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It is shown that the classical thin-shell states of the "SLAC bag" model may be described, in a strong-
coupling limit, by the motions of a surface of constant surface tension upon which free quark fields propagate.
Classical static and nonstatic solutions in two and three space dimensions are discussed. It is found that such
objects are very easily deformed. The implications for excited state levels in and the quantum mechanics of a
model of hadrons based on such states are discussed.

I. INTRODUCTION

Recently, Bardeen, Chanowitz, Drell, Wein-
stein, and Yan (BCDWY) proposed a model of
hadron structure' based on a strongly coupled
field theory of quarks interacting with a neutral
quartically self-coupled scalar field. They have
argued that though the quark and scalar meson
masses are large, very-low-mass bound states
containing quarks will form. In the semiclassical
field theory these bound states correspond to ex-
tended particlelike excitations of the fields in
which the energy density takes the form of a thin
shell.

This paper analyzes the strong-coupling limit of
the semiclassical BCDWY theory. The strong-
coupling limit is defined in such a way that the
quark and meson masses go to infinity, while the
masses of thin-shell bound states remain finite.
In this limit, the thickness of the shell goes to
zero and it may be regarded as a spatially closed
curved hypersurface embedded in space-time (a
"bubble" ). The Euler-Lagrange equations of the
field theory can be re-expressed as equations re-
lating geometric variables characterizing such a
hypersurface and quark fieMs defined only on this
surface. The resulting classiaJ. equations of bub-
ble dynamics are Poincare invariant and are
equivalent to those derived from an action princi-
ple. This action principle is similar to those which
generate the MIT bag' and the Nambu string. 3

The bubble theory easily reproduces the results
obtained by BCDWY for the static spherically sym-
metric bubble state in three dimensions and pro-
vides a very convenient starting point for a dis-
cussion of excited states of the model. We exhibit
the complete solution to the static-bubble equations
in two space dimensions. We find that two-dirnen-
sional static bubbles are exactly degenerate in
shape —the energy of a bubble depends only on its
perimeter. We analyze several approximate static
solutions in three space dimensions. Our results
indicate that three-dimensional bubbles, though

not exactly degenerate in shape, are very easily
deformed.

We obtain the exact solution to the nonstatic-
bubble equation for all breathing modes of a spher-
ically symmetric bubble in three spatial dimen-
sions. The surface motion is quantized in the
WEB approximation. In this approximation, the
mass ratio of the first radially excited state and
the ground state is found to be very close to that
of the Roper resonance and the nucleon.

The most striking physical property of bubbles
which emerges from this work is their softness to
deformation. The possible implications of this
property for any quantum theory of bubbles are
quite important. Among these is the expectation
that the thin-shell nature of the semiclassical
states need not imply oscillatory form factors or
the absence of scaling as would be the case for a
rigid shell.

II. THE BCDWY MODEL

The BCDWY model for the binding of a single
quark species is developed from the field theory
defined by the Lagrangian density

& =-.'(&o)' —X(o' -y')'+ q(y'- Go)y,

whose Hamiltonian is

g0 2+) 02 2 2

2

+ P~( in ~ V +Qcry')-P .
This is a theory of a Dirac field g interacting,
via the Yukawa coupling, with a quartically self-
coupled, neutral scalar field, 0. The theory is
characterized by three coupling constants: G, X,
and f.

This Lagrangian is symmetric under the dis-
crete transf ormation:

0' ~ -0'
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where the wave function must be normalized to
unit charge,

and of the classical equation for the o field in the
presence of a fermion source,

8'o + 4ka(f' —-o') = Ggg'. (2)

In the "static" case, o'=o'(x), g =((x)e ' ' these
reduce to

(- i n ~ V+ Goy')P(x) =E((x),

V2o'+4Xo'(f —c' ) =GPSS.

The differential equations (1) and (2) are the
classical Euler- Langrange equations of the theory.
The system is "semiclassical" in the sense that
g in interpreted as if it were a single-particle
Dirac wave function: It is normalized to unit
charge, and negative-energy fermion states are
to be given the Dirac interpretation as positive-
energy antifermions. We note that the Dirac equa-
tion is one with a scalar potential, so that no
Klein paradox arises —the distinction between pos-
itive- and negative-energy states is always unam-
biguous. Thus, the prescription by which we de-
fine a "semiclassical" theory is also unambiguous.
The normalization of the fermion charge to 1 and
the interpretation of negative-energy states as
antiparticles arise naturally in the work of BCDWY,

The classical potential of the o field has symmetric
minima at o'=a f. One therefore expects that, in
the corresponding quantum theory, y, reflection
symmetry will be spontaneously broken and that
the o' field will assume a vacuum expectation value
~(o') ~=f, which we choose, by convention, to be
+f. In a perturbative approach one would then
conclude that this theory is one of interacting
quarks of mass Mo Gf and-—scalar mesons of
mass M, = (8Xf)'~'. We consider a limit of coup-
ling constants in which both of these masses are
large.

It is easy to construct a semiclassical argument
that the lowest-lying quark states need not have
mass Gf. It is only in zeroth-order perturbation
theory that the scalar field is not free to decrease
its value from f in the neighborhood of the quark,
so as to reduce the total energy. The particlelike
excitations of the semiclassical BCDWY theory
are formed in just this way.

The "semiclassical" field equations which we
use to discuss the BCDWY theory consist of the
(one-particle) Dirac equation for P in the presence
of a classical o field,

(iP —Go')P = 0,

where the semiclassical equations are derived
from the quantum field theory via an approximate
variational technique.

The mechanism by which low-mass quark bound
states can form is most clearly evident in the so-
lution to the static-field equations in one dimension.
Taking the representation of the y matrices

(I 0'( (0 1

(0 -13 (I 0

this solution is

o(x) =f tanh(2X)'~'f (x —x,),

where N is a normalization constant that ensures
Q =1, and x, is a constant.

One finds

E=Q

Etot &
=

3 (2X)' 'f',

if' =0.
In a strong-coupling limit defined by

G yahoo

G » y'i'6

y'~'f =fixed,

this is clearly a one-quark state of much lower
energy than the usual free quark.

There are several aspects of this one-dimension-
al solution which point toward more general fea-
tures of the theory. First, because gP vanishes,
the o'-field equation is actually independent of g.
The above solution for o is the well-known "kink"
solution of the spontaneously broken quartic scalar
theory in one dimension. '. The dynamics of the
scalar field is determined primarily by its self-
coupling, rather than by its coupling to fermion
sources. This will remain true in higher dimen-
sions. The width, D, of the transition region of the
the o field is on the order of the o Compton wave-
length, which will always be small compared to
(1 GeV) '.

Perhaps the most striking feature of the solution
is that the Dirac energy is small even though the
Dirac wave function is very sharply peaked. Intu-
ition based on the quantum mechanics of bosons
would suggest that the energy should be compar-
able to the dominant Fourier components of the
wave function —on the order of the bare quark
mass.

This intuition need not be correct because the
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Hamiltonian is linear, rather than quadratic, in
the quark momentum operator. This point is fully
discussed in Ref. 1.

III. THEORY OF BUBBLE STATES

In higher dimensions, as discovered by BCDWY,
the low-lying bound states analogous to the one-
dimensional kink have the form of finite domains
within which o = fand-outside of which cr =+f.
The transition of the o field between these values
is very sharp and takes place in a thin shell about
some closed surface in space (Fig. I). Quarks
can be trapped on this domain boundary as they
are on the kink. We refer to such states as "bub-
bles." In general, a bubble's surface may vary
in time. Thus, the most natural description of a
bubble is as a domain in spacetime whose bound-
ary surface is a timelike hypertube (Fig. 2).

In this section, we discuss a general approxima-
tion scheme which affords a characterization of
all bubble solutions to the Euler-Lagrange equa-
tions. Our approximate solutions become exact
in the infinitely strong-coupling limit. The ap-
proximations we use in this discussion will give
physical quantities to lowest order in a small pa-
rameter which we may denote schematically as
"D/R." Here, D is a length on the order of the
Compton wavelength of the quark or the meson
and R is on the order of the smallest radius of
curvature of the bubble surface. Thus, D/R is
the ratio of the thickness of the shell to its size
and, as we shall see, vanishes in the strong-
coupling limit.

Our procedure is as follows".

(I) We assume that the desired solution to the
field equations is a bubble of some undetermined

D I/X f

shape. The 0'-field equation may be solved approx-
imately for any such configuration.

(2) We solve the Dirac equation approximately
in the presence of this 0 field.

(3) Finally, we derive a self-consistency condi-
tion which guarantees that the next-order correc-
tions to this approximate solution are, in fact,
small,

The net result is a reformulation of the Euler-
Lagrange equations in terms of a particularly
convenient set of dynamic variables which char-
acterize the bubble surface and quark fields on it.

We begin with the assumption that the field con-
figurationn

will be that of a bubble (Fig. 2). In n
dimensional Minkowski space, the bubble surface,
o(x) =0, is an (n —I)-dimensional hypersurface
which we can parametrize by ~ —1 "internal co-
ordinates" u,

X=0, .. . , n —1.
Because the fields are expected to have nontrivial
spacetime dependence only in a thin shell about this
surface, it is convenient to adopt (non-Cartesian)
coordinates (u, g) centered about it,

x'(u, g) =R'(u )+ gn'(u ),
where n'{u") = outward unit normal at R"{u ).

The coordinates (u, $) are well defined only
within a distance on the order of one radius of
curvature away from the surface. We assume that
the radii of curvature of the bubble surface are
always large compared to D. This assumption
has no effect whatsoever on the spectrum of low-
lying excitations of the theory in the strong-cou-
pling limit. By increasing G and X, D may be
made arbitrarily small without affecting either
the spectrum or the surface geometry. '

FIG. 1. A schematic representation of a bubble state. FIG. 2. A hypertube.



13 SEMICLASSICAL DYNAMICS OF THE "SLAC BAG" 1673

In the new coordinate system, we can write
the gradient:

a
lip p

where ~„ is the "tangential" gradient which,
though it depends on g, involves only differentia-
tions with respect to the u and is tangent as a
vector to the surface.

Consider the field equation for o. Our first
approximation to o' must be a function that satis-
fies the "largest*' part of Eq. (2) near the surface.
Because o makes its transition from -f to+f in
a distance of order D, we expect

acr 1f—
D

while

We also anticipate that, in analogy to the one-di-
mensional case, the fermion source term will be
relatively unimportant in (2)—an assertion which
must be verified later to ensure self-consistency.
Thus, our first approximation to (2) in the neigh-
borhood of the surface is

, +4Xo(f' —o') =0.8 o'

This is the same as the equation for the kink of
the one-dimensional theory. The solution of this
equation which satisfies the boundary conditions
and vanishes at g =0 is unique:

cr(x) = o(g) =ftanh(2X)' 'f g.

Next, we attempt to solve the Dirac equation (1)
in the presence of this o field,

We construct an approximate solution valid as
6 -~, using a technique similar to one invented
by Chodos' to derive boundary conditions for the
Dirac field in the MIT bag theory. We expect that
the Dirac wave functions will fall off exponentially
away from the surface as -e" ' . It is clear that
such a 0 is not an analytic function of 1/G as
1/G-O. However, we can attempt to factor out
the essential singularity in 1/G and then expand
its coefficient in 1/G.

We write

e(u, ])=Neo~"" y(u g)+ —y, (u', &),

where F and g are independent of G, P and g, are
finite near )=0 as G-~, P+(1/G)g, is the begin-

ning of an expansion of the field in powers of 1/G.
Only the properties of the first term will be im-
portant, so we use simply the P, term to repre-
sent all higher-order corrections in 1/G.

Substituting this form in the Dirac equation (5),
we have

0 = —G cr(g) + ig g+ i P „—ig —g
dI"

d$ " 9$

This equation must be satisfied order by order
in 1/G. The equation for the coefficient of G is

ftanh(2X)'~'fg+ig g =0.

To have a nontrivial solution of this matrix equa-
tion for P requires

dI"

d&
= af tanh(2X)'~'fg.

The requirement that F decrease with
~

g
~

neces-
sitates that we take the minus sign above. We
have

is/=/
e'~ = [cosh(2X)'"fg] o~ ""

The equation between the terms of order unity
in (7) then becomes

Multiplying both sides by (1+i/) we find

(10)

where

k =- ps„(n~).

The quantity k depends on the surface geometry
alone. In Sec. IV we show that k is proportional
to the local mean curvature of the surface.

At g =0, where the g, term in (9) vanishes we
have

(is„+cia)y(u. , O) =0.

This reduced Dirac equation involves only the
behavior of P on the surface. This equation and
the equation of constraint, i'd(=(, completely
characterize the quark degrees of freedom of a
bubble in the strong-coupling limit.

Finally, we must show that the expressions we
have obtained do constitute an approximate solu-
tion to the field equations. We will be led to a
further equation of motion relating the surface
geometry of the bubble and the distribution of
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quark energy-momentum on it. This condition is
the generalization of the energy-minimization
principle used by BCDWY to determine the radius
of the spherically symmetric static state in Ref.
1. The detailed derivation of this condition is
straightforward but technically complicated. We
simply sketch the idea here and present the proof
in Appendix B.

Suppose we have fields o' and 4 in the neighbor-
hood of a bubble surface, such that

a(g) =ftarn(2~)'"fg,

e =N[cosh(2x)' 'ff] ~'"' y(u, $),

is(=(r) .

dg[cosh(2X)' 'f$] '

These fields will be approximate solutions to the
equations of motion in the strong-coupling limit
only if further corrections to them are of order
B/R. In Appendix B, these corrections are esti-
mated as follows: The action functional is ex-

panded quadratically about the classical fields 0

and O'. In principle, the resulting quadratic func-
tional can be minimized, and shifts in the fields
5o and M and the corresponding change in the
action 5S can be computed.

Because of the sharp gradients in the fields
near the bubble surface, variations of the fields
relative to this surface correspond to very-high-
frequency excitations which do not enter 6S to
lowest order in D/R. The only variations of the
fields which can cause a finite shift, 5S, are those
which correspond to a motion of the surface and
its associated fields as a whole. Only if the action
is already stationary to order D/R under such
variations will the fields 0', + be an approximate
solution to the Euler- Lagrange equations.

That is,

d x(c (ig —('a)4+ —'(Bv)' —x(g' f')'
(I=

0. —

(13)
The Lagrangian density in (13) is very sha, rply

peaked in the neighborhood of the bubble surface.
Thus, the integral over $ can be evaluated to low-
est order in D/R.

We have

+ 2[- n (2y)'~'f' sech'(2X)'~'f$]' —X[f' sech'(2X)' 'fg]'].

—i, +&i 2Z 'sech' 2X' '

da [II)(i)))'„+kiS))I) —C],
hyyertube

dg 2'' sech'(2X)'~'f $ = —,
' (2X)' 'f'.

F00

Thus we are led to a further equation of motion
in the form of a "surface action principle":

0 =5
!!~

da [/(i(f„+ big)g —C], (14)

where the variation is to be performed over all
possible bubble surfaces, R~(u ).

We note that the requirement that S be station-
ary under variations of the surface Dirac field
( leads to the correct surface Dirac equation (11).
Thus, the dynamics of bubble states in the strong-
coupling limit can be completely described in
terms of the geometric variables R"(u ), the sur-
face Dirac field g, and the finite coupling C. The

where da =element of surface "area" on the hyper-
tube and

Dirac field obeys the constraint if' = )I). The e(lua-
tions of motion for g and R~ may be derived from
the surface action principle (14).

These results may be easily understood physical-
ly. In the strong-coupling limit, only a very spe-
cial class of solutions to the field equations retain
low energy. The requirement that their energy
remain small forces these solutions to mimic,
locally, the one-dimensional kink. The only re-
maining degrees of freedom are those which de-
scribe how such kinks are patched together contin-
uously in spacetime [R~(u™)]and the quark distri-
bution among them [((u )].

IV. BUBBLE DYNAMICS

The three E(ls. (8), (11), and (14), completely
characterize bubble solutions to the BCDWY
field theory. In this section, we discuss some
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general properties of solutions to this system.
The most natural language for the description of
bubbles is that of the Riemannian geometry of
surfaces. We will introduce some basic geometric
notations and concepts in the following short dis-
cussion. The reader is referred to Appendix A
and the references contained therein for further
details.

The surfaces whose geometry is of interest here
are spatially closed (n —1)-dimensional timelike
hypertubes embedded in n-dimensional Minkowski
space. Such a surface may be parametrized by
n 1 "int-ernal" coordinates (u j.

Surface,
x" =B~(u ).

Our notation will be such that o.', P, y, 5 run
from 0 to n-2, while p, , v, g, o' run from 0 to n- l.
The choice of internal coordinates is arbitrary.
Therefore, physical quantities must be represented
by tensors that are manifestly "covariant" under
general coordinate transformations.

The fundamental tensors characteristic of the
surface geometry are as follows:

Tangent vectors,

Induced metric,

geo = ~u~a( =~a ' ~8~

Outzvard unit norv~aE,

n'(u ): n r =0, n'= —1;

Coefficients of curvature,

I., =-n T.I, =nI. v, =a...
where we adopt the notation

8A
In ruat

for any quantity A.
The induced metric tensor g z and its inverse

g ~ are used, in the usual way, to transform be-
tween the covariant and contravariant forms of
tensors. The metric is "induced" in the following
sense: If V~ is a tangent vector,

terms of which any Minkowski vector can be ex-
panded:

(7 l)aP (q )P nP nP —qP P

the Minkowski metric.
The tensor h z, called the "second fundamental

form, "describes the local curvature of the sur-
face. At any point, the principal values of h"Bare
the reciprocal radii of curvature of the sur-
face. Along a timelike direction, the reciprocal
radius of curvature is proportional to the normal
acceleration of the corresponding spatial surface
in its local rest frame. The quantity k is then

k=-,'&„„(n")=-,'(r ) &,n =-,'k

Thus, k is proportional to the mean curvature of
the surface at each point.

The flat Minkowski space induces natural laws
of parallel transport along such a surface both
for vectors and spinors. For a coordinate shift
5u~, these are

Vectors,

6V =-(, „jV'6u",

where the Christoffel symbol is
0.5( 8 yj= ag I.As I~ +ge' l 8

-A y I 5~ ~

Spinors,

Z

5P = 2o~'n„n„i~5-u" P.

The parallel-transport law for spinors is just
such that the quantity iP g parallel transports
as a vector. There exist corresponding "covari-
ant derivatives" of vectors and of spinors:

v"„,=v „+(,„jv,

A little algebra gives the following relations,
which will be of some use to us later:

@=@~7'™D= p'„+ k((,

~ „=(,",j~„+a,n,

Y (~=h gn.

the length of V' in Minkowski space can be written
in terms of its components as

v'v, =(v ~'„)(v'~,„)=g„,v v'= v"v. .
The invariant element of "area" on the surface is

da=d" 'uv Igl, g—=det(g ~).

The n vectors (r', n'j form a local "n-bein" in

V,«= (v'Igl V )i„ for any V .1
v'Ig I

Using this notation, the bubble equations of
motion can be rewritten

i(if= p,

iPg =0,

0
J

d" 'uv' lgl (PiQP C) =0. —

(16)

(17)

(18)
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The Dirac equation (17) has a clear interpreta-
tion as that of a free massless fermion confined
to a curved surface. The equation of constraint
(16) on the Dirac field is consistent with the equa-
tion of motion (17) by virtue of the relation f)g

The equation of motion arising from the variation
over R'(u ) is now straightforward to derive. For

Rv(u )-Rv(u )+SR'(u )

after using (16) and (17), we have

1
5(v' IgI (PiPg —C))= —T ~7'~ 5R~

R" -R~+ M~,

0-0+64,
then the current,

6K =T" rq~5R ——($y' 5P —6''"g),

is conserved:

0= - (o' IgI MC )( 5E
v' Ig I

The following are the symmetries, currents,
and conserved "charges" of the bubble:

Fermion number,
where

T ~=-Cg ~ —Impy' 8~(.

We shall see presently that T ~ is the canonical
energy-momentum tensor of the bubble.

The corresponding equation of motion is

0 = (v' Ig I
T~~rv )v' Ig I

8 IfM

= T~~ &~+6 T~~n~.
Ifo. g O.g

The tangential component of this equation, T ~I]

=0, follows from (17). This simply reflects the
fact that an infinitesimal tangential variation of
Rv(u ) is equivalent to an infinitesimal coordinate
transformation —the surface itself is unchanged.
The normal component of this equation provides
the third equation of motion in local form:

gR'=O,

5g = i6&—p,
Jot pftM q

Q = dZ v' Ig I J;
Energy -momentum,

5R" = constant,

5)=0,
Toff', Tog&g

j3 ~

P~= dZ &IgIT"

L orentz rotations,

i5R~ =i5co" R"
V

(2o)

(21)

h ~T~~=O. (19)

Accepting, for the moment, that T ~ is the
energy-momentum tensor of the theory, this equa-
tion has a simple physical interpretation. The
contraction of spatial components of h z and T ~

gives the net normal force density exerted on the
surface due to its stresses. The orthogonal time-
like component gives the rate of change of normal
momentum density. Equation (19) is nothing more
than Newton's second law on a relativistic hyper-
surface under stress.

The charge, momentum, and angular momentum
of the bubble may be expressed in terms of surface
fields. In the original field theory these quantities
are spatial integrals of densities which are very
sharply peaked at the bubble surface. As in the
case of the action, the integral over the normal
coordinate, $, can be performed explicitly, to
lowest order in D/R, leaving an expression which
involves only surface quantities.

An easier approach is to derive the conserved
charges directly from the surface action using
Noether's theorem. If the Lagrangian density is
invariant under a transformation

Motttv —RV+0tlt Rvgtt!1' + LP+tM pVv)q

(22)

W v'Igl~'"

The integrals above are to be taken over any
closed spacelike submanifold ("spacelike cut")
of the hypertube (Fig. 2). The differential d Z
is the oriented element of area defined by

dZ&, &xdu' '=d" 'I (no sum on n).
The theory we have developed is manifestly

Lorentz invariant and generally covariant. Math-
ematically, this is a trivial consequence of the
fact that all quantities are represented as tensors
under Lorentz transformations and under internal
coordinate transformations. We note that the spin-
or P is a spinor only in Minkowski space; it is a
scalar with respect to surface coordinate transfor-
mations. One immediate consequence of Lorentz
invariance is that static solutions, which have
zero spatial momentum, correspond to particles
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gyPg —$(f(RYP g~lk)g —J'&rA (23)

In contrast, the "axial-vector current" gy~y, P
is purely normal:

0 ' .0=0(-& ')y, 4=A-f, )W'. (24)

This axial-vector current cannot be "conserved"
in any sense in this theory, nor can a Lorentz-
and coordinate-invariant integral over it even be
defined. Every current constructed from the
Dirac field can be expressed in terms of the vector
and pseudoscalar currents. The expressions for
the standard currents are given in Table I. We
note that the scalar current vanishes, so that the
Lagrangian cannot be modified in such a way as
to give surface quarks an effective mass.

The generalization of the bubble equations to
the case of several independent quark species
is completely straightforward. Each quark field
appears in the action separately,

S = due'lg I .z .—C . 25
a

Therefore, each quark field obeys the equations
of motion (16) and (17), while the fermion contri-
bution to the stress tensor in (19) is the sum over
all species.

TABLE I. The Dirac currents on the bubble. The
condition (16' allows all Dirac currents to be expressed
in tertns of the tangent vector and pseudoscalar currents.

+=0 O'Y"0 —=~"7 „"

giy5$ =—P gy&y~f = —Pn~

q~pIjy gn(gP ~Ij ~lj ~P)n

of mass equal to their energy.
The conserved currents are tangential to the

surface at each point. This is a physically and
mathematically sensible result. If a current
had a normal component, one would hardly expect
that its charge could be conserved on the surface.
Mathematically, only a tangential current can be
integrated over a spacelike cut to produce a con-
served "charge." The condition which ensures
that the conserved currents are tangential is Eq.
(16). This equation of constraint on the Dirac
field severely restricts the possible fermionic
currents that can be constructed. Essentially,
we have a two-component fermion. From (16) and
the relation(ig, 7 )=0, we have

y'"~(=0 if n is even,

' P~~y g =0 if n is odd.

Thus, (16) guarantees that the usual fermion cur-
rent agrees with the Noether current derived
above:

In the bubble model of hadrons proposed by
BCDWY, strong color gauge interactions are in-
troduced which serve to unbind all states which
are not singlets under SU(3)„„,. The energy of
color-singlet states remains unmodified, at least
at the semiclassical level. Thus, the BCDWY
scheme is equivalent, for our purposes, to a bubble
theory of three independent quarks of different
colors with the additional selection rule that only
color-singlet bubble states are allowed.

Equations (16), (1V), and (19) give a complete
classical description of the dynamics of single-
bubble states of the BCDWY fieM theory in the
strong- coupling limit. These equations involve
only the surface geometry and surface quark
fields, and can be derived from the action principle
(14) with the constraint (16). The bubble theory
could have been formulated directly in terms of
surface quantities„without reference to the BCDWY
field theory. Such a canonical bubble theory shares
many qualitative features with the Nambu string
and MIT bag.

In three space dimensions, the string, bubble,
and bag theories consider, respectively, one-,
two-, or three-dimensional extended objects whose
geometric degrees of freedom contribute to the
action in proportion to the invariant "volume. "
Unlike the original Nambu string, the bubble
theory describes an extended object upon which
quarks are confined. ' Because the embedding of
the bubble surface in spacetime is nontrivial, the
surface is a dynamic object carrying energy-mo-
mentum in contrast to the geometric degrees of
freedom of the MIT bag.

Which, if any, of these theories may best serve
to describe hadronic structure is an important
question which will not be finally resolved here.

V. STATIC BUBBLE STATES

In this section and the next, we consider several
exact and approximate solutions to the bubble
equations (16), (lV) and (19). Before examining
these solutions in detail, it is important to re-
cognize the relevance of such solutions to a model
of hadron structure based on the bubble. The
semiclassical theory accounts approximately for
the quantum nature of the quarks. The bubble sur-
face motion is treated entirely classically. Clas-
sical surface motion is inconsistent in principle
with quantized Dirac fields. In practice, we will
see that the semiclassical theory has a continuous
spectrum of surface excitations and that, although
the theory is Poincarb invariant, the states of the
theory do not transform as irreducible "particle"
representations of the Poincarb group.

The bubble model of hadrons is developed from
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t'I

4 -g„
n' =(0,n(u')),

+ah c

Here„a, b, c,d, ...are spacelike internal coordi-
nate indices (1,... , n —2), while i,j,h, l, ...are
indices in Euclidean space (1, ... , n —1). g,~ is
the induced metric tensor on the spatial surface
R(u') and will be used to raise and lower indices
on spatial tensors.

By virtue of (16) we can write the Dirac field
in terms of a tw'o-component spinor, X.

(27)

where we have used the Dirac representation of
the y matrices. In terms of X, the Dirac equation
ls

IIX =EX,

with Hamiltonian

H=h- io'(nx V„).

(28)

a theory of SU(3) „,guarks trapped in bubbles.
Our goal in discussing solutions to the bubble equa-
tions is not so much to estimate hadron masses
in the theory as it is to investigate and character-
ize the physical properties of bubbles. We will,
therefore, consider, for the most part, only bub-
bles containing a single quark species.

This section is devoted to the analysis of static
solutions to the bubble equations in two and three
space dimensions. We find that all static solutions
in two space dimensions can be found. In two di-
mensions, the energy of bubble states is indepen-
dent of bubble shape. We also easily reproduce
the spherical three-dimensional solution obtained
in Ref. 1 by BCDWY. We consider the problem of
nonspherical static bubbles in three dimensions.
In such states, the quark is orbitally excited though
the surface remains static. It is found that the
surface is highly nonspherical even for the low-
est quark orbital excitations in three dimensions.
This is a reflection of a most important general
property of bu'&bles —they are extremely "soft"
to deformations.

In the case of a static surface, the geometric
forxnalism introduced in Sec. IV simplifies con-
siderably. Taking internal coordinates u' = t,
u', u', ... , u" ' we have

R'(t, u ) =(t, R(u')),

~;=(1,5), ~: =(0,~.),

The conserved currents of the theory can be writ-
ten in terms of X as follows:

Jo=XtX, 4'=Xtg (nx v')X,

T =C+SX X,

T ' =-Im(Xt&'X)+ 2h'~Z~,

Ti20 Eg a

T"=-Cg"+2h"X'X+Imxto ' (n && 7')O'X

The normalization of X is

Q= Idun tg~l X~X =1,

and the total energy is

U=
J

due (gl T"=E+CA. .

The requirement that the action (14) be station-
ary is equivalent to the condition that the total
energy, U, be stationary under all variations of
the spatial surface:

U=O
5R(u')

or

2Ch = —,(h'~h„)XtX+h, ~ImXto" (n x 7')8~X (2. 9)

The system of coupled equations (28) and (29)
is very difficult to solve exactly or approximately
in three dimensions. Before attacking the three-
dimensional problem it is instructive to consider
the two-dimensional case, where an exact general
solution is available.

In two space dimensions, the bubble is a closed
curve in the x-y plane (Fig. 3). We can choose
the single parameter describing this curve as its
length, l. Then

R =R(l),

dR
e = =unit tangent vector,

nxe=E.
The curvature is then

1 „ dn 1 d4
2 dl 2 dl '

where 4 is the angle of the normal with respect
to some fixed direction in the plane (Fig. 3).

The Dirac equation is

(
d4--- —ia —X =EX

2 dl ' dl

which may be integrated immediately to y1eld

X (l) = expI io,[E——,.'4(l) +-,'4 (0)]jX(0).
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X must be single valued, so we have

X (L) =X (0), where L = total length

or

2u~ =ZL —,'[C (L) —C (0)]=ZL —m,

where n is an integer. The Dirac energy is

ergy is, then,

Minimizing over L, we have

(30a)

(30b)

and the normalized Dirac wave function can be
written

X = exp(io, [Ef ——,'C (l) ]]u,

where u is a fixed unit spinor.
The Dirac energy depends only on the perimeter

of the bubble, L, not on its shape. There are
paired positive- and negative-energy levels of the
same magnitude. There is no zero-energy mode.
These results can be readily understood geome-
trically. A one-dimensional manifold has no in-
trinsic curvature; from the point of view of a
quark trapped on a curve, the geometry in the
neighborhood of any one point is equivalent to the
geometry in the neighborhood of any other point.
This leads to a "translation" invariance along the
curve. For spinors, this translation is realized
by parallel transport, under which the spinor
changes only in phase. The Dirac Hamiltonian
is just the generator of such translations. Be-
cause the quark has spin &, transport around a
closed path induces a phase factor -1, which
must be compensated by the factor e "~~~. Hence,
the energy cannot vanish.

We interpret negative-energy quark states as
positive-energy antiquarks. The local bubble en-

It is straightforward to check that, if L is chosen
to minimize U as above, Eq. (29) is satisfied at
each point on the bubble surface.

The two-dimensional bubble is then extremely
soft. Static bubble states occur only with peri-
meters fixed by the Dirac quantum number m;
but bubbles of all shapes with this perimeter are
degenerate classically. It is not to be expected
that a fully quantized theory will have such an
infinite degeneracy. ' The reflection of the bub-
ble's softness there lies in the large quantum
fluctuations of the surface. We shall see that the
three-dimensional bubble is also soft, but not so
soft that all shapes are degenerate.

We note that there is one conserved quantity
which does depend on the bubble shape. This is
the angular momentum, J„

J =M' = dl R'T" —RT~'~

where (l) and (2) refer to a spatial index, i.
Q~T"= Im io, (E —k) — + —,'(2k)u'o, u

g= —(o,), where (o,) =u'o, u.

Then

Z, = —(o,) df[R x e], = —(o,)A,

where 4 is the total area of the bubble, and, of
course, depends on its shape. Using the expres-
sion for E, we can rewrite this result:

n+dn

n =d$e or

n+dR

FIG. 3. The two-dimensional bubble.

The ratio Al[n'(Ll2m)'] is the ratio of the area of
the bubble to the maximum area it could have,
given perimeter L. The curve of maximum area
with fixed perimeter is unique —a circle. Thus,
the maximum possible angular momentum of a
state of energy U is

~(U') = U'.2 1
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Thus, the leading Regge trajectory of the two-
dimensional model is nondegenerate and linear
in (mass)' with slope (8') '.

Unfortunately, the static-bubble equations in
three dimensions are not so easily solved. The
only known exact solution is a spherically sym-
metric one corresponding to the approximate
solution of the field equations found by BCDWY.
Itis simply a very difficult technical problem to
simultaneously solve the Dirac equation and
satisfy the condition that the total energy by mini-
mal under all local variations of the surface. In
principle, however, one can find all solutions to
the static equations as follows: (1) Solve the
Dirac equation exactly on a general closed spatial
surface, R(M'). Because the surface is compact,
the Dirac spectrum is discrete and the energy
levels can be labeled by two discrete parameters,
rn„rn, such that the Dirac energy is a continuous
functional of the surface variables: E„,„,[R(u')].
(3) Choose which levels are to be occupied by
quarks or antiquarks. (3) Minimize the total-
energy functiona1.

(1 O)
g,~

—H, ( . , ), n= j(e, p),

1 1
~ab R gab ~

The two-component Dirac Hamiltonian is

1 . „1
H = — io ~-(r && v ) = —(1+ L ~ v) .

Its normalized eigenfunetions are

where P,.„is the Pauli wave function of spin j,m
and orbital angular momentum /, and the corre-
sponding Dirac energies are

~ ~

~ 1

if j=)+—,
'

E=(

U[R(u')] = CA[R(u')]+ Q E„,„,[R(u')]
occupied

levels

in the space of functions R(u').
Such a procedure is much too difficult to be

carried out in practice. It suggests, however,
a practical scheme for finding the energy levels
approximately. Namely, we attempt to carry out
the above procedure, not on a general surface,
but over a class of surfaces sufficiently limited
that the Dirac equation is tractable. We will
choose a form for the bubble surface that depends
on several real parameters, solve for the Dirac
energy as a function of these parameters, then
minimize the total energy over the parameters
that define the surface. Because the total-energy
functional is positive definite, such a variational
estimate of the energy is an upper bound on the
energy of the lowest bubble state with the assumed
Dirac quantum numbers m„m, . The accuracy of
such a variational estimate depends entirely on
whether the trial surfaces we consider are suffi-
ciently "near" the true solution. This in turn de-
pends, as a practical matter, on how well we
understand the character of the distortions of the
excited states of the theory.

We begin by considering the simplest possible
trial surface —a sphere. We rederive the BCDWY
solution of the static Euler Lagrange equations,
now expressed in the geometric language of
bubble theory. Let the sphere have radius R and
angular coordinates be given by the usual polar
angles 8, Q. Then we have

We interpret states with j = L+ —,
' as quarks, those

with j= l --,' as antiquarks. The total energy is

U= + C4mR
j+ 2

R

Minimizing over the parameter R, we have

&=(3«) "'(j+2)"'=&.(j+2)"',

U=
3 (j+-,')"' .

0

(33)

This gives the best approximation to the energy
of single-quark states with the quantum numbers
(j,m) over spherical surfaces.

The local equation for the minimization of the
total energy is

0= -k T" =h~T' =—&nB

E= outward normal force density.

For the spherical quark state (j,m),

(34)

This vanishes locally only if j = —,', so that 1Q' y, 1'
= 1/4n' is independent of 6, &f&. For j= —,', the solu-
tion obtained by varying over spherical trial sur-
faces is exact. In the bubble with j = —,', the net
surface tension vanishes locally. Physically, this
reflects the exact balance of the uniform surface
tension C and the uniform fermi pressure due to
the quark field.

For j& —'„ the surface tension and Fermi pres-
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j=3/2, m=3/2

(a)

~yof ooy~~y
~t ~o

~g ~0
~os ~ ~ ~~

] = 5/2, N = 5/2

sure balance only on the average; there is a
tension-induced normal force that will tend to
distort the surface from sphericity. From (34),
we see that this force tends to push the surface
out where the quark density is high, and allows
the surface to collapse where the quark density
is low (Fig.4). A particularly simple example is
the case of a quark of maximal z -component
angular momentum, m =j= l+-,'. The normal
force density is

SmC "' (1+1)(21+1)!!
l+ 1 (2l)!!

This is a force which is axially symmetric and
has a single peak in the equatorial plane. It will
tend to stretch the sphere at the equator and de-
press it at the poles. The force densities as-
sociated with quark states with ~m ~&j have one
or more azimuthal nodes, and tend to distort the
sphere to rather more complicated shapes.

The angular dependence of these force densities
on the sphere suggests the shapes we should use
for trial surfaces in a variational estimate of
excited-state energies. We note that, because
the force densities differ for spherical quark
states of the same j but different m, the surfaces
which actually minimize the total energy will

presumably be of different shapes. Thus, it
appears, the semiclassical spectrum will not
necessarily consist of (2j+ 1)-fold degenerate
levels corresponding to particle states of the same
j but varying m. This result, though disturbing,
is not terribly surprising. It is a consequence of
the semiclassical treatment of the surface degrees
of freedom. In a full quantum theory, the surfaces
corresponding to states of the same j but different
m will, because their shapes differ, have slightly
different energies associated with their quantum
fluctuations. This relative shift should precisely
cancel the semiclassical splitting, and restore
rotational invariance to the spectrum.

We will sidestep this problem by considering
only quark states corresponding to

~
m

~

=j, and
interpreting the resulting energies as estimates
of the energy of a multiplet of spin j. We can ad-
duce several arguments for this interpretation.
The surfaces corresponding to ~m ~=j states are
simple and smooth. Those corresponding to other
values of m will be complicated and "bumpy. "
As a practical matter, it is extremely difficult to
do the required variational calculations for sur-
faces of very complicated shapes. Further, be-
cause these surfaces are "bumpy, "we suspect
the effects of their quantum fluctuations to be
relatively more important than they are for
smoother surfaces. Thus, the most relatively
consistent way of neglecting quantum fluctuations
is to estimate the energies using states which have
smooth surfaces. Finally, as we shall see, the
effects of distortions of static surfaces are numer-
ically small for the low-lying excited states. In
no case will our variational estimate of the energy
of single-quark bubbles be more than 10% lower
than the value estimated from the sphere. Thus,
whatever approximation we make, we commit no
gross numerical error.

As a simple trial surface that is smooth and
flattened at the poles, consider the oblate spher-
oid:

R(8, p) =g(sin8cosp, sin8sinp, (1-d')"' cos8),
where

0(d &1 ~

j =5/2, m=3/2

(c)

j=7/2, m= 3/2

This surface depends on two parameters: R which
determines its over-all size, and d which deter-
mines shape. For d=0, the surface is a sphere.
As d increases from zero, the spheroid becomes
flatter and flatter, until at d = 1 it is an infinitely
thin "pancake. " The area of the spheroid is

FIG. 4. The normal force density on a spherical bubble
for various single-quark states. The dotted line is the
zero of force.

1+ — ln
1

4m
1 1-d2

The Hamiltonian of the surface is
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/

2(1 d-')' ' 1+, , -ipse ~ P —+i [cot8(costs, + sing o,) -g,(1-d')"']
2 3

Because the surface is axially symmetric, the
z component of angular momentum is conserved:

[H, J,]=0, where Z, = -i —+ —,'v, .

Thus, we can choose Dirac wave functions which
are eigenstates of J,.

The remaining diagonalization of the Hamilton-
ian must be done numerically. The level on the
spheroid which corresponds to j=m on the sphere
is simply the lowest positive-energy state in the
sector J,=m. We compute the total energy, U,
of a spheroidal bubble occupied by a single quark
of spin m, and minimize it over A at fixed d.
The ratio of this energy to the corresponding
energy estimate on the sphere,

U„(d)
(3/2R, ) (m + -')"'

is plotted as a function of d for m=-,' and m= —,
' in

Fig. 5.
We see immediately that, in both cases, the

total energy decreases monotonically as a function
of d. Indeed, these calculations show that the
energy of the spheroid is lowest in the limit where
it becomes a completely flattened disk. Despite
the fact that such a disk has very large curvature
at its edge, the Dirac energy remains small.
This result is actually quite general —the static
Dirac equation can be solved on surfaces with

sharp edges. In the limit that an edge becomes
infinitely sharp, the Dirac equation gives a bound-

I.OO

0.98

0.96

ary condition across the edge:

y(2) = exp[-(i /2)hp» ~ v] y(1), (36)

where n.p» is the vector rotation angle of the
normal at its discontinuity across the edge be-
tween surfaces 1 and 2 (Fig. 6).

The oblate spheroid is not an adequate trial sur-
face. It takes into account the tendency of the
surface to spread at the equator, but does not
allow for sufficient depression at the poles. We
note, however, that although the energy decreases
uniformly as the spheroid flattens, the numerical
size of the decrease is rather small. Even the
completely flattened disk has energy down by
less than 10% from that estimated on the sphere.

We want to find a trial surface which is both
spread at the equator and dips inward at the poles.
We could begin to consider surfaces that are de-
fined by three or more parameters, but it is com-
putationally more straightforward to continue to
work with two-parameter surfaces as long as
possible. A simple two-parameter surface in
which the region near the poles is completely de-
pressed is the torus (Fig. 7). This surface may
be regarded as one where the poles have dipped
in so far as to create a hole through the center.

We coordinatize the torus as follows:

R(8, Q) = b((y+ sin8) cosg, (y+ sin8)sing, cos8),

where

0&6 & 2m,

0&)&2m,

y&]

b is the radius of /he circular vertical cross sec-
tions of the torus; yb is the radius of the torus in
the x-y plane. The area of the torus is

~m 0.94

0.92

The surface Hamiltonian is

1 ~y+sin8 . - 8 i - 8H= — . —ia —+ . v ~ 8
b y ~ sinn sn y+sine sg) '

where

0.90

0.88 I I

0.2 0.4 0.6
d

0.8 I.O.

FIG. 5. p (d) for the oblate spheroid.

P= (-sing, cosQ, 0),

8 = (cos8 cosQ, cos8 sing, —sine) .
As before, J3= -ie/Bg+ —,'o, commutes with H, and
we can work in a sector of definite J,: J,=m. The
state corresponding to j =m on the sphere is again
the lowest positive-energy state in this sector.
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FIG. 6. Geometry at a sharp edge.
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This Hamiltonian must also be diagonalized
numerically. We compute the total energy, U,
of single-quark states with m = —,

' and m = —,', and
minimize over b at fixed y. The ratio

U.(r)
An(~ (3/~ )( )2/3

0.95—

090 I I I I I l I I

I 2

m=5
2

I I I I I I I I I I I I I I I i

is plotted versus y in Fig. 8. The minima of the
total energy in y are given in Table II. The energy
estimate of the m =-,' state is lower than the cor-
responding estimate on a flattened disk and sug-
gests that single-quark bubbles of spin —,

' and
larger will have a toroidal shape. The energy
estimate for the spin- —,

' bubble on the torus is
larger than the estimate on the flattened disk.
Presumably, the rn = ~ state is extremely depres-
sed at the poles but remains connected.

Despite the radical differences in their shape
and topology, we see that the energies of low-
lying single-quark states on spheres and on toruses
are not very different. We interpret this as a
reflection of the "softness" of the three-dimen-
sional bubble. This three-dimensional result is
analogous to the complete shape degeneracy of
the two-dimensional bubble. In order to estimate
static energies more accurately, we should con-
sider trial surfaces defined by more than two
adjustable parameters. As a practical matter,

FIG. 8. p (y) for the torus.

as long as we are interested in only the energies
of low-lying states, the computational difficulties
involved in such calculations are not justified by
the results we would hope to obtain. For single-
quark states of spin less than -'„we have seen
that the correction to the energy due to distortions
is less than 10%. For multiquark bubbles where
one or more quarks remain in the lowest state,
the effects are still smaller. Three quarks of
spin —,

' could combine to form baryonic states of
maximum spin ~. There are not yet observed
hadrons of such high spin, nor are the experi-
mental masses of the higher resonances known to
within 10%. We have neglected the effects of
SU(3) breaking, which must be sizeable in the
higher multiplets. Further, as we shall see in
the case of the radial mode, quantum fluctuations
may be expected to give corrections to the energy
levels at least as large as those due to static
distortions of the bubble shape.

TQP VI. RADIAL MODE

So far, we have not discussed either semiclas-
sical states in which the bubble surface is non-
triviaily time dependent or the effects of quantum
fluctuations of the surface on the spectrum. It
is quite difficult to find nonstatic solutions to the
bubble equations (16), (17), and (19). No general
prescription for quantizing the surface motion
exists.

In this section, we hope to shed some light on

SIDE
TABLE II. Energies on the torus.

FIG. 7. Coordinates on a torus.

2.09

4.04

p (v)

0.973

0.910
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these problems by studying the one class of non-
static bubbles in three dimensions for which an
exact semiclassical solution has been found. These
are spherically symmetric bubbles with a time-
dependent radius —the breathing modes. We first
exhibit the exact solutions of the semiclassical
equations. Then we "quantize" the set of all such
modes using the WEB approximation. . We will
see that the softness of the bubble is reflected
dynamically in the large size of quantum fluctua-
tions of its surface

We begin with the semiclassical time-dependent
equations of motion. Let us assume that there is
a solution of these equations whose surface is a
sphere of time-dependent radius A(t):

R"(t, ~, 0) =(t, A(t)&(~, 0)).
Defining

~ dA
A = = tanh(d(t)

dt

82 8

allows the wave function to be written

1
[4'(t )' cosh(u(t )]

'"
dt 1 1-&x exp -i —+ ((0 Qycosh(d 8 2

where u is a fixed two-component unit spinor.
We see that the Dirac equation is solvable ex-

actly for arbitrary R(t) E(lu.ation (19) will de-
termine which of these surfaces are actually al-
lowed dynamical states. Putting the solution for
(t into E(l. (19), we have

0 = 1 —R('d —8))CA'(1+ —,'R(d).

This equation can be more simply expressed in
rescaled variables

we have

1
cosh2%

Ao= (SnC) " ',
t =78,
A(t) =p(~)R..

We have

0

8' sin6
cosh~ '

0 -8 sin8 d(d 1 —p' dp—=p = tanhe.dr p(1+-,'p') ' dv

This can be integrated once to give

n" =(sinh(d, cosh(d r), 21 2
(( ~*)" &

' )' (37)

cosh

cosh(d
A

where & is a constant. A straightforward inte-
gration of the energy density shows that the total
energy is

cosh(d

whose integral is

E(t)= exp(- f dt, )E(0)

R(0)[cosh&a(0)]'t'
R(t )[cosh')(t)]'i' dt, FO.k

cosh2~

The normalization condition

We take a form for the Dirac field that has
L =0 and automatically satisfies (16):

('= p- ((+((()( )
where F(t) is some two-component spinor. The
Dirac equation becomes

k
E(t) = —,(i+ sinh~)E(0),cosh2u

Thus, & is the total energy of the radial mode
measured in units of the static-ground-state ener-
gy.

If & = 1, we recover the static solution: p = 1,
p =0. For «1, there are no solutions. For each
&& 1, there exists a uni(lue solution in which p(T)
is periodic, with turning points determined by

2 1&= —+ sp'
3p

The equation for p is similar to that for a relativ-
istic particle in a scalar potential

v(P) = —+ ', p', —
3p

shown in Fig. 9.
We note that the total energy is continuous. As

mentioned in Sec. V, this is an effect due to the
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"jmax 2=2 E — —+ 3pn
~p . p

(36)

This equation can be easily solved numerically.
The first few values of &„and the corresponding
turning points are given in Table III.

In the lowest state, n =0, we see that the effects
of surface zero-point motion are very large. The
radius fluctuates by a factor of 2 about its static
value. The energy in the surface excitation is
60%%uo of the static-ground-state energy. This is
a quite dramatic illustration of the softness of
the bubble dynamically and suggests that if fluctu-

RADIAL POTENTIAL
I I I

I
I I I I

I
I I I I

5.0—

2.5—

classical treatment of the surface degrees of free-
dom. In order to get some idea of the level struc-
ture of the radial modes, we quantize this ex-
citation in the WEB approximation.

We treat the equation for p as if it were, indeed,
the equation of motion of a relativistic particle
in a potential. We take the expression for the
total energy (37) to be the Hamiltonian

21 2

(( 8)" s-o
' )'

The most general Lagrangian from which this
H could have been derived is

&(vP)= -((, ~')'" (—+-'~)+f(~)A

where f(p) is some undetermined function. The
canonical momentum conjugate to p is

P 2
+ —.~')+f(a)1-p j Sp

The WKB approximation gives the discrete energy
levels from the quantization condition

2n'(n+ —,') = (t'„„,(Pdp

ations are properly accounted for, the bubble will
be quite smeared out in space.

The n =1 state is the lowest radial excitation of
the bubble. Its energy is a factor e, /&o=1. 60
higher than that of the ground state. It is easy
to convince oneself that, in the case where sev-
eral quarks occupy the l.owest level in the bubble,
all the energies of the radial mode simply re-
scale. Thus, the model predicts radial excita-
tions of baryons and mesons with energies 1.6
times higher than the ground-state energies.

No radially excited meson candidates have been
confirmed experimentally. There is, however,
a presumed radial. excitation of the nucleon —the
Hoper resonance —of mass 1470 MeV. We note
that 1470/940 =1.56. In the face of our inability
to derive solid numerical predictions of excited-
state masses, this is a pleasing bit of numerology.

VII. SUMMARY AND CONCLUSIONS

The principal result of this paper is that the
low-lying bound states of the semiclassical
BCDWY field theory can be completely charac-
terized in the infinitely strong-coupling limit by
the geometric theory of bubbles. The nontrivial.
field degrees of freedom describing such states
are equival. ent to the geometric variables de-
fining the bubble surface and a set of quark fields
defined on it.

The Euler-Lagrange equations of the field theory
go over to the equations of bubble dynamics which
can be as well derived from the surface action
principle (14) with the constraint (16). The theory
of bubbles is classically Poincarl invariant. The
conserved charges derived from the action prin-
ciple agree, in the strong-coupling limit, with
those of the original field theory.

We have examined several exact and approximate
solutions to the semiclassical. bubble equations.
The most important physical property of bubbles
which emerges from this work is their softness.
This property is reflected for static bubbles in
the small cost in energy for large deformations
of the bubble shape. Bubbles in two space di-
mensions are degenerate over all shapes of given
perimeter. Even the lowest excited static bubbles

2.0—

I .5
TABLE III. Excitation energies and turning points for

the radial mode.

I.O—
-t I I I I I I I I

0 I 2

FIG. 9. The scaled radial potential.
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in three dimensions are highly distorted from
sphericity. The softness of the bubble is reflected
dynamical. l.y in the large size of the estimated
quantum fluctuations of the bubble surface as seen
in the example of the radial mode.

In this paper, we have not seriously attempted
to compute the hadronic spectrum in the bubble
model and to confront experiment. The principal
obstacle to such a procedure is the absence of
a fully quantized theory of the bubble. The in-
dication from the WEB quantization of the radial
mode is that the inclusion of quantum fluctuations
is essential to the calculation of masses as func-
tions of the coupling C. It may be hoped that the
static semiclassical spectrum gives an indication
of the relative levels of excited states, but there
is presently no compelling argument that such is
the case.

In principle, there are two routes to a quantum
theory of the bubble. One is to go back to the
quantum field theory defined by the BCDWY La-
grangian and look for low-lying states in the
strong-coupling limit. ' The other is to begin
with the classical bubble theory we have developed
and attempt to quantize it. At this moment, neither
approach has been sufficiently successful to allow
for systematic calculation of the quantum spectrum
of bubble states in three dimensions. Indeed, it
is not immediately evident that the quantization
scheme of the classical bubble theory which is
free of anomalies exists, or whether, if it exists,
it is equivalent to the strong-coupling limit of
the quantum BCDWY field theory.

We remark that the explicit quantization of the
bubble theory in two space dimensions and one
time dimension is possible. In this context, some
of the problems related to the more general ques-
tions of quantization can be intelligently discus-
sed. '

Accepting for the moment that a quantum theory
of bubbles can be constructed, the softness which
we have seen is characteristic of the semiclassical
theory has important implications. The softness
of the bubble suggests that quantum fluctuations
of the surface wil. l. be large and have the effect
of smearing the sharp classical energy-momen-
tum and charge distributions of the classical
theory over a finite volume of space. One might
expect that, unlike the form factor of a shel. l of
charge, the form factors of hadronic states will
be smoothly falling functions of q'. The softness
of the bubble affords a qualitative explanation of
how scaling might occur in the bubble model. A
quark is free to move tangentially to the bubble
surface. Because the bubble surface is easily
deformed, a quark is nearly free to move normal
to the bubble surface by dragging that surface

along with it. Thus it need not be surprising if,
at large momentum transfers, a quark trapped
in a bubble appears to be a free particle.

It is to be hoped that such simple intuitive pic-
tures of hadron dynamics in this model. ean be
supported by calculations with which one might
hope to confront experiment.
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APPENDIX A

n"' =7""V"—n"n', (A1)

allows us to transform between the intrinsic and
external description of geometric objects.

As a Riemannian manifold, the surface is char-
acterized by g„8. Its embedding in Q is charac-
terized in the intrinsic description by the coeffi-
cients of curvature, h„8. The Gauss-Codazzi
theorem states the relation between the fundamen-
tal forms g„8, k 8 and the embedding of the sur-
face in Q.

There exists a unique (up to Lorentz transforma-
tions) surface in 0 whose induced metric is g„s
and whose coefficients of curvature are h„8 if and
only if

A„8 g
——h„h8g- h~gh8

~n81ly ~0(,yll8 ~

(A2)

where R„8 ~ is the Riemann curvature tensor de-
fined from g„8 and its derivatives.

In principle, the bubble theory can be discussed
purely in terms of tensors in U as long as we ap-

The description of the bubble surface developed
in Sec. IV characterizes its geometry both in
terms of intrinsic geometry objects (e.g. , g„a, @„8)
existing in the local tangent spaces to the coordi-
nate manifold U =(u"j, and in terms of the em-
bedding of the surface in Minkowski space, Q.
In this appendix, we briefly discuss some aspects
of the relation of these two points of view. The
discussion is quite standard' "and is included
for completeness only.

Locally, the connection between intrinsic geo-
metric quantities and Minkowski space is described
by vj„" and nj'. 7" is a mixed tensor —it transforms
as a vector in U and independently as a vector in

Q. nj" is a scalar in U and a vector in Q.
The completeness relation for the local basis

7",n" of Q,
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pend the Gauss-Codazzi equations to the equations
of motion. In this approach, the geometric vari-
ables are g„&,8 8 rather than R" (u"). Such an ap-
proach is extremely difficult in practice, as the
equations are highly nonlinear.

The parallel-transport laws of spinors and vec-
tors introduced in Sec. IV are quite natural when
viewed from Minkowski space. If V" is a tangent
vector field

V" =(V v")r"„, (AS)

u"-u +&u

V~ -V" +n~ (5n V) .
Then

= &7" V+7" &V

(A4)

which is identical to the usual parallel transport
on a Riemannian manifold.

The spinor fields which we consider are spinors
only in 0; they are scalars in U. The parallel-
transport law we have assumed for spinors is

(A5)&P=-—o"'n 6n P.p V ~

Under parallel transport, a spinor field is ro-
tated by the same Lorentz rotation suffered by a

then the natural parallel transport of V" is to slide
V~ along the surface while preserving its length,
for

tangent vector transported along the same path.
Finally, we note the form of conservation laws

in a curved space. If K" is a vector field, E is
locally conserved if

0 =K"~~„=K")„+(~",)K'

(0 I gl K"))
1

Then the charge defined by

Q = ~t d&„d I glK"
J spacelike

cut

is conserved. A tensor field W 8 satisfying
W"8~~~ =0 does not, in general, lead to a conserved
vector charge.

APPENDIX 8

In this appendix, we present a more detailed
discussion of fields op and 4p, constructed in Sec.
II, and show they are good approximate solutions
to the Euler-Lagrange equations (1) and (2) in the
strong-coupling limit. The proof proceeds along
the following lines.

Solutions to the Euler-Lagrange equations are
local extrema of the action functional in function
space. If cr„4p is a good approximate solution,
there will be a true extremum of the action in the
neighborhood of vp, 4p. In this neighborhood, we
may expand the action functional to second order
in deviations about o„@p:

S[o,+ &o, 4, + &0 ] = S[oo, 4', ] +&S,

&S = dx J4v+g&%+&4g

+ dx —,
' 8&0 ' —2~ 3o,' — 2 ~cr '+&4 i —Qa, &4 —Q&o &44 +4,~4

where

(a) J =—-[8'oo +4k oo(ao' —f'}+ G@04',]

and

The deviation of the true solution from vp 4p
may be estimated as the position of the extremum
of the quadratically expanded functional (81) if
&o and &4' are, indeed, small. The equations that
must be satisfied by &o and &4 are simply the
first-order corrections to the Euler-Lagrange
equations:

If 0'p +p were exact solutions, ~ and g would van-
ish and, therefore, &a and &4 would also vanish.

We prove the following theorem.
If o, (x), 40(x) are chosen to satisfy

(a) o,(x) =f tanh(2X)~' f $

(b) C, (x) =a[cosh(2A. )'+f g] " ' g, (u", g),

(c) ~Ho=40~

(d) (iP', ~+kig)&, =0,

(b) (iy'- Go, )54 —G5o%, =-q,
for which the shift in the action is (f) h„8(Cg"8 —Impy'"88$, )~ & 0=0,
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for spacetime coordinates x"(u", g}=R"(u")+ $n"
about some bubble, then the corrections &a, &0

computed in (BS) are small in the sense that they
induce a correction &S which vanishes in the
strong-coupling limit.

The size of &S may be estimated by a detailed
examination of Eqs. (BS) and (B4). We will classi-
fy the behavior of quantities in the strong-coupling
limit by giving their power dependence in f. For
example, we write

For convenience, we take 6-2)&; this choice sim-
plifies the discussion, but is not essential.

The currents J, q computed from (B2) and (B5)
are

(a) J(x) = 2 (2A.)'~f'[0 + O(E, )]sech'[(2A. )~'f g]

(b) q(x) =N[cosh(2$) ~2yg]

x[5(-2& '&~g —ih"'f ss)4+O(5')].
Both J and g are nonzero only in a thin shell
(
f~&D-f'. Inside this region,

(a) ~-f,

(B6)

That is, in the strong-coupling limit, the leading
terms in 5&r and M must be of orders I/f and I/f'
for &S to be nonvanishing. Below we show that
no such leading terms arise.

The shifts &o, &0 are not uniquely determined by
Eqs. (B3) alone. To any given solution of (BS) a
solution to the corresponding homogeneous equa-
tions [(BS}with J' and q set to zero] can be added.

(b) q-i.
The leading terms in J and q arise from the cross
terms between normal and tangential derivatives
in the field equations. If the normal direction
were the only one, the solution to the equations of
motion would be exact.

Because J and q cut off sharply in $, we need
only determine 5a and 54' in the thin shell

~
E~&D

in order to estimate 5$. If the integral (B4) for 58
is to remain nonzero as f -0, we must have, in
the thin shell,

(a} 5g z —,1

(b) 5212 2 1

This ambiguity corresponds to the possible trans-
lations along the surface in function space of all
exact solutions to the Euler-Lagrange equations.
Here we are interested not in such translations
but rather in those solutions to (B3) which vanish
as J,g-0. We may pick out such solutions by
imposing the boundary condition that &0, &4- 0
where J,g-0. That is, &o', &4 vanish rapidly for

Now, consider the behavior of the terms in (BS)
as f -0. We note that, by the boundary conditions
and the fact that J, q are of width I/& 'f, s/s)
-A.''f on 5v or 5212, while 5/Su -finite.

We have for the various terms which arise in
(B4a):

G4,&4- 1

8'&o 1
52) f5 2

e(x 1
Bu" 8$ f' '

4A. (Sv,' —f')5v- 1

while
1J~

It is straightforward to show that the terms of
order I/f', 1/f', 1/f' cancel only if the leading
terms 5a(u", $), 5212(u", $) satisfy

%,M =0 or i/5% =521, (Ba)

5v(u", $) =p{)(u")e ' a'(g), (B9)
where p, (u") is finite in the strong-coupling limit
and is determined by the details of the I/f terms
on both sides of (BSa).

Similarly, using (B9}, the consistency of the
Dirac equation as f -0 requires

=N[cosh(2A. )'+f g]

x [-Gp.(u")~(&N.(u") +54,],
where 5$, (u", $) and its derivatives with respect
to g are finite as f -0. 5g, is determined by the
detailed form of q.

We may now put (B9) and (B10)back into Eq.
(B4) for 5S, keeping only the terms which give
finite contributions to 6 S in the strong-coupling
limit:

—,'J(defies= —'J(ds~(224ef'2ses2'{{2l)''/2]p {s")= J ds2{:2p {s"),

—,
'

~
dadE(@5@+54@)= JI dad(N'[cosh(2a)~'f ]] 'G ""' ( Re[5), —Gp, o(E){I)0](-i@"Sfs8+-,'h„sh"s)&0

(B11)

dad)N2[cosh(2A)~'f $] a ' ~'
$ 1m[57{), —Qpoa(g)g ](h"~f„s8){|) . (B12)
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Now, if F(F) is any function with finite derivatives in $, we have

d)N [cosh(2&) f $] a & ~~ $F($) F(g)/WXf .

Thus, the 5g, term in (B12) does not give a finite contribution to &S. Further, we have

d)N'[cosh(2A)"f t'] 'a "~' (GaF(g) = d$ gF(() —— fN'[cosh(2A)+f g] 'a ""' $
4 2 sg

= ~" d $-,'F(0)N'[cosh(2&)+f g]
'ahm"' =-,'F(0) .

Combining (B12) and (B13), we have

(B13}

—,
'

J
dx(@&4'+ &%@)= Jl da[-—,'po(u")h„e imgog" 88),].

So the finite contribution to &S is

&S =-, da po(u")h„8(Cg" —Imps"s p)
4

dap u" h ST"8

=0.
Thus, corrections lead to no shift which remains finite in the strong-coupling limit. Q.E.D.

(B14)
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