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Two-dimensional Yang-Mills theory: A model of quark confinements
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We analyze the structure of two-dimensional Yang-Mills theory as a model of quark confinement. 't Hooft's
solution, in the large-N limit, is extended to investigate the consistency and the properties of the model. We con-
struct the hadronic color singlet bound-state scattering amplitudes. We show that they are unitary, that colored
states cannot be produced, and that all long-range interactions are absent. Current amplitudes are constructed,
and we show that the theory is asymptotically free and the quark mass sets the scale of mass corrections. The
properties of bound states of heavy quarks are discussed, and a dynamical basis for the Okubo-Zweig-Iizuka
rule is suggested. We show how confinement can occur with an infrared prescription that leads to finite-mass
quarks which decouple from physical states and discuss the dependence of gauge-variant amplitudes on the
cutoff procedure. Higher-order effects in 1 tN are shown not tc change the qualitative features of the model.

I. INTRODUCTION

Surely the central problem of particle physics
is why quarks are not observed as physical states.
One: of the standard answers is that the quarks
are "confined. " The most popular quark model
assumes that the quarks possess a hidden SU(3)
symmetry, color, ' and physical states consist
solely of color singlets. ' One of the ideas put for-
ward to explain confinement arises in the context
of asymptotically free gauge theories of the strong
interactions. '4 These theories appear to be
unique in their ability to explain why hadrons ap-
pear to consist of quarks at short distances. At
the same time they contain a mechanism for the
dynamical confinement of quarks. It has been
suggested'' that the severe infrared behavior of
these gauge theories at large distances might pro-
vide the strong forces necessary for confinement.
This mechanism has been called "infrared slav-
ery. "

Confirmation of this hypothesis is an extremely
difficult problem for a realistic four-dimensional
gauge theory. A simpler approach would be to
find a model field theory, simple enough to solve,
but sufficiently nontrivial to test whether confine-
ment is a viable concept. Two-dimensional Yang-
Mills theory appears to be ideal in this respect.
The theory is certainly asymptotically free, since
it is superrenormalizable. Furthermore, it is
manifestly "infrared enslaving, " even in pertur-
bation theory, because the Coulomb potential in
two dimensions increases linearly for large spa-
tial separations. This is to be contrasted with
four-dimensional gauge theories, where the con-
jectured' strong forces at large distances must
arise from nonperturbative renormalization ef-
fects. If there is any hope for infrared slavery
as a confinement mechanism it must be present

in two dimensions. On the other hand, two-di-
mensional Yang-Mills theory is highly nontrivial,
in contrast with two-dimensional quantum elec-
trodynamics, which indeed confines quarks' but
does not provide a model of hadrons.

't Hooft has proposed an expansion of SU(N)
gauge theories in powers of 1/N, ' which is power-
ful enough that one can explicitly solve two-di-
mensional Yang-Mills theories to leading order
in 1/N. ' In this theory 't Hooft has demonstrated
that the quarks are effectively removed from the
physical spectrum, whereas there exist an infi-
nite number of quark-antiquark (color singlet)
bound states with finite masses.

In this paper we shall expand in some detail on
't Hooft's solution of two-dimensional Yang-Mills
theory. Our aim is twofold. First we wish to
check the consistency of the model. Does it sat-
isfy the physical requirements of a sensible the-
ory: unitarity, analyticity, current conservation,
etc. ? Do the quarks, which have been removed
from the physical spectrum, reveal themselves in
the short-distance behavior of the theory? Is the
confinement found by 't Hooft independent of how
one introduces the infrared cutoff? Are the qual-
itative features of the model preserved in higher
orders in the 1/N expansion?

Our answer to all of these questions is yes.
This then lends credence to the conjecture that
infrared slavery can produce a consistent theory
in which there exist bound states of constituent
quarks and gluons which themselves cannot be
produced as physical states. In addition the mod-
el can serve as a laboratory to test various ideas
about realistic confining theories. Of course in
two space-time dimensions there are many things
one cannot discuss (Regge behavior, large-angle
scattering, etc.). However, one can discuss such
questions as the nature of hadronic scattering
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amplitudes, the approach to scaling at short dis-
tances, the properties of bound states of heavy
quarks ("charmonium"), ' the meaning and validity
of the Okubo-Zweig-Iizuka (OZI) rule" and the
mechanism for dynamical chiral-symmetry break-
ing.

This paper is organized in the following way.
In Sec. II we review 't Hooft's solution and extend
it to construct the full quark-antiquark scattering
amplitude. In addition we summarize the features
of the model and the results of our investigation.
Explicit details are provided in the following sec-
tions.

In Sec. III we discuss the multi-bound-state
scattering amplitudes, prove unitarity and the
absence of long-range forces between hadronic
states. Section IV is directed to a discussion of
the properties of vector current amplitudes, and
the short-distance behavior of the theory. In Sec.
V we discuss scalar and pseudoscalar densities.
In Sec. VI we discuss some of the insights into the
theory obtained by treating the model with another,
"regular, "cutoff procedure. In Sec. VII we in-
vestigate heavy quark bound states and their decay.
Section VIII consists of a discussion of higher-
order corrections.

II. THE STRUCTURE OF TWO-DIMENSIONAL
YANG-MILLS THEORY

A. The model

The model we shall consider consists of M
quarks interacting via an SU(N) color gauge group.
The Lagrangian for this two-dimensional theory
1s

2 = —' Gu, (' G"")' +q "(ir"Du-m, ) q';

where

A. ~'„ is set equal to zero. The advantages of such
a gauge are as follows: (I) There are no ghosts
in such a linear gauge. (2) There are no nonlinear
interactions between the gauge mesons. The sim-
plest of such gauges is the "light-cone gauge, "
where, following Ref. 8, we set

A = (A, -A, ) =A'=0 .1

We use the standard light-cone coordinates:

x'=x~ =~ (x +x'), a b =a, b'+a b =a, b +a b, ,

(4)

The Feynman rules are represented in Fig. 1.
Two-dimensional gauge theories are extremely

infrared singular. This is compounded in the
light-cone gauge where the A'

&
propagator [sup-

pressing SU(XI indicesj is i/q —' One.therefore
must introduce an infrared cutoff. The nature of
the infrared cutoff, as well as the choice of gauge,
should be irrelevant in the evaluation of matrix
elements of gauge-invariant operators, since these
are free of infrared singularities. However, this
must be checked explicitly. We shall, following
't Hooft, remove the infrared singularities by
drilling a hole in g space, about q =0, restrict-
ing (q ~

~ A. . One then must check that Green's
functions of gauge-invariant operators are indepen-
dent of ~ as X-0. We also note that both the light-
cone gauge and the cutoff procedure are mani-
festly Lorentz-invariant, since under a boost Q'

simply scales. On the other hand, parity invari-
ance is not a property of this gauge and cutoff
procedure. All gauge-invariant quantities, in-
cluding the S matrix, should nonetheless manifest

Gu~~~ SuA~~~ BUA~~u+ @[Au A

D~&c ~u~& +g

(2a)

(2b)

—I

2
q

A;~u(x) =A('u(x) ——5 A»'u(x) =-A,*.„' (x), (2c)

s, g=1, 2, . . . , E, a=1, 2, . . . , M. (2d)

We differ slightly from Ref. 8 by taking the gauge
group to be SU(N) instead of U(N). Thus in the
above Lagrangian the U(N) singlet, A» decouples
and describes a free field. To leading order in
I/N this distinction is immaterial, but in higher
orders it is important. The Abelian charge of a
U(N) gauge model cannot, of course, be confined.
In the real world one would set %=3.

Two-dimensional gauge theories are particu-
larly simple in gauges where some component of

I
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FIG. I. Feynman rules.
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parity invariance. To show this explicitly is one
of the more challenging problems of this model.

The confinement mechanism is particularly
transparent with the above infrared-cutoff pro-
cedure. The poles in the quark propagator are
pushed to infinity as X-O, thus removing colored
states from the physical spectrum, whereas color
singlet bound-state masses are independent of A..
On the other hand, one can define the gluon prop-
agator with a principal-value prescription and
avoid infrared infinities altogether. " With this
procedure confinement is much less transparent.
The properties of the gauge-variant sector are
quite different. For example, the quark propa-
gator has a pole at a finite mass. We have in-
vestigated this cutoff procedure and will show how

the properties of the gauge-invariant sector re™
main unchanged in Sec. VI.

It is unlikely that two-dimensional Yang-Mills
theories can be solved without recourse to per-
turbation theory. However, ordinary perturbation
theory is of little value in discussing the spec-
trum and infrared properties of a non-Abelian
gauge theory. A more useful expansion is the
"large-N expansion" which will be employed in
this paper. One expands Green's functions in pow-
ers of 1/N, summing io all order in g'N. This
type of expansion, which has proved extremely
useful in other field-theoretic models, has none
of the obvious limitations of ordinary perturbation
theory. 't Hooft has shown' that the Feynman dia-
grams of a non-Abelian gauge theory in the large-
N limit exhibit a striking topological character.
The dominant diagrams in this limit consist solely
of planar diagrams with quarks at the edges. No
fermion loops can occur at lowest order. Noting
the analogy with the topological structure of the
dual resonance string model he has suggested that
the large-N limit of a four-dimensional gauge the-
ory might provide a dynamical basis for the string
model. The two-dimensional Yang-Mills theory,
in the light-cone gauge, is especially simple,
since the role of the gluons is merely to provide
an instantaneous Coulomb force between the quarks
and since one can, in the large-N limit, neglect
pair creation. Most important, there is no ver-
tex correction or correction to the gluon propa-
gator in leading order. Examples of Feynman
diagrams contributing to the quark propagator and
the quark-antiquark scattering amplitude are illus-
trated in Fig. 2.

It is an important question whether nonleading
orders in 1/N can alter the qualitative features of
the model. We have investigated the next-to-lead-
ing order in 1/N. We find enormous simplifica-
tion due to the fact that the lowest-order theory
already confines quarks. For example, we find

FIG. 2. Examples of leading-order graphs in the large-
N limit.

that the gluon propagator is unchanged to order
1/N Our co.nclusion is that there are no qualita-
tive changes due to higher-order corrections, and
the 1/N expansion is indeed trustworthy. These
corrections will be discussed in greater depth in
Sec. VIII.

The quark propagator, S(P), satisfies the fol-
lowing integral equation in the large-N limit:

s '())+a'())-m) ag'Nf, e(llc=)'—x)y

xS(p+K) y (K )
' .

This equation was solved by 't Hooft,

imp y, +y [P, -(g'N/2v) (sgnp /" —1/P-)1+m. )
2p, p -(g'N/3)((p ~/Z-1) m, ' z +-e

and exhibits the infinite self-energy of the quarks
(as A. -0) which eliminates them from the physical
spectrum.

't Hooft' has solved the homogeneous Bethe-
Salpeter equation for quark-antiquark scattering,
and showed that the spectrum is discrete. We
shall require the full quark-antiquark scattering
amplitude, T„B &q(P, P', r), which satisfies the
following equation in the large N-limit (see Fig. 3)
[SU(N) and SU(M) indices have been suppressed]:

2

~ 8, ) ~(P, P';&) =
(p p, ), (r )y(r )8~--

(r-) &(y-)sx
S(K)(2w)' (K —p )'

xS(K —r))) T))~, ) s(K~ p') r) .
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Since y ' =0, it follows that T 8 z(, =(y }„z(y }()(;T(p,p'; r), and S(K) can be replaced in Eq. (7) by

2p, —(g'N/v) [1/p —sgn(p )/x] —(I' —i e)/p
(8)

Since the interaction is instantaneous this equation can be solved by introducing

P(P, P';r) = JdP S (P)S (P —r) T(P, P'; r),

from which we can construct T(P, P'; r):
ig' ig'N dk p(k, p';r)

1 1 {P Pl )2 2 (k p )2 (9)

It then follows that Q(P, P'; r) satisfies the equation [m, (m, ) is the mass of the quark (antiquark)]

(
m, '- g'N/w mb2 —g'N/w 2g'N

+ + —2r, p(p', p; r)

(10)

Owing to our infrared-cutoff procedure the integral in Eq. (10) is to be regarded as

Therefore, it is evident that the infrared (I/&) singularities in Eq. (10) cancel. Furthermore, @ depends
only on x=P /r, x'=P'/r, and r, and vanishes for x and x' outside the range 0 to 1. We can therefore
rewrite (10) in the form

Nr (x x)'' x '1 x "", (x-y)'

where

't Hooft' has discussed the solutions of the homo-
geneous equation

H(P(, (x) = p, '(I)„(x)= —' + — '
(Ie)„(x)x 1 —x

which have the following properties:
1. II is positive-definite and self-adjoint on the

space of functions which vanish at x = 0 [x = 1] like
x8' [(1—x) ~(], where w P, cot(8, w = 1 —y, .

2. II has only a discrete spectrum. The eigen-
functions Q, are complete and orthogonal:

~ x ~
x' =& x- x'

'
[4«(x}—Aa(S) ]d&

(x- y)'
I
Q„*(p„dx= &„„.

0

r-p
b

r-p r-p
b b

r-p
b

3. When m, =m& =0 the ground state has zero
energy. The corresponding eigenfunction is
Q,(x) =1 [HP, (x) =0].

4. The following identity, which mill prove use-
ful later, is easily proved:

dx px = dx Ax —+ (15)

p
Q

r-p
b

k

0 ~S

~I Ji
r -k

S
b

Ir-p

5. For large k (large energy) the eigenfunctions
can be approximated by

P(,(x) = )( 2 sinvkx,

FIG. 3. Bethe-Salpeter equation for quark-quark
scattering amplitude. p.

' —m'k .

k»1
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It is now straightforward to construct P(x, x'; r),

~ (r' —r, ') r, (y- x')' (17}

and the quark-antiquark scattering amplitude

x .x 2g g N gx1-x +
X y -1+ya-1

p„2 (18)

where we have used the homogeneous equation (14) to define P,(x) for x & 1 or x &0.
The dynamics of confinement is now clear. The infinite self-mass of the quark is canceled by the quark-

antiquark interaction —producing an infinite number of color singlet bound states, whose mass squared
increases linearly for large mass. There are no continuum states in the quark-antiquark amplitude —only
bound states at r' =x,', whose residue yields the normalized bound-state wave function

a I 2g N ~ ya 1 y&
—1

4 „'"(x)= — y„(x) 8(x(1 —x)}+ ' + (19)

where x is the fraction of the total momentum (r )
of the bound state carried by the quark.

We note that the bound-state wave function is of
order 1/A. as A-0. The fact that the amplitude for
a bound state to decay into quarks is infinite as
A. -0 compenstates for the vanishing quark prop-
agator in this limit to produce finite bound-state
amplitudes, which contain no multiquark discon-
tinuities. However, the finite pieces of the wave
function cannot-be neglected, for as we shall see
below they can sometimes yield the leading con-
tribution to various scattering amplitudes.

Given this scattering amplitude one can now

answer all physically interesting questions. In the
rest of this section we shall pose these questions
and describe the answers that we have found.

B. Hadronic scattering amplitudes

From the above results 't Hooft's conclusion that
the only finite-energy states are color singlet
bound states of confined quarks (which we call
hadrons) is eminently reasonable. To test whether
the resulting theory is physically sensible one
must examine the hadronic scattering amplitudes.
These of course must be finite (as A. -O), Lorentz-
invariant, and (presumably) parity-invariant.
Furthermore, they must be unitary in the sub-
space of physical hadronic states. A consequence
of unitarity is the absence of long-range, Van der
Waals type, forces between color singlets which
would correspond to the exchange of gluons be-
tween color singlet states. The verifications of

these properties is in principle straightforward,
since with the aid of the quark propagator, Eq. (6),
and the bound-state wave function, Eq. (19), all
hadronic scattering amplitudes can be explicitly
constructed. In practice many delicacies arise.

Consider the 3-particle vertex function, which
is of order g-I/~N, and arises from the diagram
in Fig. 4(a). Now if we examine the bound-state
wave function C x(x}we see that the bound state
can decay to a quark and an antiquark moving in
the same direction with amplitude -I/A. , wherea, s
if either the quark or the antiquark move in the
opposite direction to the bound state, the ampli-
tude is of order ~'. Keeping only the leading term,
one would find that the 3-point vertex vanishes
identically. This illustrates why one must not take
the A. -O limit until the end of a calculation. To
see if the 3-point vertex has a finite limit as
X-O, one can simply count powers of ~. Since the
quark propagator, Eq. (6}, is sandwiched between .

y matrices, it can bereplaced by Ss, Eq. (7), and
is of order A.. The P, loop momentum in Fig. 4(a)
is of order I/A, since it is dominated by poles at
P, =1/X. Finally from the three bound-state wave
functions we get a factor of (1/X)' (since at least
one wave function must be of order unity to con-
serve momentum). All in all, the factors of A.

cancel producing a finite vertex function as A. -O,
which will be real and Lorentz-invariant. This
vertex will be discussed in greater detail in Sec.
III.

The 2-particle scattering amplitude, which is of
order I/N, will certainly receive a contribution
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(b) J~

(b) (c)

(c)

FIG. 4. (a) 3-particle vertex function. (b) Hadronic
exchange contribution to 2-particle scattering amplitude.
(c) Quark exchange contribution to 2-particle scattering
amplitude.

PE R MUTATIONS+
J J Ja P y Jp J~

FIG. 5. Current-hadron coupling. (b) 2-point function
for currents. (c), (d) Contribution to the current form
factor. (e) 3-point function for currents.

from hadronic exchange, as in Fig. 4(b). How-

ever, in addition, there may be a contribution
from quark exchange diagrams, such as Fig. 4(c).
At first sight the latter are infinite as X-O, since
now all quarks and antiquarks can be moving in
the same direction. Thus the powers of X that ap-
pear in Fig. 4(c) are &' from the quark propaga-
tors, (1/A) from the wave functions, and 1/A, from
the loop momentum integration. This problem is
discussed in Sec. III, where we show that when one
adds all diagrams that contribute to this order in
1/N, the terms of order 1/& cancel, leaving a. fi-
nite remainder, which is a real contribution to the
scattering amplitude, corresponding to a 4-point
interaction. We have thus verified the unitarity
of the theory to first nontrivial order. One could
continue in this fashion and construct an effective
theory of hadrons (to lowest order in 1/N) which
would involve 3- and 4-point couplings, and in
addition n-point vertices which would arise when
one evaluates the &-0 limit of n-point hadronic
amplitudes.

While unitarity and Lorentz invariance can thus
be established, the question of parity invariance,
crossing, and analyticity of the resulting scatter-
ing amplitudes is much trickier. The problems
involved in verifying these properties are dis-
cussed in Sec. III.

C. Current Green's functions

The Qreen's functions of local operators con-
structed out of products of quark and gluon fields
can easily be constructed. Of particular impor-
tance are gauge-invariant operators which should
have finite Qreen's functions as ~-0. We have ex-
amined the matrix elements of the vector currents
J'„=Py„X'g, where A.

' labels a matrix of the funda-
mental representation of SU(M). Our aimwas first
to verify that these have finite matrix elements,
and that the currents which are formally con-
served by virtue of the equations of motion are in-
deed conserved. Consider for example the matrix
element of Z& between the vacuum and a hadronic
state, given to lowest order in 1/N by the diagram
in Fig. 5(a). Counting powers of A, it is easily
seen that this is finite, and is equivalent to a di-
rect coupling of the current to the hadron. It is
less trivial to check the conservation of J„. We
have verified that both the direct current-hadron
coupling, as well as the hadronic form factors,
given by Figs. 5(c) and 5(d), are conserved. The
conservation properties of J„are not manifest. To
establish them it proved necessary to use quite
detailed properties of the bound-state wave func-
tions. This is discussed in Sec. IV.
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Since the theory is a,symptotically free (super-
renormalizable), the short-distance behavior of
products of currents should be that of the free-
quark model. On the other hand, the quarks have
infinite energy and have disappeared from the
space of physical states. Current amplitudes can
be constructed out of effective current-hadron
couplings. This theory should provide an explicit
example of how a confining theory can remember"
at short-distances that hadrons are constructed
out of quarks. We have examined the 2- and 3-
point Green's functions of vector currents, given
by Fig. 5(b) and Fig. 5(e), and verified that their
high-energy behavior is indeed the same as in the
free-quark model.

The 2-point function provides us with a model of
e'e annihilation, which to lowest order in 1/N is
given solely by the "vector dominance" contribu-
tions of Fig. 5(b). This process illustrates the
constraints on current-hadron couplings that re-
produce free-quark model asymptotic behavior as
well as the rate of approach to the asymptotic
limit in the timelike region and the effects of heavy
quark thresholds in the total annihilation cross
section. The evaluation of the high-energy be-
havior of the current 3-point function provides a
test of crossing symmetry and analyticity. The
individual contributions to the 3-current vertex,
illustrated in Fig. 5(e), contain various nonana-
lytic and non-crossing-symmetric pieces. The
verification that the complete vertex reduces to
the free-quark model vertex at high energies pro-
vides an indication that these nonanalytic pieces
combine to yield, as expected, an analytic and
crossing-symmetric result.

D. Heavy quarks and charmonium

With the recent discovery of the g resonance
there has been much speculation that this is a
bound state of a charmed quark pair. ' In an as-
ymptotically free gauge theory it has been argued
that one can treat this particle as a nonrelativistic
Coulomb-type bound state —charmonium —if the
effective coupling is sufficiently small at energies
of the order of the g mass. Furthermore, it has
been argued that one can estimate the hadronic
width of the g by analogy with the decay of pos-
itronium. Assuming that the decay proceeds via a
3-gluon state (the minimum number of gluons that
can be produced when the charmed and anticharmed
quarks in g annihilate) one can estimate the ha-
dronic-to-leptonic branching ratio.

Two-dimensional Yang-Mills theory provides us
with an ideal model to test these ideas. To this
end we have examined the nature of resonances

formed from heavy quarks, the effect on e'e an-
nihilation of the opening of heavy quark thresholds,
and analyzed the decay modes of these resonances.

We find that the bound states of quarks whose
masses (ms) are large compared to the natural
dimensional scale parameter of the theory
m„'» g'N/m can be well described by a nonrela-
tivistic Schrodinger equation, with a (two-dimen-
sional) Coulomb potential. We construct explicitly
the wave functions of such bound states in this
large-m„ limit. In a similar fashion we can de-
termine the masses and wave functions of bound
states of one heavy and one light quark ("charmed
mesons"). It is interesting to note that the mass
scale of the hadrons constructed from light quarks,
i.e., the inverse slope of the linear trajectories
of the bound states, is (g'N} n = (a') ' [see Eq. (16)J.
Thus the charmonium picture applies when
mH'» (o.") '/w'. If such factors of m' were to oc-
cur in four dimensions one could argue that the
charmed quark mass squared would only have to
be large compared to 1 QeV/m =300 MeV, in order
to be able to use asymptotic freedom to discuss
char monium.

The suppression of the decay amplitude for char-
monium is an example of the Okubo-Zweig-Iizuka
rule. ' Since this state lies below the threshold
for the production of charmed particles, the
charmed quarks must annihilate. Therefore, there
is no contribution to this amplitude toleading order
in 1/N (i.e. , to order g-1/vtV). The first nonvan-
ishing contribution arises in next order, and pro-
ceeds through the twisted duality diagram Fig. 6.
There is clearly a suppression factor of 1/N in

this decay amplitude relative to the decay ampli-
tude of a resonance formed from light quarks.
This is a general feature of gauge theories —all
amplitudes which violate the OZI rule will be sup-
pressed by at least 1/N' in rate. However, there
will be additional dynamical suppression factors,
which can be much more important. These dynam-
ical effects are also responsible for the distinction
between various decay modes which have the same
topological suppression factors, such as g'- P
+hadrons compared to g'-hadrons. In our model
these can be calculated since for large m~ the
wave functions of heavy-heavy and light-heavy res-
onances are known. We estimate the mass depen-
dence of the decay amplitude for heavy resonances
and find them suppressed by a factor of m~
However, it is clear from Fig. 6, as well as from
our final result, that the 3-gluon intermediate
state plays no special role. Indeed the amplitude
for charmonium to decay into three gluons van-
ishes, as it should in a confining theory. One
must sum, as in Fig. 6, the amplitudes for pro-
ducing an arbitrary number of gluons nonpertur-



1656 CA L LAN, COOTE, AND GROSS 13
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C p
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FIG. 6. Diagram for decay of charmonium.

batively in such a way as to produce physical, ha-
dronic, intermediate states.

III. S-MATRIX ELEMENTS

As we noted earlier, to leading order in N '
this theory yields a set of noninteracting bound
states. In the next order these particles may in-
teract with one another and we would now like to
discuss the resulting scattering and decay ampli-

tudes. The simplest amplitude we can discuss is
the 3-point function responsible for the decay of
a heavy meson into two lighter particles. To
leading order in N ', the diagram we must com-
pute is the simple duality diagram of Fig. 4(a).
Radiative corrections of the same order in 1/N
are redundant, since they are already contained in
the bound-state wave functions. The quark prop-
agators and the bound-state wave functions are
singular as the infrared cutoff is removed, and our
problem is to show that everything conspires to
yield a finite S-matrix element. For the purposes
of this discussion we shall take the quarks to fill
the fundamental representation of the gauge group
only, not worrying about a possible global sym-
metry.

The amplitude to be computed then is

d'l C,(l, r, —l)4, (l, r, —l)C,(r„r,—l)

l 2n'A, '+ l —x, 2m' + '+ l —x, 2m'.

Since the 4 do not depend on the + components of momentum, the l, integral can be evaluated immediately
yielding

rA=, , „ l — dl ~4,(l, r, —l )C,(l, r, —l )4,(l —r, , r, —l ) .

The denominators have been simplified by recognizing that g /nhis lar. ge compared with all external mo-
mentum components. We recall that C(r, s ) are of order A.

' so long as r, s are both positive and of
order &' otherwise. The kinematics is such that this condition is satisfied for only two wave functions at
a time, which is just right to cancel the O(X ) factor in A which came from the quark propagators. If we
insert the explicit forms of Eq. (19) for the wave functions, we finally obtain

1
vN

This has two important features. It is O(1/MN)
and so is small in the large-N limit, and the limit
A. -O may be taken freely leaving a well-defined
convolution of bound-state wave functions. It is
remarkable that the physical amplitude, though
finite, involves the "small" components of the
bound-state wave functions which in turn are non-
zero only when the infrared cutoff is nonzero. In
other words, the walls of the spatial box giving
the cutoff play a crucial role in the scattering pro-
cess, It is encouraging that the delicate cancella-
tion of divergence occurs as needed.

The next most complicated process to consider
is the 4-point function, or meson-meson scatter-
ing amplitude. There are three basic duality dia-

grams for this process as shown in Figs. "l(a),
V(b), and V(c). To obtain all graphs of the same
order in N ' it is necessary to dress the quark
propagators and to exchange gluons in ladder
fashion between nonadjacent quark lines (gluon
exchange between adjacent quark lines is already
contained in the bound-state wave functions). Thus
we must make the replacement shown in Fig. 8,
where the blob stands for the full quark-antiquark
4-point function. This 4-point function was com-
puted earlier and we found it to have the structure
shown graphically in Fig. 9, where the sum is
taken over all the bound states of the theory. The
resonance sum contribution evidently gives in its
contribution to the 4-point function just tree graphs
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2 +
Jj II

FIG. 8. Corrections to Fig. 7(a) due to latter exchange
of gluons.

FIG. 7. Basic duality diagrams for 4-point function.

of the type shown in Fig. 4(b). The 3-point func-
tions out of which these trees are constructed have
already been shown to be infrared-finite and

O(1/vN), so they lead to 4-point functions which
are infrared-finite and O(1/N) The d.isconnected
piece plus Born piece of the quark 4-point func-
tion will lead to a nontrivial direct 4-meson cou-
pling which we must discuss in detail.

Possible finite contributions are severely limited
by the fact that the quark propagators which sur-
vive integration over the + component of loop mo-

mentum each contribute a factor ~', while bound-
state wave functions contribute a factor X ' so
long as the quarks carry a positive fraction of the
momentum of the meson. The only possible sur-
vivors of the ~-0 limit are the "quark inter-
change" diagrams of Fig. 10. These graphs are
potentially divergent since the kinematics permits
all four bound-state wave functions to be simul-
taneously O(X ') while, in effect, only three quark
propagator s survive loop integration. To avoid
disaster a cancellation of divergences must take
place.

We will display the cancellation of divergences
and not concern ourselves with the residual con-
tact term, other than to remark that it is indeed
finite. The diagram of Fig. 10 has as its most di-
vergent contribution the integral

1 ' d'/ y, (/, p, - /) y, (/, p, - /) y, (p, - /, p, -p, +/) p, (p, -p, +/, p, - /)
(2w)' [/, -m'// +(g'N/wA)sgn(/ ) —,&e]

where the bound-state wave functions each have implicit 8 functions restricting their momentum arguments
to be positive. Carrying out the l+ integration and keeping only the leading term in X, we have

4 v~ '1
N 2 2

—dl 1l, P1 l 4 P4 Pl l yP1 l

Let us now look at Fig. 10(b). It is given, at least to leading order in 1/N, by the expression

2
J

d k d'/ 1 Q (/+k, P, —/ —k)tP (/+k, P, -/ —k) Q (P, —/, P, —P, +/) tP (P, —P, +/, P )
A, vN j (2n')' (2w)' k' D(/+k) D(P, +/+k)

where D represents the product of three quark propagators and where again the arguments of the P& must
be positive. On doing the two + loop momentum integrations and passing to the limit of small ~ we get

2 ~
mA.

' dk 1 d/

This is O(X ) by virtue of the singularity in the k integral. Extracting that part, we get

g N 2 1ly P1 l ''
4 P4 p1+l~p1 l

This is precisely —2 times the divergent contribu-
tion of Fig. 10(a). The divergent part of Fig. 10(c)
is the same and leads to exact cancellation of the
O(A. ') terms. The O(A.') remainder which we have
not bothered to write out is finite and O(l/N). It
is, in effect, a fundamental 4-meson vertex which

n n

FIG. 9. Structure of blob in Fig. 8.
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Ji II +
(Pfvp, /q)=

q

FIG. 10. Potentially divergent contributions to 4-point
function.

is just as important as the "tree" graphs of Fig.
4(b) constructed out of the basic 2-point functions.
The key fact is that although the final expression
for the S matrix is complicated, it is free of in-
frared divergences due to a rather delicate can-
cellation. We expect this to be true for the N-
point function.

We have thereby verified that the theory, to this
order in 1/N, is unitary and that no colored inter-
mediate states appear. In particular color-singlet
mesons do not have long-range, Van der Waals
type, interactions. All interactions between had-
rons are either contact interactions or are medi-
ated by the exchange of hadrons themselves.

The formulas for S-matrix elements we have ob-
tained, while perfectly explicit, have some dis-
turbing features. Most important is the lack of
explicit reflection invariance. This is most easily
seen in the amplitude for A -B+C in the frame
where A is at rest. The amplitude is a function
the —components of momentum of the particles.
For fixed masses m&, m~, and m& there are two
solutions for these components, corresponding to
& moving to the right or & moving to the left. By
reflection invariance these two amplitudes should
be equal, but in our formulas this equality is not
explicit. Their equality, if true, is the conse-
quence of a complicated convolution equality on
the bound-state wave functions which we have not
been able to prove. The fault lies in the use of the
light-cone gauge which obviously violates explicit
reflection invariance. We of course believe that
if we had better control of the wave functions it
would be possible to demonstrate the requisite
cancellations since eccentric choices of gauge
should not affect the S-matrix elements. The sec-
ond trouble is that the analyticity properties one
demands of satisfactory S-matrix elements are
not manifest in our formulas either. Because am-
plitudes depend explicitly on momentum compon-
ents rather than the usual invariants physically
unreasonable singularities may appear. Again,
we expect that the wave functions are clever
enough to eliminate unphysical cuts, but we do not
know enough to demonstrate this. The same prob-
lem arises for current amplitudes, but the situa-
tion there is simple enough that we can actually

FIG. 11. Leading contribution to current-meson
coupling.

analyze these questions and show that the diffi-
culty is only apparent.

IV. CURRENT MATRIX ELEMENTS

(2D)

where a, 5 = 1, . . . , M index the independent SU(N)
multiplets.

With our Feynman rules, the insertions of the +

and —components are quite different:

~a~ & mama
2 f (q+l)

(21)

The + loop momentum integration involves only
the two quark propagators and yields a result of
order ~ so that only the A.

' piece of the bound-
state wave function survives in the limit X-O.
Doing the loop integrations and removing the in-
frared cutoff, we find

gy
~ ) mgmy N

d Q (x)
2q w, x(1 —x)

(22)

Of the various densities one might consider, phe-
nomenologically the most important is the cur-
rent. Fortunately, it is also in this model the
easiest to compute, although, as we shall see,
certain important properties of current matrix
elements, normally manifest, are here conse-
quences of curious identities on the bound-state
wave functions. To get an idea of what is involved
we first consider the vacuum-single-meson cur-
rent matrix element.

The leading contribution to this amplitude is
given by the graph of Fig. 11, where, as usual,
radiative corrections are already contained in
the bound-state wave function. We are interested
only in color-singlet densities since the physical
states are themselves color singlets. The gen-
eral color-singlet current is
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where m'=2&, g is the mass squared of the me-
son. The general form of the matrix element of
Vu is

(23)

and the above results allow us to make the iden-
tification

B 1N dxab1 mamb 1

These expressions may be written, with the help
of the identity displayed in Eq. (15}, in an equiv-
alent and more useful form as follows:

ma +mQ ~ ag ma mQ

(24)

B=—

In the next section we shall identify these mo-
ments of P' with the matrix elements of T()g and

For the moment, we simply observe that
Eq. (23) makes current conservation manifest.
The current V'„should be conserved if m, =m&.

On the other hand,

One expects formally that this axial-vector cur-
rent is conserved if m, =m, =0. But when
m, =m, =0, the identity, Eq. (15), which we have
already made use of, says that

1

q' dxP"(x) =0,
0

causing the matrix element of ~"A'„' to vanish as
expected. On the other hand, Eq. (2V) means that
j'(fx P"(x) vanishes for all bound states of non-

0
zero mass. As mentioned in Sec. II, there is, in
the zero-quark-mass theory, a zero-mass bound
state whoses wave function is $0 (x) =1. The axial-
vector current has a nonzero coupling only to this
zero-mass state. There are indications that the
zero-mass state decouples from the other bound
states, thereby evading a Qoldstone boson inter-
pretation. This and other questions related to the
possibility of dynamical symmetry breaking have
not yet been fully explored.

One may discuss more complicated objects such
as the meson form factors of the current V'„'.
Demonstrating that the current matrix element is
conserved is not easy since it calls for an identity
on sums of bound-state wave functions. We were
able to derive the required identity but refrain
from discussing the problem here in order to save
space.

Much more interesting and transparent is the
current 2-point function

M~„= & xe'" T V~x V~O 0

which is zero only if B vanishes. But B is explic-
itly proportional to m, =m, . When ma =m, we may
use the identity of Eq. (15) to cast the current ma-
trix element in a particularLy simple form:

(0(x~d~'Id) = — x fdxd"(x) . '
0

(26)

1/2 1

(0 I )"„'Iq) = — f dxd"(x) xxd' .
0

It should be noted that current conservation is
demonstrable only with the help of a nontrivial
identity for the bound-state wave functions. This
is a general feature of the theory: To demonstrate
properties which are manifest in simple theories,
we must make use of nontrivial identities involv-
ing the bound-state wave functions.

In this model the axial-vector current is just the
dual of the vector current and, when m, =m„we
have as an immediate consequence of Eq. (22} that

This is the two-dimensional analog of the e'e an-
nihilation amplitude and we would like to verify
for it the analog of asymptotic freedom: Namely
that for large g', M„, approaches the free-quark
amplitude for the same process. If we expand
M„, in powers of g this should be automatic since
the theory is, after all, superrenormalizable.
However, the 1/N expansion is quite different
since the quarks disappear from the spectrum and
the question is whether the bound-state mesons
can somehow, collectively, simulate the now-ex-
tinct quarks. One could easily imagine that con-
finement would change the short-distance behavior
of the theory, if the large-energy limit and the
infinite-volume limit (which produces infinite-en-
ergy states) did not commute. This is in fact the
case for gauge-noninvariant operators, however,
not for physical gauge-invariant Qreen's functions.

M„„ in principle requires a renormalization sub-
traction to make it perfectly well defined. How-
ever, in this gauge the subtraction affects only
M+,—the other current matrix elements are fi-
nite —and we may, for instance, compute M arid
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compare it with the corresponding free-quark loop
without further ado.

The graphs contributing to M„, in the leading
N ' limit are displayed in Fig. 12. The quark
propagators are of course all dressed and it is
easy to see in the case of M that the first two
terms in Fig. 12 vanish when X-0. Only the sum
over resonances survives and one finds explicitly
[using the results of Eqs. (18) and (22}]

Cl II'

I I I I I I I I I I I I[]

(c)

(a)

.~ [J.«P.(x)]'
(28)

N(~ 2) 1 2

dx P.(x}

The sum over states can be shown to be precisely
unity with the help of the completeness relation
for the bound-state wave functions. Thus we have
the desired asymptotic freedom result

M ~ M (g=0, m=0) . (29)

where Q' is the four-momentum carried by the cur-
rent. We will return in a moment to the question
of M+ and M+, .

It is easy to show that the free massless quark
loop yields M =Np '/&'v. However, the asymp-
totic behavior of M is

FlG. 12. Leading graphs for current 2-point function.

do indeed simulate the quarks and in principle
allow us to measure the quark charge and mass.

The discussion of other components of M„, is
slightly more complicated due to the anomaly and
the need for renormalization subtractions. In gen-
eral we must have

M„,(q) =II(q') (q„,q' —q„q,) +C „
when C is an a priori unknown constant arising
from the need for an over-all subtraction in M„„.
Our discussion of M has identified

N ~ [f„«y„(x)]'

If we evaluate M+ according to our standard pro-
cedure and use the identity of Eq. (15) we easily
find that

One may ask: What is the energy scale which
governs the approach to the asymptotic limit?
This is equivalent to computing the O(g ') corre-
tion to Eq. (29), since in this superrenormalizable
theory there are no logarithmic corrections:

1 ~ m„4M = —,Q dxP„(x)
n

(we must cut the sum off because it is logarith-
mically divergent). From the bound-state wave

equation it follows that

f32„~ X q P = +

Consequently bM /M -(m'/wq') Inq', so that it
is the quark mass itself which sets the scale for
the approach to the asymptotic limit, even though
the quark mass has nothing directly to do with the
masses of the resonances which directly deter-
mine the amplitude. So, although the quarks never
appear directly in any of the relevant Feynman
diagrams, and although the physically relevant
mass parameter is g'N/w, the Regge slope, the
asymptotic value, and rate of approach to the
asymptotic limit of the 2-current amplitude is
governed by noninteracting quarks. The mesons

N, N ~ [Jdxg„(x)]'

This is consistent with the general form for M„„
and our identification of II if we set C = —N/w

That C &0 says that there is an anomaly in the
Ward indentity for the product of two vector cur-
rents. This is not particularly sinister since we
are by now well acquainted with anomalies and
nothing new is added to the discussion of asymp-
totic behavior.

Finally, we may obtain some insight into the
problems of crossing symmetry and analyticity
which bothered us in the case of the meson S-ma-
trix elements (notably the 3-point function) by
studying the 3-current amplitude. Consider the
3-point function of currents V„", V,", and Vq'
represented graphically in Fig. 13 and denoted by
M'„,'q. Each term in the expansion in g is infra-
red-finite and has the usual crossing and analy-
ticity properties. Furthermore, in the limit where
all p~'-, because the theory is superrenormal-
izable, the amplitude is dominated by the free-
quark loop (which falls like g '). On the other
hand, in the N ' expansion, the leading terms are
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given by graphs of the type shown in Fig. 14 where
quark propagators are now dressed and sums over
resonances are understood. For what should by
now be quite familiar reasons the graphs of 14(a)
and 14(b) vanish when the cutoff is removed and
the other two are infrared-finite. In the limit

~, the graph of Fig. 14(d) vanishes more
rapidly than the graph of Fig. 14(c) because it in-
volves three meson propagators instead of two.
As far as asymptotic properties are concerned,
then, we may focus on graphs of the type Fig.
14(c). Let us now consider a typical such con-
tribution with kinematics as defined in Fig. 15.
We need both bound-state wave functions to be
infrared-divergent in order to overcome the fac-
tor &"which arises from the loop integration
over the quark propagators and yield a finite re-
sult. This is possible only if p, and p, are of
opposite sign, so this graph will contain 8 func-
tions in the form 8(q, ) 8(q, ), etc. These 8func-
tions are nonanalytic and must somehow cancel
out if the full amplitude is to have the analyticity
and crossing properties it should. If we choose
the —component for all currents and pass to the
limit g -, arguments similar to those used in

abc
pIX + 0(g~}

FIG. 13. 3-point function of currents.

the discussion of the current 2-point function yield
the result that this graph becomes

&&+ &2+ &g+

&& [8(q,-) 8(q, -) + 8(- q.-) 8(- q, -)].

so that the total amplitude is just

There are two other graphs in which the roles of
momenta 1, 2, and 3 are permuted. It is an easy
algebraic exercise to show that

1 q, q, =(cyclic permutations on q„q„q,),

M' ' („„,-N ' — ' [8(q, ) 8(q, )+8(-q, ) 8(-q, )+permutations] .total (30)

However, the sum of 8 functions is just unity and
we conclude that the total amplitude does indeed
have the proper analyticity and crossing prop-

(a)

erties (this amplitude is of course also equal to
the free-quark amplitude, so we also verify the
asymptotic freedom result as well). To show that
the amplitude for finite ffI'~' has proper analyticity
is horrendously difficult, and we have not done
it—this calculation is meant simply to illustrate
how, in a simple case, the theory manages to
produce crossing-symmetric amplitudes from
noncrossing-symmetric elements. We expect that
it does so in general.

FIG. 14. Various possible structures for contributions
to the 3-point function of currents.

q

FIG. 15. Kinematics for Fig. 14(c).
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V. SCALAR AND PSEUDOSCALAR DENSITIES

A number of interesting issues are raised by a
study of the gauge-invariant scalar and pseudo-
scalar densities FIG. 16. Matrix elements of a density between the

vacuum and a single meson.

P"= g $;y, P';

To appreciate these questions it is convenient
first to look at the vacuum-single-meson matrix
elements of S and P. To leading order in 1/N, one
has to compute the graph shown in Fig. 16 where
the ladder represents the bound-state wave func-
tion, the quark propagators are dressed, and the
cross is either 1 or y, . The graph may be evaluated
by techniques that should by now be familiar and
we find, in the limit ~-0,

(o(o"(x)=(— ( f ox(~ — '
)O."(x),

(31)

%e have previously remarked that while space-
inversion invariance should be a property of the
gauge-invariant sector of this theory, it is by no
means manifest. Since the mass eigenstates (n)
are nondegenerate they should have a definite
parity and one should find that either (0(S' (n) or
(0(P' (n) should vanish for every n Inspec. tion
of Eq. (31) shows that this is far from obvious.
However, it is true, as the following operator
device (whose discovery we owe to G. 't Hooft)
shows. Define operators E and J by

1

zO(x) =f cx O(x)
0

and let II be the mass-squared operator of this
theory. It is then straightforward algebra to show
that

1 2 1 1[a, P] =m, ' —Z —-m, 'x x 1 —x 1-x
The expectation of the commutator in an H eigen-
state (n) is of course zero. By virtue of Eq. (31)
it is also equal to (w/N)(0(S' (Q(0( P(n). Hence
one or the other of (0(S (n) and (0 (P(n) must van-
ish.

Another interesting property emerges when we
consider the limit m„m& -0. Since the expressions

in Eq. (31) are explicitly proportional to m„m„
one might expect the matrix elements of S and P
to vanish in that limit. This might even be re-
garded as natural since 8 and I' create pairs of
left- and right-moving quarks which, in the light-
cone gauge and in the limit of zero quark mass,
cannot interact. However, nothing of the sort
happens: The bound-state wave functions vanish
at x = 0 [x= 1] like xc &[(I —x)c"'] so that, even
in the zero-mass limit, there is a finite end-point
contribution to the integrals in Eq. (31). The mass
singularities of the theory are just strong enough
to overcome the theory's apparent asymmetry in
its treatment of the left- and right-moving quarks.
As a general rule, it seems to be very dangerous
to draw any conclusions about the consistency, or
lack thereof, of the theory by working directly in
the limit of zero quark mass.

In this connection it is interesting to consider
the asymptotic limit of the 2-point function of S
(or P):

xx(o') = fdxx" (o(o'IS"(x*)o"(o))(o).

One expects, for the same reasons mentioned in
the discussion of the current 2-point function, that
the large-p' behavior of M should be governed by
the free, massless theory, where

N q'
m(q') -—ln —, .

7T P,

In the leading-N approximation one of course has
explicitly that

( &0(S"(n&L2

The large-p' behavior of M is clearly governed by
the large-n behavior of the summand. The prob-
lem then is to evaluate (0(S' (n) for large n. We
know that p„' - (g'N/w)w 'n and that Q„(x)
-)I 2 sinnwx except at the end points. Let us define

1

R„= dx—' P„(x),
0

1

I.„= dx ' y„(x) .
0

Then (0(S'
( n) =(N/w)' (R„—I„) and (0(P'

( n)
=(N/w)'~'(R„+I, „). The theorem that (n) has defi-
nite parity implies that L„=+A„. Indeed since the
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bound states will alternate in parity, it is clear
that as we increase n by one unit, L„will simply
change sign (we choose Q„so that R„ is always
positive). For large n, B„will presumably change
slowly as a function of n. On the other hand, it
obviously is determined by how Q„behaves near
x=0 and so our approximate wave function is not
adequate to evaluate 8„. Instead we evaluate
(n+ 1 ( [H, P] ) n) = ( p.„+,' —p„') (n+ 1 ( P ( n). This can
be evaluated for large n with the help of our ap-
proximate formulas for p,„' and Q„(end points do
not dominate) and yields 2wg'N. By virtue of the
identity for [H, P] it also equals B„A„„—L„L„„
which is identically 2B„A„+,-—2A„'. This shows
that the leading behavior of (0 ~

S"
~
n) for large n

is 2(g'Nw)' '. Feeding this back into the expres
sion for M(q') we easily recover the "asymptotic
freedom" result that M(q ') -(N/w) lnq '.

VI. CONFINEMENT WITH A REGULAR CUTOFF

The calculations in the body of this paper have
been done in the light-cone gauge (setting A =0),
and with a particularly singular choice of infrared
cutoff (restricting

~ q ~

~ &). The cutoff prescrip-
tion that we used, following 't Hooft, gave rise to
severe infrared singularities as X-0. In fact it
might appear that these singularities produced the
confinement of the quarks, since it was because of
them that the poles in the quark propagator were
removed to infinity. On the other hand, one could
have chosen a much less singular prescription for
dealing with the infrared divergences. The choice
of infrared cutoff should be independent of color,
since gauge-invariant Green's functions should not
be infrared singular. However, gauge-variant
Green's functions could have drastically different

properties with different prescriptions.
We have investigated the theory formulated with

a principal-value prescription for the gluon prop-
agator, —i/q ', which we call the regular cutoff
(the prescription j q ~

~ & will be called the sin-
gular cutoff). It is clear that with this prescrip-
tion there are no infrared infinities at all in the
theory. How then does the confinement mechan-
ism works

The theory is easily constructed with the regu-
lar cutoff. One must merely eliminate all factors
of I/A. in our previous calculation of the quark
propagator and scattering amplitude. Thus the
quark propagator is given by Eq. (6), without the
1/A. term. This propagator then contains a pole
at q' =m' —g'N/w. With the regular cutoff, then,
finite mass quarks exist. However, confinement
can still take place if these do not appear as real
intermediate states (discontinuities) in Green's
functions of gauge-invariant operators or hadronic
scattering amplitudes.

The quark-antiquark scattering amplitude can be
constructed as before. The I/A, terms canceled
in the bound-state equation, so that Eq. (12) is un-
altered. The scattering amplitude will be given by
Eq. (18), where again all terms involving 1/& are
to be replaced with zero.

To see how confinement works with the regular
cutoff let us examine the current 2-point function.
To leading order in 1/N the diagrams in Fig, 12
contribute. Unlike the case of the singular cutoff,
the first two diagrams do not vanish. In fact they
contain discontinuities corresponding to the quark-
antiquark threshold. However, the resonance
term [Fig. 12(c)] is altered, due to the change of
4„(x). It contributes to M" (q) the term

((x)((x')( + g )( + g )

where we have performed the + momentum fermion loop integrations. This can be rewritten, using the
completeness of the wave function ((()„(x), as well as the relation

(33)

as a sum of three terms:
1 1

dx dx' y„(x) y„(x'),
w q'-m„' o o

which is the result derived previously, Eq. (28), with the singular cutoff;

~q 2 1 N
q' —(g 2N/w) [(y, —1)/x+(y& —1)/(1 —x)],
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which cancels the contribution of Fig. 12(a); and

+q 2 g2pf

0 0

I
I 2 2

~

2
a

1 1

xp dx dx' (x- x'} (g —(g N/n)[(y', —1)/x+(y» —1)j(1 —x)]J(g —(g N/w)[(y, —1)/x'+(y» —1)/(1 —x')]} '

which cancels the contribution of Fig. 12(b). The
final result is, as expected, unchanged. Quark
continuum states do not appear due to the above
canc ellations.

On the other hand, gauge-variant Green's func-
tions are totally altered with the regular cutoff
procedure. Consider the 2-point function of a
colored operator, say (0~ T]P; g', g, g' j ~

0). With
the regular cutoff this amplitude is nonvanishing,
contains quark-antiquark discontinuities, and ex-
hibits at high energies the free-field structure
one would expect from asymptotic freedom. On
the other hand, if we work with the singular cut-
off, the amplitude vanishes as ~-0. This is to be
expected since with this cutoff there do not exist
any finite-energy colored states. This result con-
tradicts the asymptotic theorem that one can prove
using the asymptotic freedom of the model. This
occurs because the high-energy and the zero-cut-
off limits do not commute. In fact the above am-
plitude contains integrals of the form

�

dr
q 'x(1 —x) —g'N/wX

which approach their free-field theory value when
q'» g'N/vX, but which vanish when A. -O. Thus
the existence of infinite-energy states with the
singular cutoff can alter the short-distance struc-
ture of the theory for gauge-variant Green's func-
tion. Gauge-invariant Green's functions, as we
have seen in Sec. IV, are unaffected bytheinfinite-
energy states.

Our conclusion is that confinement can occur
even if infrared slavery does not produce infinite
energies for the colored states. All that is re-
quired is that these states decouple from the color
singiets. On the other hand, it is clearly advan-
tageous to work with the singular cutoff. Confine-
ment is then manifest, and calculations are much
simpler due to the vanishing of many gauge-vari-
ant Green's functions.

VII. CHARMONIUM

Recent experimental discoveries (of the g and its
partners} have made the question of the dependence
on quark mass of various bound-state properties

of considerable topical interest. In particular, it
has been suggested that mesons constructed out of
charmed quarks many times more massive than
the "familiar" O', 2, X quarks would have anoma-
lously small amplitudes to decay into low-mass
mesons (the OZI rule) and might also have par-
ticularly simple mass formulas by virtue of a
rather heuristic asymptotic freedom argument.
The model we have been discussing is particularly
well suited to a study of these questions —we have
only to give the appropriate structure to the mass
matrix m'„=m, '&„and study various bound-state
wave functions and decay amplitudes behave as one
of the mass eigenvalues is allowed to become
large.

To simplify matters, we shall let there be one
heavy quark, c, and one light quark, X. %e shall
come back shortly to a more precise definition
of what wemeanby "heavy" in this context. %e
shall be interested in the decay of low-lying cc
states into multiple XX states [we concern our-
selves with low-lying cc states so that the direct
(and rapid) decay into charmed mesons,
(cc) -(c%) +(cX), is energetically forbidden].
Since the c quarks must annihilate, this process
cannot occur to leading order in 1/N. We have al-
ready displayed in Fig. 6 the generic graph for
(cc) -(XX)+(ZX)' and remarked that it is O(N ' ')
as opposed to O(N ' '} for a normal 3-body decay.
Therefore, there is a topological suppression of
O(N ') (in real life this might be a factor of 10) of
decays in which somewhere a quark must annihi. -
late. To explain the supersuppression of the g
decay one needs more than a factor of 10 and we
want to investigate whether such suppression
might come from the mass dependence of the dia-
gram. To see whether this is so we must first
evaluate the (cc) —(cX) + (Hl) and (cZ) + (cX)- (XX)
vertices, which are themselves determined by
the cc, cX, and XX wave functions. Our first
task is therefore to find out how the cc and col
wave functions behave for large m, .

The best we can do is to give a rough variational
calculation of the desired wave functions, based
on the energy integral of Eq. (14), which we choose
to reexpress in dirnensionless form
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Here, Q„ is the trial wave function for a state con-
structed out of a and & quarks and M„ is the re-
sulting mass. To find the ground state in the a, b

sector, we must minimize p,', of course. A con-
venient normalized trial function, incorporating
the boundary condition that P vanish at x =0, 1, is

I'(2r +2s +2)
I'(2 +1) I'(2 +1)

The kinetic-energy part of p,
' can be evaluated

exactly and one can make adequate approximations,
in the cases of interest to us, to the potential-en-
ergy integral.

For the cc wave functions one finds that
r =s = P2 3/v' ' is an approximate solution to the
variational problem so long as P is large and that
an accurate approximation to the trial wave func-
tion is

(X) — e(& /2) (x 1 /2)
~C C

C= ~]3
7r

Furthermore, the approximate solution for p' is

2 4P+ 3vl/3 Pl/3+O(P 1/3)

3n''~' 1X;„=29x d, P +O, g ).
The first thing we conclude from this is that for
large m„P„- is centered at x= —, with width
d x- m, ' ' and maximum amplitude proportional
to m, ' '—these facts will be essential in our dis-
cussion of charmonium decay. More important,
we are now in a position to ask whether phenom-
enologically interesting values of m, are in fact
"large" in the sense of this approximation scheme.
The basic requirement is that the width of
Q„—[Ex=(2/c)' ' =m' '

P
' '/2] is small com-

pared to unity. According to 't Hooft, the Regge
slope of this model is ~g'N. One clearly must
take this equal to 1 QeV' to fit standard meson
phenomenology. Thus P = mM, 2/g2N = v2M, 2/

(1 GeV2). The favored value for M, is about 1.5
GeV, implying that 4x-0.25. This is small
enough that the sharply peaked approximation to
Q„- makes sense, as will various conclusions we
will draw from it. Furthermore, one should note
that in the expansion of p, , the mass of the cc
state, in powers of P, successive terms appear
to decrease by an order of magnitude. Therefore,
the zero-order mass formula (which amounts to
just adding quark masses) should be good to 10%
while the first-order mass formula (which amounts
to including nonrelativistic potential theory cor-
rections) should be good to 1%. It is on the face

C(x) =
~dQ

e(y)
(x-y)' '

First we note that since p3 is concentrated at
x= 1 and P„ is concentrated at x = —,', the overlap
integral will vanish unless P, /P, -—', . Further,
the range of values of g=P, /P, where A,
does not vanish will be proportional to the smaller

of it amazing that m, -1.5 QeV should be so "as-
ymptotic, "but the result follows inescapably from
the curious relation: Hegge slope = n'( g'N/w),
where g2N/11 is the natural coupling constant of the
theory. The factor of w' makes the natural cou-
pling unusually small and leads to the remarkable
numerology just expounded. We find this encourag-
ing, although we have no clear idea whether any-
thing 1.ike this happens in three dimensions.

For the cZ wave function, we must study the
slightly more difficult limit P, -~, P, fixed. The
solution of the variational problem is concentrated
at x-(p&) ' ' with a width of the same order of
magnitude. Consequently "edge effects" due to
the boundary condition that P vanish at x=0 are
always important and make an accurate numerical
evaluation of the variational principle more dif-
ficult than before. We have contented ourselves
with very rough arguments which indicate that

(X) ~ Xr &-(c/2)3 [I'(2&+ 1)Q 2r +1]1/2

~=l(P ) "'
P, VP~ + g-+ O(P3 "'),

where (, g are constants of order unity, y is
determined by the "finite" mass P, and is not
easy to evaluate, and the approximate form of P
makes sense only if C»1. Again we note that
the criteria for the asymptotic region are met if
we use physically reasonable values for the vari-
ous parameters, since it turns out that WP, = 5.
The first correction to the zero-order mass for-
mula (m = m„.) should be quite accurate, although
it is not obviously susceptible to a simple poten-
tial theory interpretation since it arises from a
finite-mass quark moving in a strong potential.
Finally we note that P;~ can be described as being
concentrated at x,™m, ', having a width hx- m, '
and a peak value —m, ' '. Now we are ready to
discuss the dependence of the charmonium decay
amplitude on m, , assuming m, is large in the
sense we have discussed.

Consider first the cc- cCC + cK vertex. Accord-
ing to Sec. III it is proportional to the overlap
integral

d, „= dx@,(x)d, (
'

x) O, (
' ' ),

when as usual
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of the widths of iIi, and Q, and so will go like
m, . When g=P, /P, is within this allowed
range we can see that 4, ~X: m, ' ': Since g- —,', in
the integral for 4, x - y c m, '; at the same
time 5yc m, ' and g, ~m, '". Thus 4, ~m, ~'.
Then in the integral for A, „„5x m, ',

final result that

4/3A, ,+, o-m,

By a similar, crude line of argument one finds
that the amplitude, 2,+. .. , for (cK)+ (cZ) -XK
behaves like m, '.

One is now in a position to evaluate the contri-
bution of the 2+ 3 intermediate state to the loop in
Fig. 6. The integral d'I over the product of
propagators for particles 2 and 3 would just be
O(m, ') on dimensional grounds. However, the
integral over L is restricted by the structure of
the vertices such that 5(L /R ) ~ m, '. Then the
loop integration over the two propagators is pro-
portional to m, ' while the two vertices are re-
spectively proportional to m, and m, ' '. In toto,
this contribution to the amplitude behaves like
m, '~'. Further arguments of the type given
here suggest that in the sum over states 2 and

3, only a finite number of low-lying states are
important so that our estimate that the loop grows
like m, ' ' should be accurate. Actually, since
the large dimensionless parameter governing the
falloff with m, of the various wave functions is
MP, = (mm, '/g'N)'~' we should probably ascribe to
the loop a dimensionless suppression factor
(MP, ) '~'. There is a further kinematical suppres-
sion due to the propagator connecting the loop to
the 3-normal-meson vertex. This propagator is
evaluated at q'=4m, ' and gives a suppression fac-
tor of (2m, /m, )

' if we compare with the decay of
a normal meson of mass m, (say 1 GeV). The net
result is

charmonium N (&c) e +normal '
2m'

Putting in standard parameters (N = 3, m, =1.5
GeV, m, =1 GeV, etc.) leads to a suppression in
rate of a few thousand. This is probably a consid-
erable overestimate because we have set all un-
known factors of order unity equal to unity—
nevertheless it is the right order of magnitude to
be of interest.

The lesson of this discussion is fairly compli-
cated. On the one hand there is a regime of large
quark masses (large compared to the rather
modest interaction strength) where charmonium
masses and wave functions are given accurately
by a nonrelativistic potential model. The speetro-
seopy of low-lying charmonium states should

therefore be amenable to description in consider-
able detail. The decay of these low-lying char-
monium states is another matter. Although the
wave functions are effectively those of a weak-c
coupling theory, the annihilation of the c quarks
into X quarks is a complicated process involving
the interaction of bound states of various kinds
and can in no obvious way be described as a weak-
coupling process involving only a few gluons. In
spite of this, for a complex of topological and
dynamical reasons we can argue that charmonium
decay is strongly suppressed relative to normal
decays, thereby providing a dynamical basis for
the OZI rule.

Finally it is worth noting that the same type of
argument can be utilized to discuss other sup-
pressed decays. For example, one might con-
sider the decay of excited charmonium. Here
there are two competing channels: the decay

. directly to hadrons as well as the decay into the
charmonium ground state with hadron emission.
Both processes are forbidden by the OZI rule,
and both contain identical suppression factors of
1/N'. The difference in rates is therefore totally
dynamical. In our model we find that the latter
is enhanced, again by a power of P. Thus the
mass suppression factors ean distinguish between
various processes forbidden by the OZI rule.

VIII. HIGHER ORDERS IN 1/N

(a) (b)

FIG. 17. GjIuon propagator.

An important cheek of the consistency of the
model is the evaluation of higher orders in 1/N;
One might be concerned that the radiative correc-
tions to the gluon propagator and the the quark-
gluon vertex might radically alter the properties
of the model. For example, the lowest-order
contribution to the gluon propagator, given in
Fig. 17(a), is of order 1/N. If one evaluates this
graph one finds that the gluon propagator develops
a pole at q'= g'/m, at least for m'«g'. Such an
effect would indeed qualitatively change the nature
of the model. For example, there would clearly
exist finite energy colored states.

However, in the 1/N expansion one must sum
all contributions of the same order in 1/N To.
leading order in 1/N these are given by Fig.
17(b). Using the fact that the gluons are in the
adjoint representation of SU(N) it is easy to see
that all other contributions of the gluon self-energy
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are of order 1/f(I' T. he effect of this nonpertur-
bative sum of graphs is to replace the free quark
propagator by the dressed quark propagator,
E(I. (1), calculated to leading order in 1/N. Since
the quark propagator vanishes like l(. (as A. -O)
and the p, loop momentum in Fig. 17(b) is of order
1/X, one concludes that the (luark self-energy
must behave like (1/N)[A, +O(l(.')+ O(1/N)]. Thus
it would appear that through 1/N there is no cor-
rection to the gluon propagator. Actually one
must be very careful in discussing the gluon pro-
pagator at zero momentum. Owing to the infrared
singularities, terms of the order A. in the gluon
self-energy cannot be neglected-however, the
net effect of such terms, as shown below, is to
multiplicatively change the inf rared-divergent
part of the gluon propagator. This will not cause
qualitative changes in the model.

Thus we see that simplicity is induced in higher
orders by the confinement produced to lowest
order (This .of course only occurs with the
singular cutoff. Calculations with the regular
cutoff would be much more complicated. ) In this
section we consider in some detail the 1/N cor
rections to the gluon propagator, the quark-
antiquark-gluon vertex, the quark propagator,
and the Bethe-Salpeter kernel for quark-antiquark
scattering. Our results are that to order 1/X
only the infrared-divergent part of the gluon pro-
pagator is modified, that the vertex function is
unmodified, and that to order 1/N only the infinite
self-mass of the fermion is modified. We find
three new contributions to the Bethe-Salpeter
kernel to order 1/N: a piece arising from the
modification of the gluon propagator which will
cancel with the corrections to the quark self-
energy, a contribution from 2-gluon production,
and a term arising from the production of hadron-
ic bound states In eva. luating the 1/Iq corrections
to hadronic masses only the last term survives.
This means that the 1/N corrections to hadronic
masses arise solely from the mixing of hadronic
states induced by the hadronic couplings derived
in Sec. III.

As we have seen, the gluon self-energy vanishes
to order 1/N as X- 0. Since the inverse gluon
propagator vanishes like q

' one must keep terms
in the self-energy of order q A, or A, ', which could
contribute in the region q = A, . An evaluation of
Fig. 1V(b) yields

/ I lll I l S IEHIIl~ f

On the other hand, the term of order X~q ~
must

be included. Its effect is to modify the infrared
behavior of the gluon propagator, which to this
order is

—Z

q '+x[q (/2x
' (34)

With our infrared cutoff this means that integrals
over D(q) are now given by [if E(q) is finite at
q =0]

dq D qF q =-i — 1 — F q, , q =02 1

+P dq 2F q.
The contribution to the quark-antiquark-gluon

vertex to order 1/N arises from the graphs in
Fig. 18. At first sight this would appear to be
finite as A. -0, since the bound-state wave func-
tions yield a factor of (1/X)' and the quark pro
pagators give a factor of A, '. Closer examination
shows that if r, p', p', r -p', and r -p'
are all simultaneously positive (negative), so as
to give the maximal factor of 1/l(. , then the poles
in r, lie all in the lower (upper) half plane. In
addition, when q =O=p' -p', one loses both
factors of 1/A, in the bound-state wave functions.
Therefore, this contribution to the vertex behaves
like

I'- —(q +O(X))

and can be neglected. Again this form of the
vertex can be shown to hold to all orders in 1/N

The 1/I(I correction to the quark self-energy is
now readily calculable. To this order it is given
by Fig. 19, where the gluon propagator is given in
Eq. (34). The 1/X correction only occurs in the
infrared-divergent piece of the gluon propagator—

FIG. 18. Contribution of order 1/N to quark-antiquark-
gluon vertex.

[Actually one can show that this form, II(q)- & ~q ~+ O(&'), holds to all orders in 1/N. ] A
careful evaluation of the terms of order (1/N)X'
shows that they can be neglected, even as q -0. FIG. 19. 1/N correction to quark self-energy.
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and their sole effect is to modify the infinite self-
energy of the quark. Thus to this order the quark
self-energy is

iZ(p) =y
—

1
g'N sgnp 1 1-

2m z 4N p
(35)

I I I I I I I I Ii' I I I I I I I I I Hl I I

y

I

IIIIIIIIIIIIIIIIIIIIIIIIII
V-P

8

IIIIIIIIIIIIII

IIIIIII IIII IIIIIIIIIIII = IIIII IIIII
IIIIIIIIIIIIII

FIG. 20. Corrections to Bethe-Salpeter kernel from
{a) gluon propagator correction, {1)2-gluon exchange,
and {c)production of two hadrons. [{d) Illustrates cor-
rection to mass of bound state. ]

We now consider the 1/N corrections to the
Bethe-Salyeter kernel and the effect on the hadron-
ic mass spectrum. The three nonzero contribu-
tions to the kernel of order 1/N, which are pure
SU(N) singlet in the quark-antiquark channel, are
illustrated in Fig. 20. The modification of the
gluon propagator, Fig. 20(a), only occurs in the
infrared-divergent part of the potential and pre-
cisely cancels the 1/N contribution to the infinite
self-energy of the quarks, Eq. (35). This cancel-
lation will occur to all orders in 1/N. Since the
other 1/N corrections to the kernel are not in-
frared singular we conclude that, as in leading
order, all infrared divergences cancel in the
equation for hadronic bound states. There remain
finite corrections to the hadron mass which might
arise due to corrections to the kernel from Fig.
20.

The 2-gluon contribution, K', to the kernel,
given in Fig. 20(b), is easily evaluated. One
finds that

Z' ~,(p, r —p; p', r —p')

[e(p )&(p' r)+ &( p-)&(r--p')+~(p —r )~(p')+ e(r -p )8(-p') j+0-~a' ~r )~b )-v~y'

However, due to the 8 functions this term cannot
affect the hadron masses to order 1/¹ This is
because to leading order the 1/N contribution to
the mass of the Kth hadron, 5m~', will be given
by first-order perturbation theory,

5m, '-Q (Z')y, ),
where g„are the lowest-order bound-state wave
functions. Since these wave functions vanish un-
less the quark-antiquark pair are moving in the
same direction as the hadron, and K' vanishes
unless at least one quark is moving in the opposite
direction, this contribution to Sn~ is zero.

Thus the only 1/N contribution to the hadronic
masses arise from the kernel given by Fig. 20(c).
I owest-order perturbation theory will yield a
contribution represented by Fig. 20(d). Here we
recognize, recalling the discussion of Sec. III
where we derived the form of the 3-hadron ver-
tex, a self-energy graph of the effective hadronic
theory which arises to lowest order in 1/N

It is clear that in principle one would calculate
the wave functions of the bound states, the hadron-

I

ic scattering amplitudes, and current matrix ele-
ments to order 1/N, and in fact to all orders in

1/N
Our final conclusion is that these higher-order

corrections will change none of the qualitative
features of the model.

IX. CONCLUSIONS

Our main conclusion is that two-dimensional
Yang-Mills theory indicates the viability of infra-
red slavery as a confinement mechanism. The
model possesses aQ of the properties required of
a sensible thoery. The subspace of color-singlet
hadronic states is unitary by itself. There are no
long-range forces between hadrons, and colored
states cannot be produced in hadronic collisions.
The properties of gauge-invariant local operators
are as expected. In particular the theory is as-
ymptotically free at short distances, revealing the
underlying quark model. The properties of gauge-
variant Green's functions depend greatly on how
one treats the infrared singularity. The choice of
a singular cutoff is advantageous in making con-
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finement manifest by producing an infinite self-
energy for the quark, and causing many gauge-
variant amplitudes to vanish.

The model also indicates that mass corrections
to scaling might be governed by the quark masses
and not the hadronic mass scale. It suggests a
dynamical basis for the OZI rule.

The real world is of course four-dimensional
and much more complicated. Confinement will
not be automatic but will have to be produced
dynamically. Our investigation suggests the im-
portance of enhancing the infrared singularities

to render the confinement manifest, and confirms
the great utility of the 1/N expansion of 't Hooft.
If the four-dimensional theory confines, it will
produce an infinite number of discrete bound
states to leading order in 1/N. The resulting
theory of hadrons should have many of the qualita-
tive features discussed above.
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