For
sufficiently large values of o®, we therefore ne-
glect the term in ¢2. The approximate form of

the eigenvalues can be obtained with the help of the
WKB method. Thus, using (2.3) we find

D ~ BV + l[ﬁ (45 +3)0(3 +1/n)]2"/<"*2’
a

2 r'(l/n)
2\ 2/(nt+2)
X (—;;%,:) . (3.26)

Strictly speaking, this approximation assumes
that ¢ is large. However, the WKB method is
known to yield surprisingly accurate approxima-
tions so we shall assume that its dependence on
o and a is also that for the ground state ¢ =0.
Hence for n=4 we have

aﬂs

§©@ _ By ~ — (3.27)

The total ground-state energy of the system of
volume V enclosing N, lattice points is therefore

8© ~ N, (BV +Ca**/a),

where C is a number.

Next we consider a single isolated quark en-
closed in the volume element a4° (i.e., a bag con-
taining only one quark). Then

8©® ~ Bad +Ca?fa=m’ (3.28)

is the energy of this quark., We assume that B,
the confinement energy per unit volume, is a con-
stant independent of a. Hence 8§, i.e., the phys-
ical mass of the quark, is large and becomes in-
finite in the continuum limit a - 0 for o large but
finite. This result is physically plausible. It
means that the quark is heavy because it is static
or vice versa. This conclusion is similar to,
though not identical with, that arrived at by Wil-
son.® In Wilson’s theory the mass of the isolated
or static quark is stated to be infinite and a con-
sequence of gauge invariance irrespective of the
lattice. Since the local gauge invariance used by
Wilson is broken spontaneously for weak coupling,
his conclusion also seems to require strong cou-
pling.

¢"] u®=0 (3.25)

C. Quark -antiquark system

In the simple model we are considering here
quarks and antiquarks are indistinguishable since
¢ is a neutral scalar field. We now consider a
state consisting of a quark at the lattice point 7,
and an antiquark at the lattice point n,. We are in-
terested in the ground-state energy of this pair,
i.e., (using our earlier notation) in the quantity

g = 0o @0 @,) Hl ¢ 6 @,)]0)
27 {0l @) V(@) 0 @,)0 ) @,)]0)

(3.29)

V is a volume enclosing the points #, and n,. If
these points are far apart, the minimal volume
is of the order a®(n, —n,) where n, - n, =1, —,|.
Ignoring H’ as before, Eq. (3.29) yields with the
help of (3.28)

E,=2m’' +2BV, m'=Ca*3/a. (3.30)

Here 2BV is the energy required in order to im-
pose the constraint (3.14), i.e., to imprison the
quarks in the volume V. Without a specific field-
theoretic ansatz for B it is not possible to extract
the equivalent potential, However, it is clear that
this equivalent potential is of the type

V@E)~g¥F|*™, p=0.

IV. CONCLUSIONS

Starting from the nonrelativistic Schrédinger
equation, we showed in Sec. II that an infinitely
steep quark-confining potential corresponding to a
hard bag leads to mass formulas which are similar
to those obtained by subjecting the free-quark mo-
tion to boundary constraints. Analogous results
were obtained for relativistic equations.

In Sec. III we considered quark confinement in
the lattice space, and arrived at the following
conclusions for our Abelian theory:

(a) the strong local self-coupling of the field pre-
vents the quark field from spreading easily but
does not by itself imprison the quarks;

(b) the physical mass of a single, isolated quark
increases with the self-coupling;

(c) the physical mass of a single, isolated quark



13 ASPECTS OF QUARK CONFINEMENT 1711

is proportional to the reciprocal of the lattice con-
stant of the spatial lattice and thus becomes in-
finite in the continuum limit (in ¢* theory this is
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order to define an otherwise uncountably infinite
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confinement constraint.
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