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We present an improved method for studying the behavior of Feynman amplitudes in the limit in which some
or all of the masses of the internal lines vanish. Feynman amplitudes develop singularities in such a limit for
certain configurations of external momenta. Our method enables us to determine these configurations, be they
Euclidean or Minkowskian, on or off the mass shell. They are worked out explicitly in a few relatively simple
cases which include most of the physically interesting singularities. Power-counting rules for these singularities
are briefly discussed.

I. INTRODUCTION

Analyticity of Feynman amplitudes as functions
of external momenta has been studied extensively
in the past. ' In most of these investigations,
masses of internal lines are treated as parameters
fixed to some finite values. However, some as-
pects of Feynman amplitudes can be understood
more clearly if masses are also treated as vari-
ables. The most intriguing among them is the
singularity of Feynman amplitudes at the origin of
some (or all) ot the mass variables, the so-called
mass singularities. '"

The infrared divergence in quantum electrody-
namics is a well-known example of a mass singu-
larity. They appear in the exchange or emission
of low-energy photons between or from electrons.
The structure of such singularities in quantum
electrodynamics has been analyzed in great detail. '
In particular, infrared divergences arising from
real and virtual soft photons cancel each other in
the transition probability, if we sum over all final
states containing an arbitrary number of emitted
photons with their total energy below some fixed
value. ' '

On the other hand, much less is known about the
infrared properties of non-Abelian gauge field
theories. It is not known, for example, whether
the cancellation mechanism noted above works
also for such theories. In fact, it has been con-
jectured' that the infrared divergence is so violent
in these theories that the true asymptotic states
may be quite different from those of free fields.
If this in fact occurs as it seems in the two-dim-
ensional Schwinger model, ' it will have an interest-
ing implication on hadron physics.

Of course the conventional perturbation expansion
may not be reliable in treating problems of this
sort. For this reason some authors have explored

alternative approaches. ' In view of the poor status
of our knowledge at present, however, it may still
be necessary and valuable to see what one can
learn from perturbation theory on such a problem. '

Another important problem to which mass sing-
ularities are relevant is the behavior of Feynman
amplitudes in various large-momentum limits. A
basic result in this respect is the %einberg
theorem' which enables us to determine the leading
power behavior of convergent Feynman integrals
when the external momenta become very large.
This theorem was later extended to nonleading
terms by Slavnov, "and the rule for the logarithmic
factor of the leading term was elaborated by Fink"
and Westwater. " More recently, Berg4re and
Lam" studied the asymptotic expansion of arbitrary
(even divergent) Feynman amplitudes with respect
to the scale parameter A. introduced in all external
momenta, and determined all logarithms associ-
ated with the highest power of A.. This problem
was also investigated by Pohlmeyer" who, ex-
tending Speer's analytic renormalization scheme, "
succeeded to obtain the complete asymptotic ex-
pansion in A, .

Most of these results concern the limit where
external momenta are nonexceptional" and be-
come large uniformly in the Euclidean direction. "
Such a limit can be converted by scaling to one in
which all internal masses become uniformly small
while external momenta are kept fixed. %e may
thus be able to obtain the results listed above by
determining the singularities of Feynman ampli-
tudes at the origin of mass variables.

The mass singularity also becomes important in
the large-momentum limit of another kind in which
some or all of the external momenta lie on their
mass shells (e.g. , the Regge limit of two-body
scattering amplitudes, "the behavior of form fac-
tors at large spacelike momentum transfer, ' the
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Bjorken limit of electroproduction structure func-
tions, "etc."). Because of the on-mass-shell re-
strictions, it often occurs for such limits that the
leading behavior of the asymptotic expansion is
determined by mass singularities rather than
ultraviolet singularities. In a theory of charged
fermions and massive neutral vector mesons, for
example, the leading logarithms of fermion form-
factor amplitudes come from the infrared-singular
region of loop integrations, while the ultraviolet-
singular region gives only nonleading logarithms. "

Thus far we have considered only individual
Feynman amplitudes. To study the large-momen-
tum behavior of Green's functions, it is at present
most efficient to make use of the renormalization-
group equations, ' their variations, or the Callan-
Symanzik equations. '4 For nonexceptional momenta,
these equations enable us to sum up the leading
terms of perturbation expansion in a fairly straight-
forward way. " They are applicable even to the
cases of exceptional momenta" if they are com-
bined with the Wilson short-distance expansion. '
Except in some simple cases, "however, it seems
difficult to apply these techniques to the large-
momentum limits of on-mass-shell amplitudes. In
this respect, the knowledge of mass singularities
will be useful to understand the limitation of their
applicability and explore possible extensions, if
any.

All these examples point to the necessity of
understanding the nature of mass singularities
that arise for the external momenta in the Minkow-
skian, exceptional, and/or on-the-mass-shell
configurations. In view of various shortcomings
of existing approaches to these problems, there
is a strong demand for a systematic and effective
method for handling such problems. It is the pur-
pose of our present work to satisfy such a need.

This article, which is the first of a sequence,
is concerned with the general treatment of mass
singularities whether they are associated with
exceptional or nonexceptional external momenta,
Euclidean or Minkowskian, on or off the mass
shell. Because of an advantage in handling Minkow-
skian external momenta, we start as in Ref. 2
from a parametric representation of Feynman
amplitudes rather than the coordinate or momentum
representation. On the other hand, instead of the
cut-set representation' which turned out to be
rather clumsy for dealing with exceptional mo-
menta, we start here from a more flexible param-
etric representation developed recently by one of
us

In Sec. II we examine carefully how mass- and
momentum-dependent singularities appear in
Feynman amplitudes. This leads to the definition
of two fairly simple types of mass singularities

(type I and II) which, however, include most of the
physically interesting cases. We shall briefly
touch upon more complicated mass singularities
at the end of Sec. II. The explicit conditions that
the internal masses and external momenta must
satisfy at a type-I mass singularity are derived in
Secs. III and IV, while those for a type-II mass
singularity are discussed in Sec. V. Derivation of
power-counting rules is outlined in Secs. III and
IV for a restricted class of integrals.

In the present article, we ignore complications
associated with the ultraviolet divergences. In
order to find mass singularities of renormalized
amplitudes, we still have to learn how ultraviolet
divergences and their renormalization affect the
strength of mass singularities. This applies in
particular to the powers of logarithmic factors of
mass singularities. We shall investigate this prob-
lem in subsequent articles where the technique
developed here is applied to some respresentative
models of renormalizable field theories.

II. DEFINITION OF MASS SINGULARITY

Let G be an arbitrary irreducible (i.e. , one-
particle-irreducible and one-vertex-irreducible" )
Feynman diagram with N, external lines of mo-
menta P, (a = 1, 2, . . . , N, ) (all directed inwards),
N internal lines of momenta P, and masses" m,
(i = 1, 2, . . . , N), and L loop integration momenta ~,
(s=1, 2, . . . , L). The general form of the corres-
ponding Feynman integral p, ~ is given by"

(2.1)

(2 2)

where o.~ consists of coupling constants and numer-
ical factors, and E(P, P) is a polynomial of exter-
nal and internal momenta generated by derivative
couplings and numerator factors of propagators. "
The internal momentum P; may be decomposed as

L

P;=q;+k;, k(=P q;, x, , (2.2)
$=1

where q„ is the circuit matrix, namely, the pro-
jection (+1, 0) of P, along ~, . The constant mo-
mentum q; can be chosen freely subject only to the
momentum conservation law at each vertex:

N

e„,q, +P„=0,
g =1

where e„, is the incidence matrix [e„j =+ 1 (-1) if
the line j enters (leaves) the vertex v, and = 0
otherwise] and P„ is the sum of the external mo-
menta entering G at the vertex v.

Introducing the Feynman parameters zy z2, . . . ,
z~ and carrying out the loop integrations, we ob-
tain from (2. 1) the parametric integral"
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(z,, I, q)5 (1 —g z,)
' '

dz,(-()", p I'(N —)I—)).J--
(4~)' U(z)'+)) f V(z m, q)-ze]" ' (2.4)

where U(z) is the determinant

U(z) = det(U. ,)
for the matrix (U„),

N

Ust P qis lit z(

(2.8)

(2.8)
z, =0 for i~A. ,

BV/sz, =0 for i(= G-A,
(2.11a)

(2.11b)

p, o(m, P) if (i) the entire surface of some boundary
plane of I is contained in the intersection S,(n), P)
=—S(m, P) gi, and/or (ii) S(m, P) pinches a subhyper-
surface of I. As is well known, this leads to the
Landau equation

V(z, m, q) = Q z (m' —q,')

B,, (z)= gq„q„U, (z). (2.8)

The summation in (2.8) goes over all (not neces-
sarily independent) self-nonintersecting loops c of
G and U, (z) is the Ufunction" for the diagram ob-
tained from G by shrinking the loop e to a point.
The function I'"~ is calculated as follows: Pick out
k pairs of internal momenta (P", , P,". ), . . . from
E(P, P) and replace them by ,'g"'B,,-, -. . . . Re-
place the rest of P; in F(P, P) by Q,' defined by

N

Q) qf UQ J 0
j =1

(2.9)

Sum up the result of this operation over all pos-
sible k pairs. If F(P, P) is of order n in the inter-
nal momenta, K is equal to [n/2] .

Throughout this work we are interested in the
singularities of Feynman integrals which are spe-
cifically associated with vanishing internal mass-
es. We therefore treat p, ~ as a function of both
internal masses m =()n„.. . , )n»] and external mo-
menta P =(P„[vp G].

Formulas (2.4)-(2.8) show that a mass- and mo-
mentum-dependent singularity may appear in
t(, o(m, P) when the V function vanishes. " To be
more precise, let us define two hypersurfaces
S(m, P) and I in the complex Feynman parameter
space c» = ((z„.. . , z„) ~ z„.. . , z» H cj according to

S(m, P) —=Oz „.. . , z ) ~ V(z, m, q) = Oj,

I= (z„.. . , z») P z;—= 1, z„.. . , z» real and ~ 0

(2. 10)

The vanishing of V generates a singularity of

N

+
) Q z,. z,.B,, (z)q,. q, , (2.7)
f,j =&

B„(z)b. eing defined by

A being a subdiagram of G.
lf (2.11) has a unique" solution, we obtain the

usual threshold singularity. This is of no partic-
ular interest to us since it is not necessary for
its appearance that any of the internal masses
vanish. Under some circumstances, however, the
pinch condition (2.11b) becomes degenerate and
ceases to determine z;, i(=- G -A, uniquely. It
turns out that, in many cases, such a degeneracy
occurs if and only if some of the masses of inter-
nal lines vanish. This indicates that mass singu-
larities correspond to certain degenerate solutions
of the Landau equation (2.11). Unfortunately, gen-
eral analysis of such degeneracies is rather com-
plicated and would require powerful mathematical
tools. Instead of following such a path, we shall
concentrate here on a few simplest cases which,
however, cover most of the physically interesting
mass singularities.

The simplest type of degeneracy occurs when the
intersection S,()n, P) does not depend at all on
z~& G-A. , 3, g'. In this case„ the pinch condition
(2.11b) is equivalent to V~, . =, «„=-0 (identity
in z~ - G -A) because of the relation

g VV=gz)
Bz]

As we shall show in Sec. III, this leads to vanish-
ing masses for all the internal lines of G -A. To
distinguish the associated mass singularity from
others, let us call it mass singularity of type I.
To be more precise, let us define it as follows:

Definition I. Let G be an arbitrary irreducible
diagram and Mbe a pzoPe~ subdiagram of G. The
Feynman amplitude p, o(m, P) has a type-I mass
singularity associated with the reduced diagram"
M —= G/M if

V(,I, q) ), .=(),c» = 0

holds for any values of z„H G-M.
Two situations (without and with enhancement)

arise for mass singularities of this type. They
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will be studied in Secs. III and IV, respectively.
The type-I mass singularity is a pure end-sur-

face-type singularity. The next simplest situation
will be encountered if we allow the presence of a
pinch, but in such a restricted way that its position
depends only on so~ze of z,H G -A. This will be
called a mass singularity of type II:

Definition II. Let M be a proper subdiagram of
G and M' be a proper (possibly empty) subdiagram
of &if. The Feynman amplitude p, g(m, P) has a type-
II mass singularity associated with the reduced
diagram M —= G/M if the Landau equation given by

z,. =0 for se.9',
BV/Bz,. =0 for j&G —M'

has a degenerate solution such that z~& G -M are
completely arbitrary, while z;~M have uniquely"
determined values that do not depend on z~E G-M
except through the normalization

z; =1.

Geometrically, a type-II mass singularity ap-
pears when S(m, P) pinches I along a hypersurface
that extends uniformly in the direction of z~~ G -Tl7.

We shall examine its structure in Sec. V.
Of course one can find mass singularities much

more complicated than those considered above.
One example is the I andshoff diagram which ap-
pears in the composite hadron models for wide-
angle elastic scattering. " In this case, S(m, P)
pinches I along a multidimensional hypersurface
which depends on a/l z,E G -A. A systematic
analysis of such possibilities is beyond the scope
of this article.

III. TYPE-I MASS SINGULARITY

According to the definition I, the Feynman in-
tegral p, ~ develops a mass singularity of type I
if the V function vanishes identically on the boun-
dary plane D(M) defined by

n(M) =
I

(z„.. . , z„) z,. = 0 for ~'EM, Q s,. = 1I .
q eg-N

Qf course this happens only for certain values of
internal masses and external momenta. Further-
more, the nature of such a singularity depends
strongly on how fast V vanishes at D(M). To an-
alyze these problems it is useful to introduce a
vanishingly small parameter 5 which regulates
the approach of Feynman parameters z». . . , z„
to D(M) in the following manner:

O(5') for I+X(C:M),

z; = O(5) for i EM —X,
O(1) for i H G -M,

[U] U 8Ux [ O(~ (I) )]

where

(3 3)

UX Uxp
1

(3 4)

H= G/X, "and U"—, etc. denote the U functions for
the diagram H, etc. From (2.8) and (3.4), we ob-
tain similarly"

[B,J]x= U B,", [=O(e )] .for z, jEH. (3.5)

Taking account of (3.3) and (3.5), and noting that
z, =O(e) for i &X, we find that the zeroth X limit
of V agrees with the V function for the reduced
diagram II:"

[V]-= g z,. (m,' q,')-
1

+
[U] ~ z, z,. [B„]zq, ~ q,. .

X f,jFH

1
( (Bl )

—q()+ z z ~ z B( q) ' q~.
tgH igjg H

=VH (3.6)

and expand V in powers of 5. Here, X denotes a
(possibly empty) proPer subdiagram of M intro-
duced to allow for the possibility that some
z,eM may vanish faster than others at D(M)."

Since V is a homogeneous function of Feynman
parameters, it is generally not possible to expand
it into ordinary Taylor series. We note, however,
that any homogeneous function f(z) of Feynman
parameters of G may be expanded into a series of
functions such that each term in this expansion is
homogeneous with respect to the Feynman param-
eters of a subdiagram 8 of G. We denote such an
expansion as

f(z) = lf(z)]z+ .[f(z)]z+ + [f(z)]z+
(3.2)

where [f(z)]z, called the ~zth S limit, is a homo-
geneous function of degree e, + n with respect to
z, eS, n, being a constant characteristic of the
function f(z). For the zeroth S limit [f(z))z we
often drop the superscript 0 for simplicity.

Corresponding to the hierarchial approach (3.1)
of Feynman parameters to D(M), let us expand V
in two steps. First, we expand. it with respect to
z,. ~X assuming that z,. =O(e) for iE X and z,. =O(1)
for jEG-X where e= 5'. In order to calculate the
zeroth X limit of V, it is necessary to find the
zeroth X limits of U and I3„.. For this purpose,
note that X in general consists of several irreduc-
ible components Xr(I' = 1, 2, . . . ) and a set 3 of
lines connecting them. I et the number of loops in
X„be L(Xr) and let L(X) —=grL(Xr). Then we
find from (2.5) that"
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Since V„ is clearly of order e', we find (recall
62)

v= v„+o(6'). (3.7)

[v„]„=v„

jpM
z) m) —g]

'The second step is to expand VH with respect to
z&&X=M/X. By an argument similar to that
leading to (3.6), we find that the zeroth X limit of
V„agrees with V„, the V function for the reduced
diagram M =If/X—= G/M:

The formula (3.11) shows that V becomes equal
to V& on the boundary plane D(M) (i.e. , 6= 0).
Therefore, it is at least necessary for the appear-
ance of a mass singularity of type I that VM vanish-
es identically.

In order to find the restrictions the vanishing
of V„ imposes on internal masses and external
momenta, we note that M, being the reduced dia-
gram G/M, in general consists of several irredu-
cible components M (a = 1, 2, . . . ). By definition
no pair of lines of different irreducible components
can belong to the same loop of M. Thus, we find
from (2.5) and (2.8) that

1
+

pM
Mz) z~ B)g tg]

i,jg M

(3.8) (3.12)

Since z, =O(6) for i+X by definition (3.1), [V„]»=
O(6) and the expansion of V up to terms of order
5 is given by B,,~ U ~ if i, jEM~. (3.14)

0 if i&M~, j &Ma, and M„WM8, (3.13)

V= V„+ [V„J'+O(6'). (3.9)

In deriving this formula, we have not taken account
of the constraint

Substituting these results in (3.8) we obtain

Vz= Q Vz„ (3.iS)

To incorporate it most easily, we rescale Feyn-
man parameters according to

where

crz,' for i EX, z,' =1,

z, =~ pz,' for iEM-X, g z,' =1,
$ p M-X

(3.10)

+ M ~ z~z~B~~ Q'. ' Q' ~

ftj 6 Mn

(3.16)

(1 —o -p)z,' for ieG-M, g z,' =1.
i e G'-M

V = (1 —p) V~I + p [V„']»+O(p', o'), (3.11)

where V„' and [V„']» are obtained from V„and
[V„]», respectively, by the replacement z, - z,'

(i E G). In the following, we shall usually drop
primes for simplicity, with the understanding that
Feynman parameters then satisfy

and

The correct expansion is obtained by substituting
(3.10) into (3.9) and re-expanding the result in
powers of p and o [regarding p = 0(6), o =O(6')].
Because of the homogeneity of V, V„, [Vz]», etc. ,
we find

is the V function for M„and B;~~ are all nonvan-
ishing.

Note that, if V„were to vanish identically under
the constraint

z —1

it must also vanish without it since V„ is homo-
geneous in z. Also, since Feynman parameters of
different V„'s are all independent, V„vanishes
identically if and only if each VM vanishes identi-
cally.

In order to find the necessary and sufficient con-
ditions for the identical vanishing of V„, recall
that the constant momenta q; can be routed arbi-
trarily as far as they satisfy the conservation law
(2.3). Each choice of routing defines a subdiagram
T of M, which we shall call routing diagram, ac-
cording to

jr:. M

zf 1 e

q, t0 fori&T,
q'; =0 for i&M —T.

(3.17)
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Dropping terms which vanish trivially, we can re-
write (3.16) as

agrees with M„. Therefore, in (3.22), the sum-
mation actually extends only over iH T, and we
obtain

V~ = z m)~+ z I) —q
i& M&-T~ » ~ T& &„;q;+P =0, so&M„*.

&e&n
(3.23)

+ ~ ~ 8» Z~B»~ q] q 1U ~
~J ( T

(3.16)

m; =0 for iCM —T

m —q =0 for i~T
q,. ~ q,. =0 for i, j&T .

(3.19a)

(3.19b)

(3.19c)

Settingi =j in (3.19c), we find q,.'=0

forint

T„.
Thus, (3.19) can be simplified to"

m; =0 for iEM„,
q; ~ q&=0 fori, j~T .

(3.20a)

(3.20b)

The result (3.20a) shows that our definition in
fact gives a singularity at zero mass. In order to
see the significance of (3.20b) more clearly, it is
useful to rewrite it in terms of external momenta.
For this purpose suppose all lines of G except
those belonging to the irreducible component M„
have been shrunk to points. Then each vertex se

of the resulting diagram M~ is composed of sev-
eral vertices of G, and the sum of the external
momenta

vE»tt

(3.21)

can be regarded as "relative" external momentum
entering M„* at the vertex' Thus, (2.3) reduces
to the momentum conservation law for M„*

e"; q; + P"„=0, wH M„*,
4 E hf~+

(3.22)

where c; is the incidence matrix defined on M„.
If we ignore the "external" lines, M~~ clearly

where T =T A I .
It is important to note here that, among all pos-

sible routings of constant momenta, we can always
find one such that the corresponding T (and hence
each T„)contains no loop. For such a routing dia-
gram T, we can prove the following:

(i) z,.z&B"„(i,j~. T ) are all independent (see
Appendix for proof). "

(ii) z, U"~ (iE.T„) is independent of z,. z&B",,~
(i,j ~ T„). (This is a consequence of the second
Kirchhoff law [Ref. 29, formula (50)].)

(iii) z„U (kEM —T„) is independent of other
terms in U "V~„since it is quadratic in z~ for
kEM„—T while no other term is.

It follows that all terms of (3.18) are mutually
independent. Hence V„vanishes identically if
and only if

The relations (3.23) and (3.24) show clearly that
(3.20b) holds if and only if

P P„=0, zv, m)'H j/t~ . (3.25)

We note that this result does not depend on the
choice of T.

The results obtained thus far may be summarized
in a slightly modified form as follows:

Theorem I. In the limit

m, =0 for all i&M =6/M,

where M is a proper subdiagram of G, the Feyn-
man integral p. z develops a type-I mass singularity
associated with the reduced diagram M if and only
if the external momenta satisfy the condition (3.25)
for each reduced diagram M„"=M/(M -M„) (o.
=1, 2, . . . ), where P"„are the external momenta
relative to M„* defined by (3.21). A mass singular-
ity then arises from the integration over the bound-
ary plane

o(iM)=((z„. . . , z„) 1:, =0 for iEM, g c,. =lI.
j EG-N

Let us now see how this theorem enables us to
determine the strength of the leading mass singu-
larity of the Feynman integral p.~. Suppose M, is
the subdiagram of G consisting of all internal lines
with nonzero masses. (In general, M, contains
some internal lines. However, in the case where
the external momentaP, go to as AP,' with P,'
fixed and A, -~, Mo is empty since all mass terms
vanish as m;/A after scaling. ) Let goo be the set of
all subdiagrams of G that contain M, . Then each
element M of So, determines a (mass-singular)
configuration C~ of external momenta of the form
(3.25). Let 8 be the set of all possible configura-
tions C~, M & S, . Since several M may correspond
to the same configuration in general, let us decom-
pose S~o as

(3.26)

where S~ consists of all M ES, such that C—„=C.

On the other hand, since T~ contains no loop, any
line i of T„divides it into three disjoint4' parts
T', (i), T„"." The constant momentum q;, i H T„,
can therefore be expressed as

(3.24)

»v ET"
C
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—nfkFi + ~ ~ ~p k (3.27)

where F„' depends on z,', external momenta and
internal masses. Making use of (3.3) with X and
H replaced, respectively, by M and M = G/M, re-
calling the assumption that M has no loop (i.e., U"
=1), and also using (3.11), we obtain

Clearly, each S~ contains a minimal subdiagram
M

From now on we shall concentrate on a particu-
lar configuration C and the leading mass singular-
ity arising from the boundary plane D(M), where
M =M is the minimal subdiagram in Sc. (It will
be seen in the following that mass singularities
arising from nonminimal subdiagrams are not as
strong as that of M„.) In the rest of this section
we shall assume further that [V„]„' does not vanish
for any choice of X. (Otherwise the strength of the
mass singularity will be enhanced. Such a case is
treated in Sec. IV.) It is then reasonable to sup-
pose that X is empty since nonempty X only cuts
down the size of the available phase space, thus
leading to weaker singularities. Whether this
mass singularity does actually lead to a divergent
integral or not can be determined by carrying out
the integration over z;, i &M, around z& =0. In
so doing, however, we run into two problems: (i)
The integration requires the knowledge of the be-
havior of E, on D(M}. (ii) The integral (2.4) may
be divergent reflecting the presence of ultraviolet-
diver gent subdiagrams.

On the boundary plane D(M), the zeroth M limit
of E, will behave as 5~» [5 defined in (3.1) with X
empty], where f, depends on the specific model or
theory. Since we have not chosen any particular
theory, the best we can do here is to leave f» as a
free (non-negative) parameter In orde. r to deal
with the problem (ii), we must replace the formula
(2.4) by one in which ultraviolet divergences are
removed by renormalization. This will be one of
the main subjects of subsequent articles. Until
then we shall be concerned only with those inte-
grals that are free from ultraviolet divergences.
For simplicity we shall also assume that M has no
loop" and M is irreducible. "

In order to perform integration over D(M) we
shall make use of the parametrization (3.10)
noting, however, that, by assumption, X is empty
and hence 0 is absent. The numerator function F„
can be expanded around p =0 as

d ' dz'
N ~g

(U N)2i+»([Vt]1 )f»+Ny

1
X + ~ ~ ~

(a~i ~

~ )N -»l, -» f» Ny--
&u —~&

(3.29)

where Ny denotes the number of internal lines of
M, and

dz„'-=6 1 — z,' dz,'
i

LCM iC!lf

etc.
Now suppose E„'=0(5~») for 5-0. Then, since

[V']—„' does not vanish identically by assumption,
the most singular part of (3.29) behaves in the
limit 5-0 as"

5 "»&(powers of ln5), (3.30)

where dk determines the strength of the mass sin-
gularity of the 0th term of the Feynman integral
Wc:

d, =N —2f. -k -N„-f,-g». - (3.31)

The degree of divergence of p, c as a whole is given
by

d = max (d, ) . (3.32)

Usually the k =0 term is the most singular and d
is equal to dp The mass singularity is divergent
if d) 0.

IV. ENHANCEMENT OF TYPE-I MASS SINGULARITY

where the neglected terms are of higher order in

p, and V„', etc. , are obtained from V„, etc. , by the
replacement z; -z,' (i&G).

In order to examine the behavior of the integral
(2.4) at the mass singularity, let us suppose that
all m';, i~M, are of order 5 while all scalar prod-
ucts P"„P"„,u, w'EM„*, satisfy (3.25) exactly, "
and consider the limit 5 0. Then, V„' is also of
order 5 for arbitrary values of z&, i&M, and
serves as a cutoff for the singularity of the inte-
grand (3.28) at 5 =0. Obviously the effect of this
cutoff is very similar to that of restricting z;,
iEM, to the domain z; & 5&0. For this reason we
have used here the same notation 5 as in (3.1).

Substituting (3.28) into (2.4), and performing the

p integration around p =0, we obtain finally~'

U2+»(V f ~)N-»l. -»

pfkFi
(U'")" {(I—p) V„'+p[V']iy —i ~)" '

(3.28)

In the last section we obtained the conditions
(3.20a) and (3.25) that are necessary and sufficient
for the appearance of a type-I mass singularity.
In estimating its strength we assumed that [V„]z
does not vanish for any X. Under some circum-
stances, however, [V„]r' may vanish identically
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in addition to V„. If this happens, the V function
behaves as O(5') in the limit (3.1), leading to a
stronger mass singularity. In this section we
shall study the mechanism of such an enhance-
ment. We shall find the constraints, besides
(3.20a) and (3.25), that the external momenta and
internal masses must satisfy in order that [Ve]x
vanishes identically for an appropriate choice of
X. We shall then examine how this affects the be-
havior of Feynman integrals at the mass singular-
ity.

I,et us first note that the reduced diagram H
=G/X, since it is not irreducible in general, can
be decomposed into irreducible components H „
(A =1, 2, . . . ). Correspondingly we obtain

V„=Q x;(m —q, ')
iCHA

1
+ H ZiZjjai gi'gj .Hp

i, jCHA

(4.2)

Taking the first X limit of (4.1) we find

[Va]x = g [VH„]x„ (4.3)

where XA are components of the reduced diagram
X =M/X(c H) defined by

Xg =XAH„, X =+X~.
A

in parallel with (3.15), where

(4.1)
To proceed further, let X„, (b = 1, 2, . . . ) be the
irreducible components of XA, and SA the set of
lines of X„that connect them. Recalling that zi
=O(5) for i&X„, we find from (2.5) and (2.8) that

[U A]» =U A x] [U A 5 [=O(Q A )]

[H"x] =U x& ~ U xn'Hpw, ,~ [=O(5&(xa&- )]tj A la rl

b'wb

=O(6~~ & ) otherwise, (4 4)

where L(X„)denotes the number of independent loops in X„. With the help of these formulas we obtain
from (4.2) the following equation:

[VH„lx„= Q x'(ning 0' )+ Q x x »AH "'O'4' +2 [Ue„] Q x(xgl&(q"l»Jf
X 1

fFXA b i, jGXA b Al XA j~-HA XA

r
g g ~HA/XA ~

UH ] ~ i jL ij ~XA~ ~j r H i UHA/XA ~ i j
JXJ Ac, j(-HA X ~U A~L JXA

(4.5)

[U""]'„
[Uez] ZU&& Z & i 4~&

A nEA i, jE-AfOt

(4.6)

For subsequent discussions, it is convenient to
fix the routing of constant momenta withinH and
introduce the corresponding routing diagram T as
in Sec. III. Instead of (3.17), however, we shall
choose a routing such that both T(CH) and

T/(TAX) (C: M) contain no loop, which is always
possible. For such a T, let us define TA—= TQHA

Now H „/X„, which is a subdiagram of M =H/X
=G/k2, consists of several irreducible components
of M: H „/X„= „M„. Thus, the last term of
(4.5) can be written as

and decompose it into two disjoint parts T„=T„—
(p T~ where T~ = T~ A Xg and T~ = Tg fl (H~ Xg) ~

Finally, corresponding to

H„/X~= M„,
n&A

we write

T~= (E ~n ~

nEA

In the reduced diagram M, T" characterizes the
routing of constant momenta within the irreducible
component M .

Since the reduced routing diagram /(TQT)X
contains no loop by definition, we can repeat the
argument preceding formula (3.19) and find the
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condition for identical vanishing of V„:
m; =0 for i~M~,

(uWA. )

q; qj =0 for i, j&T".

(4.7a)

(4.7b)

Comparing (4.6) and (4.7b), we see that the last
term of (4.5) vanishes automatically whenever V„
does. For our choice of constant momenta, (4.5)
thus becomes

1[V„]„' = Q z,.m,.'+ g z,.(m, '-q, ')+p
&ex~ r&~ ter&~ jCxg ~ QT

z,zjB, .~.~q' q
X

2 a
+[ «„) &i«;[&""1» «'qg+[ «) Q &s&g[&"..")x «'q;.

A k6T+A j6 T+ A f,jETg
(4.8)

As is shown in the Appendix, all terms in (4.8)
are mutually independent. Therefore, [V„„]„'+A XA
vanishes identically if and only if ~

m) =0 for i C X„- S„ fl T„,
m,-'=q, ' for iES„n T„,

(4.Ba)

(4.9b)

q, qj
—-0 for i,j EX„q tl T„(b=1,2, . . . ),

(4.9c)

q,. q, =0 for j~T„, k&T „,
q„q, =0 for k, l ~T ~.

(4.Bd)

(4.9e)

We note that (4.9a) and (4.9b) are consequences of
some simplification in which (4.9c) plays a role
similar to that of (3.19c) in reducing (3.19) to
(3.20).

It may seem at first sight that (4.9a)-(4.9e) are
highly dependent on the choice of T. Of course,
this should not be the case since [V„]» itself is

A
independent of T. This circumstance may be
seen most clearly if we express (4.9b)-(4.9e) in
terms of external momenta. Instead of treating
the general case, however, we shall carry it out
only for a particular class of mass singularities
with enhancement, called an infrared type mass-
singulaxi ty, which is characterized by m& w 0 for
all i E-X„(A= 1, 2, . . . ).

For such a singularity X„must satisfy the fol-
lowing properties:

(a) Each connected component X„,(c = 1, 2, . . . )

of X„is minima/ with respect to its external ver-
tices. By this we mean (i) X„,contains no loop,
(ii) any pair of external vertices of X„,are con-
nected by a set of lines in X„„and (iii) no proper
subdiagram of X„,satisfies theproperty (ii). [Note
that X„,is different from the irreducible compo-
nent Xz, introduced in (4.4).]

(b) Each X„,possesses at least Aeo external
vertices or else consists of only one vertex (i.e.,
no internal line).

Proof of (a). Since m, e0 for all ie X„by as-

= 'foal ~i

q; q„=0

for f~T~,
for i ET~, kFT~,

q„q, =0 for k, laT™„.

(4.10a)

(4.10b)

(4.10c)

For q, (k&T"„), we obtain from (2.3) the conserva-
tion law

qp+P~ = 0,
ae.r&

A

where P„"is the "relative" external momentum at
the vertex zo of the reduced diagram M„* obtained
from H by shrinking X„and the irreducible com-
ponents other than'& to points. On the other
hand, since T"„contains no loop, q, (i aT"„)can

sumption, the set X„—S„A T„in (4.9a) is empty.
This means X„=S„=T„which is equivalent to (i).
The property (ii) follows fromthe definition of X„,.
Next, suppose thatX„, —(i) is also minimal for
some i eX„. Since X„,has no loop, X„,-(i)
consists of two disconnected parts X„', and X„",.
By the assumed minimality of X„,-fi), all ex-
ternal vertices of X„,are connected by lines of

X„,-fi). Hence, they all belong to either X„',
or X„",. Therefore, q; is either equal to 0, or a
linear combination of qj, j&T„. In either case,
we obtain m =q =0 by (4.9b), (4.9e) and the
property X„=T „shown above, which contradicts
the definition of the infrared-type mass singular-
ity.

Proof of (b). Suppose X„,consists of a number
of internal lines, but contains at most one external
vertex. Then for any line i&X„„q;is either
equal to 0 or a linear combination of qj, j~T"„,
which leads to a contradiction as we have shown
above.

We are now ready to rewrite (4.9) in terms of
external momenta. Since X„=S„=T ~ according
to the proof of (a), we can simplify the constraint
on the external momenta as
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be expressed as

4'g=k Q P~

=+ Q P."for i~T"„, (4.12)

as in (3.24), where T"„=T"„(-p{i].p T"„."
For q; (i&X„,), noting that X„=T„, we can

write the conservation law as

q, =~ pA'~ e„kqk
u&XA'

, C
yFX' kFTAA, C A,

vCX"
A, C

P„" '+ okqk.
~&X" kmT&

A, c

(4.14)

It is now easy to verify that (4.10a)-(4.10c) are
equivalent to the following three conditions":

~ ~

2
P"„' for ieX„, (c = 1, 2, . . . ),

vCX"
A. ,C

Pq P~ 0 for UHXA c q
$6&%+

q

P" P" =0 for se, se'~M„*.

(4.15a)

(4.15b)

(4.15c)

As expected, they depend only on the topological

~viqf + cvkqk+Pe 0 for vEXA c ~

kFT&
A

(4.13)

where P,"' denotes the external momentum at the
vertex v= XA, . Using the decomposition X„,
=X„',@{i]gX'„' „we can also write q; (i EX„,)
explicitly as

structure of the diagram. Also, note the on-mass-
shell conditions (4.15a) which are characteristic
of infrared-type mass singularities.

Let us summarize the results obtained above as
Theorem II. A type-I mass singularity of the

Feynman integral p, ~ which arises under the con-
ditions stated in theorem I receives an enhance-
ment [in the sense that, for an appropriate choice
of the subdiagram X of M, the V function vanishes
as O(5') in the limit (3.1)] if and only if external
momenta and internal masses satisfy the addi-
tional condition (4.9).~' For infrared-type mass
singularities [i.e., m&e 0 for all i eX„(A
= 1, 2, . . . )], this condition reduces to (4.15)"
which is written explicitly in terms of external
momenta.

I.et us now see how the condition (4.15) works
by applying it to some simple diagrams. It will
be found that the infrared-type mass singularity
is indeed a natural generalization of the usual
infrared singularities.

For simplicity, suppose the reduced diagram
H =G/X itself is irreducible and external vertices
of H are all contained in X =M/X. Furthermore,
we shall consider only the cases where X consists
of at most two connected components.

(I) Connected X. The reduced diagram M=H/X
=G/M has only one "external" vertex in this case.
Since the sum of the external momenta at this ver-
tex vanishes by over-all momentum conservation,
a mass singularity of type I arises if and only if

m; =0 for i&M.
Let z be the number of external vertices in X. Ac-
cording to the property b mentioned above, it is
necessary for the presence of enhancement that
K~» 2.

(i) x=2. The minimality requires that X is a
continuous set of lines connecting the two external
vertices [Fig. 1(a)]. The condition (4.15a) gives

P2=m 2 for i&X.

pi
C

Pl

: )-P XA

(a) (b)
p~ p@

(C)

FIG. 1. General structure of connected suMiagram X with (a) two or (b) three external vertices satisfying the mini-
mality requirement. (c) is an exampl. e where X consists of two separate connected components XA and X'z .
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If only one external line is attached to each ex-
ternal vertex, this represents the infrared singu-
larity of the self-energy diagram.

(ii) x=3. The general structrue of X that satis-
fies the minimality requirement is depicted in
Fig. 1(b). From (4.15a) we find

P„'=m, ' for iEX„(a=1,2, 3)

as the condition for enhancement. If X, is empty
(i.e., no constraint on P, ) and only one external
line is attached to the endpoint of X, and of X,
this corresponds to the usual infrared singularity
of the form factor.

(2) X consisting of two connected comPonents
X„and X~. The reduced diagram M now has two
external vertices with momentum P and -P. We
find from (3.20a) and (3.25) that a mass singu-
larity appears if

m&=0 for i EM andP'=0.

Let us assume that both X„and X~ have two ex-
ternal vertices. By minimality, X& and X~ have

the structure shown in Fig. 1(c}, where P =P,
+p, = (P-, +P4). We then find from (4.15) that

P,'=P, '=nz,-' for ieX„,

If only one external line is attached to each ex-
ternal vertex, this is nothing but the well-known
infrared singularity of the forward Coulomb scat-
tering amplitude of fourth or higher order.

The behavior of the Feynman integral at the
mass singularity can be found by carrying out
necessary integrations. We make the scale trans-
formation (3.2) and suppose that E, is expanded
around p=a =0 as

I =~~ka~kF" + ~ ~ ~
k I k (4.16)

If we make, as in Sec. III, the simplifying as-
sumption that X and X =M/X contain no loop and
that H =6/X and M =H/X are irreducible, " the
most singular part of the kth term of (2.4) is given
by

fl fll It
P k+k+k

x x P P (Pts) 2(+(I p)Ve +p[VI ]& +oVI+ 2Vi ~ sP 2L a+'--
where N» and Nx denote the number of internal lines of the diagrams X =M/X and X, V,' and V,' are terms
of order unity and do not vanish for general values of z', and

dz„'-=5 1 — z& dz,', etc.
fGN kGN

To find out the strength of the mass singularity, we assume as in Sec. III that V„=O(5}for arbitrary
values of zj, i&M. In addition, we assume that [V„']» is of order 5'~'or smaller for arbitrary z', , i&H,
so that p[V„']„' can be disregarded in comparison with V„' for p & 5't'. [Note that this 5 is not equivalent to
the 5 in (3.1). The latter must be replaced by 5' ' for proper correspondence. ] Then the mass singularity
of (4.17) at p =v =0 is effectively regularized by V„'. Carrying out the o and p integrations around o =0 and
p =0 successively, we find"

f 1s» ~»
(U &s)2+k (Vi)f('+s»(Vs)(f&+ex)/2(V& ie)a (4.18)

where
1 Itn =N —2L —k Nx 2Nx fa 2f'a ~ (4.19)

5 ~x(powers of ln5),

where

(4.20)

d' N —2L —k-N~-f„" —,'(N +f„')-g„'.—(4.21)

The Feynman integral (2.4) as a whole develops a
divergent singularity if"

d' = max (df, ) & 0 .
I.et us compare (3.32) and (4.22) for a theory

for which E(P,p)—= 1 (i.e., f„, gi„etc =0). Usin. g

(4.22)

If we assume further that E,"= O(5'((} for 5-0, the
integral (4.18) behaves as

I

the relation N—„=Nx+Nx, we find

d =N -2L -Ny,
d' =N - 2I. -N~+-2NX.

(4.23)

(4.24)

These formulas show clearly that a convergent
mass singularity (d& 0) may become divergent
(d'& 0) if sufficiently enhanced.

V. TYPE-II MASS SINGULARITY

Thus far we have examined the mass singularity
of type I which arises from some boundary plane
of the hypercontour of integration. Let us now
turn our attention to mass singularities of type II
which are the simplest mass singularities con-
taining pinches. Although a complete analysis of
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these singularities is still beyond our reach, we
have at least found an interesting interplay be-
tween zero mass and threshold singularities.

According to the definition II (see Sec, II), it is
necessary for the appearance of a type-II mass
singularity that, for arbitrary values z~~G -M,
the equations"

s V/sz; (.. .(, —
) =m)' —(Q,'r)'=0,

jEK-=G/M',

(5.1)

gf =1.

[The first equality in (5.1) follows from (2.7),
(2.9), and formulas analogous to (3.3)-(3.5).j In
general, K consists of several irreducible corn-
ponents K„(A =1, 2, . . . ). Hence, by (3.12)-(3.14),
(5.1) is equivalent to

8V„ /sz, =m,.' —(Q,
' &)'=0

for j&K„(A=1, 2, . . . ),

(5.2)

V~„being the V function for the irreducible com-
ponent K„. This leads to

V„„=O (A =1, 2, . . . ),
because of the identity

V„= Q z,st /szq.
gF. Kg

(5.3)

Let us first see how the values of a~EM -M' at
the singularity are determined. For this purpose
recall that (5.2) must hold for arbitrary values of
z„~K„—Y„by definition where Y„=—Y 9K„and
Y=—M/M'. Taking the limit z„0 (for all kEK„
—Y„) in (5.2), we therefore obtain

have a unique solution" z, &M -M' which does not
depend on z&E G -M except through the normaliza-
tion

Then (5.4) completely determines the ratio of
Feynman parameters within each Sf„. The over-
all normalization factor

i&Ng
y

is left undetermined, however, since (5.5) are
homogeneous equations of degree zero. Since the
set of internal lines of the diagram (p„g M„ is
identical with that of M -M', (5.5) determines the
values of all z;HM -M' at the singularity except
for normalization factors A.„(A= 1, 2, . . . ; y
=1,2, . . . ).

The next problem is to find the conditions that
must be satisfied by the internal masses and ex-
ternal momenta. Unfortunately, because of its
complexity, we have been able to solve it only par-
tially; we have deduced necessary conditions but
not sufficient ones.

The assumption that each M„& has the leading
threshold singularity requires that the "relative"
external momenta of M„satisfy corresponding
threshold relations. They are determined by
solving (5.5) explicitly. If we substitute these
threshold relations and the values of Feynman pa-
rameters of M„„(y= 1, 2, . . . ) determined by
(5.5) into (5.3), it must vanish identically with re-
spect to z&~K& —Y&. Since the over-all normali-
zation factors A.„& (y=1, 2, . . . ) are left undeter-
mined as free parameters, each term in the ex-
pansion of Vr„ for small A„& (y = I, 2, . . . ) must
vanish. For simplicity let us write this expansion
as if it were an expansion with respect to the sum

Then, in parallel with (3.11), we
find

V =(1 —Z„)V„&„+X„[V j'„+O(X„'), (5.6)

where, on the right-hand side, the scale trans-
formation

sV„- /&z,. =m, ' —(Q,'~&)'=0 for jeM„, (5.4)

where M„-=K„/(K„—Y„) is the reduced diagram
obtained from K„by shrinking the lines of K„—Y„
to points, and V„-„denotes the V function for M„.
This is nothing but the ordinary threshold equa-
tion for M „. If M„consists of several irreduc-
ible components M„(y = 1, 2, . . . ), (5.4) decom-
poses into the threshold equations for each irre-
ducible component:

sVy /Bz =m ' —(Q' & v)'=0 for j&M„y .

(5.5)

Let us assume in the following that all irre-
ducible components M „(A= 1, 2, . . . ; y = 1, 2, . . . )
have nontriuial leading ' threshold singularities. "

z, &z( for i & Y„, Q g(-1,
i&F~

z, - (I —x„)z, for j EK„-Y„,
JEST~-Yg

m; = 0 for i&M„
P" P =0 for zu, w'eM„(n =1, 2, . . . ),

(5.7a)

(5.7b)

where M„(o.=1,2, . . . ) are the irreducible com-

is understood.
Clearly the condition for the identical vanishing

of V«~ is the same as that for the appearanceKg Yg
of a type-I mass singularity at K„/1'„. Referring
to (3.20a) and (3.25), we therefore find
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ponents of K„/Y„and P" denotes the "relative"
external momenta of M defined as in Sec. III.

If we choose a routing of constant momenta
within E such that the corresponding routing sub-

diagram T of K (i.e., q; cO for i HT but =0 for
i EK —-T) and the reduced diagram T/(T Q Y') both
contain no loop, the explicit expression for [Vz ]„'

A
can be directly obtained from (4.8) and (5.7),

[Vz„]r = Q z;m('+ Q zg(m)' —qg')+ Q Vr
A, b'6S -SAQT A b

"3YA ~el Y ~F. TN L "JYA
~ yE. TNA A A

(5.8)

zm ~ + 8 m
SA -SAQT A ii--SAQT A

+ Q Vr„=O, (5.9a)

p; &, =0 for i aT„",j wT"„,

q~ qI, =O for j, kETA.

(5.9b)

(5.9c)

The first condition (5.9a) can be sharpened with
the help of (5.2). In fact, if we substitute (5.9b)
and (5.9c) into (5.2) for j H Y„and expand the re
suit with respect to A.A, the vanishing of the lead-
ing term in this expansion gives

m)'-—0 for s ESA-SAA TA,

m -q =0 for s&SA Q T„,
(5.10a)

(5.10b)

sV„„,/&z, =0 for i ~Y„, (b=1, 2, . . . ).
(5.10c)

If (5.9b), (5.9c) and (5.10a), (5.10b) are substi-
tuted back into V~„, it becomes

Vz„=g
b i~-:YA

b

where Y„~ (b =1, 2, . . . ) are the irreducible com-
ponents of Y„, VY are the corresponding V

A, b
functions, SA denotes the set of lines of YA con-
necting Y„, (b =1, 2, . . . ), T„"=TAY„—, and T"„
-=T A (K„—Y„). Although (5.8) has the same form
as (4.8), there is one important difference. While
(4.8) must vanish for arbitrary variation of

~„&KA —YA and ~& 6 Y„, the latter set of Feynman
parameters are fixed in (5.8) by the threshold
equations (5.5). Thus (5.8) vanishes for arbitrary
&~HKA —YA if and only if"

thus far. Although they represent only necessary
conditions, one can learn several interesting as-
pects of type-II mass singularities from them:

(1) The nature of type-II mass singularities as
a mixture (or a "product") of an end-surface sin-
gularity and a pinch singularity is manifest in (5.7)
and (5.5). The former indicates that they are a
generalization of type-I mass singularities studied
in Sec. III, which are purely end-surface-type sin-
gularities. The latter says that they can also be
viewed as a generalization of threshold singulari-
ties which are essentially pinch-type. The simul-
taneous occurrence of these two different types
of singularities is made possible by the "com-
plementarity" of the diagram M -=K/Y (type-I
mass singularity) and the diagram M —=K/(K- I')
(threshold singularity).

(2) It is interesting to compare (5.9b), (5.9c)
and (5.10) with (4.9). We find that, apart from
notations, they agree with each other if and only
if X„and Y„(A=1, 2, . . .) contain no loop. This
implies that a type-I mass singularity with en-
hancement corresponding to no-loop X„(A= 1,
2, . . . ) turns into a type-II mass singularity if
the external momenta satisfy threshold relations
for M —=K/(K —Y). In the Feynman parameter
space, we may interpret this as follows: For a,

type-I mass singularity with enhancement, the
hypersurface S,(m, P) is located on some boundary

)( p
I

(5.11)+ z ~ ~~~~+0 qg 'qgP A . . Yct~~ TA

It is quite difficult to determine whether or not
(5.5) and (5.10c) are sufficient for making (5.11)
and its derivative (5.2) vanish identically. Since
we have not been successful in this attempt, we
have to be satisfied with the conditions obtained

(b)

FIG. 2. (a) Feynman diagram with three internal lines.
(b) Reduced diagram obtained from (a) by contracting
the internal line l.
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plane of the hypercontour of integration I [see
(2.10) for definitions of S, and I]. If X„(A=1,
2, . . .) contain no loop and the external momenta
satisfy threshold relations for M, then S,(m, P)
"extends" itself into the interior of I in the manner
specified by (5.5).

Finally, let us illustrate the somewhat abstract
discussions given above by simple examples.

Consider first the triangular diagram shown in
Fig. 2(a). Suppose M = (lines 2 and 3) and M'

=empty. If we choose a routing of constant mo-
menta such that q, = 0, q, = P„and q~ = -P„we
find from (5.7), (5.9), and (5.10) that

(5.11)

Qn the other hand, the reduce diagram M looks
like Fig. 2(b) and hence (5.5) is solved as"

(P, + P,)' = P,' = (m, +I,)',
m2z2 —rn3z, =0 .

Clearly this mass singularity may be interpreted
as a product of an infrared singularity (5.11) and

a threshold singularity (5.12).
As the second example, let us consider a non-

planar diagram [ Fig. 3(a)] . If we tentatively
choose M =(lines 1, 2, 3, and 4] and M'= empty,
(5.7), (5.9), and (5.10) give

(5.13a)

P '=m =m P =rn =m (5.13b)

The threshold of the reduced diagram M shown in
Fig. 3(b) is determined by its dual diagram [Fig.
3(c)], which is compatible with (5.13b) only if z,
=z4=0. Thus, a type-II mass singularity cannot
exist for the present choice of M'. Instead, we
have to choose M' =/lines 1 and 4}. Then a ty~e-
II mass singularity arises if P, '= (m, + m, )~. This
example shows that (5.5), (5.7), (5.9), and (5.10)
may in some cases be overdetermined, and the
condition for the presence of a leading threshold

singularity for M& „may not be compatible with
other conditions.

VI. CONCLUDING REMARKS

In this article we have investigated the condi-
tion for the presence of mass singularities of
types I and II in arbitrary irreducible Feynman
amplitudes starting from the definitions given in
Sec. II. For the simplest of type-I mass sin-
gularities, which lack any enhancement mech-
anism, we have explicitly worked out the nec-
essary and sufficient conditions that the external
momenta and internal masses must satisfy. This
result is summarized as theorem I. Mass sin-
gularities of type I whose strengths are enhanced
by further restrictions on the external momenta
have also been studied, although we have carried
out the analysis completely only for the singulari-
ties of infrared type (theorem II). The main fea-
tures of type-II mass singularities are examined
in Sec. V. It is in principle possible, if it ever
becomes necessary, to analyze more complicated
cases by our method, although it will certainly
be extremely tedious.

In general, a configuration of external momenta
is called exceptional if the Feynman amplitude
develops a divergent singularity for that con-
figuration. " Such a definition is not very prac-
tical, however, unless it is implemented by an
explicit rule that enables us to determine the
nature of the divergence. This is a particularly
troublesome problem for Minkowskian external
momenta. It is one of the utilities of our results
that they serve to clarify this point at least for
type-I mass singularities. In fact, theorems I
and II indicate that the external momenta are ex-
ceptional if they satisfy (3.25). Note, however,
that satisfying (3.25) by itself is not a sufficient
criterion for exceptional momenta. For instance,
if (3.25) is satisfied trivially (i.e., if none of M
has more than one relative external vertices),

P) P) p(

P~ P~

FIG. 3. (a) Feynman diagram with six internal lines. (b) Reduced diagram obtained from (a) by contracting the inter-
nal lines 5 and 6. (c) Diagram dual to the reduced diagram (b).



NEW APPROACH TO THE SINGULARITIES OF FEYNMAN. . . 1587

usually does not diverge and hence such momenta
are nonexceptional. "Theybecome exceptionalonly
if the corresponding singularity is enhanced suf-
ficiently by the additional constraint (4.9). On the
other hand, p, ~ diverges in general if the external
momenta satisfy (3.25) nontrivially (i.e., at least
one of M* contains two or more relative external
vertices). Such configurations are hence excep-
tional in general. Of course, there exist yet
other types of exceptional configurations corre-
sponding to type-II or more complicated mass
singularities. " At present, we are unable to
determine them completely.

In order to work out these considerations ex-
plicitly, it is necessary to obtain a general rule
for determining the degree of zero-mass diver-
gences of Feynman integrals. In view of the fact
that the strength of the mass singularity (in par-
ticular, the power of logarithmic factors) is af-
fected in general by the renormalization of ultra-
violet divergences, we postpone the full treat-
ment of power-counting rules to subsequent arti-
cles where technical problems associated with re-
normalization are analyzed in detail. The power-
counting rules derived in Secs. III and IV are ap-
plicable to a restricted class of diagrams only.

In spite of the limited applicability, it will be
instructive to see how these rules actually work
since their property will be basically not too dis-
similar to that of the general ones. Let us there-
fore choose as an example the large-momentum
behavior of Feynman integrals, one of the physi-
cal problems we are most interested in, and
examine how it is determined by the mass-sin-
gularity analysis.

To avoid unnecessary complications, let us
choose the P~ theory and consider a diagram G

containing no superficially divergent suMiagrams
(including G itself). The I'eynman integral cor-
responding to this diagram is given by

z] dz,

The behavior of p, ~(m, XP) for large X is thus con-
trolled by the singularity of the integral of (6.2)
in the "zero-mass limit" m&/A. -O (i c G).

In general, the integral (6.2) can develop vari-
ous types of mass singularities ranging from
types I or II to more complicated ones such as
Landshoff-type pinches. Instead of exhausting
all possiblities, which surely require quite a
complicated analysis, let us examine one simple
case. We suppose that the external momenta P
are fixed to some configuration C of the form
(3.25) and no other squares of linear combina-
tions of P vanish. In this case, the only singu-
larity that can emerge is the type-I mass singu-
larity without enhancement corresponding to the
configuration C. The singular behavior then
arises from the integration over the region de-
fined by z;=0, icM, and

iCG N

where M denotes a subdiagram in the set Sc~ in-
troduced in (3.26). According to (3.30), the
leading contribution of this singularity to the in-
tegral behaves as

9"&x (powers of Ink), (6.3)

d„- being given by

dg=N —2L —(Ng —2' ) . (6.4)

dc=— max dg~ 0,
~+ s~c

the integral (6.2), excluding the factors in front,
diverges as A,

'~& x (powers of Ink), while it is
finite if dc&0. Therefore, the Feynman integral
p, ~(nz, XP) as a whole behaves as

[Lg denotes the numbers of loops in M. The term
2I,„in (6.4) c-omes from the U function in the
denominator. ] If

p~(m, XP)=not "N '~'
5 1 — z,- dz;

U'[V(z, m/~, q) i~]"

where U and V are defined by (2.5) and (2.V), and

n~ consists of numerical and coupling-constant
factors.

We examine the behavior of pG(m, AP ) in the
limit A. -~ where X is a scale parameter multi-
plied into all external momenta. The large-mo-
mentum limit of this type can be transformed into
a mass-singularity problem as is seen from

XD& && (powers of 1nA. if dc~ 0), (6.5)

Dc being given by

Dc = 4 N, + 2 max(0, d-c) . (6.6)

Here we have used the simple topological rela-
tion N —2L = —,(N, —4).

In order to obtain more precise information on

Dc, let us suppose that the set of all external mo-
menta is divided into y subsets such that

(6.2) P, P, , =0 o;0'=1, 2, . . . , y, (6.'I)
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APPENDIX: LINEAR INDEPENDENCE
OF z,.s,.B„- IN (3.18) AND (4.S)

FIG. 4. Structure of a diagram having the maximum
value of d, allowed by (6.8). Each one of the subdia-
grams&&, &2, ...,&& is attached to &0 by two lines only.

is satisfied, where I', denotes the sum of external
momenta within the subset labeled o. For this
configuration, it can be shown that"

d y-2 (6.8)

where the maximum is achieved when the diagram
has the structure shown in Fig. 4. Thus we ob-
tain

Dc=4-&e for y=1,
D, ~4-~,+2y-4 for y~ 2 .

(6.9a)

(6.9b)

The case y=1 represents a nonexceptional con-
figuration since the mass singularity of the in-
tegral (6.2) is convergent (dc ~ —1). In this case
(6.9a) agrees with that obtained by the Weinberg
theorem. If y ~ 2, on the other hand, we are

. generally dealing with the exceptional configura-
tion and the power-counting rule has to be modi-
fied as given in (6.9b). Note that the estimates
(6.9) apply to Minkowskian as well as Euclidean
momenta since it is not necessary in our method
to restrict the external momenta to the Euclidean
region.

To examine the linear dependence of z;z,.B,,'
in (3.18), let us assume that

M

ai,.z,.z)B;) —-0
it jF. T~

holds identically for some constants ai, . Making
use of (2.8) we can rewrite this as

(A1)

M

a,&z;z,.q, ,llew, )U, '=0,
c i,jCT~

(A2)

aijz zj~ic~jc (AS)

where the summation Z, is over all self-nonin-
tersecting loops of M such that c 0 T 4 g.

Since (A2) is an identity in z, , the derivatives
of its left-hand side with respect to any z, must
also be equal to zero. In this connection it is
useful to recall that, if U~ is the U function for
the diagram G, 8U ~/sz; is the U function for the
diagram G(i) obtained from G by removing the
chain i (i.e., the set of all lines carrying the
same integration momentum as the line i). Sim-
ilarly, when i and j belong to different chains of

SBU~/sz, sz, is the U function for the diagram

G(i, j) obtained by removing the chain j from G(i),
or equivalently the chain i from G(j). [Note that
the chain j of G(i) may consist of several chains
of G].

Now, let L be the number of loops of M . Then
we can choose L —1 lines a(1),a(2), . . . , a(L„—1)
from the set M —T in such a way that succes-
sive removal of chains containing these lines
leaves us with only one closed loop c. (Recall
that T has no closed loop. )

This is equivalent to differentiating (A2) with
respect to the variables z, (y) z (2) ~ z (g y),
and leads to
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Obviously (A3) holds for arbitrary ice 0 T, if
and only if a,-,.=—0 for i,j (= c 0 T . Repeating this
for all possible choices of lines a(l),a(2), . . . ,
a(L —1), we conclude that a, , =— 0 for all i,j c T .

Let us next consider the linear dependence of
z~z&[B",

&
]0»' in (4.8). Suppose

2Z Z Z ~a.z/~~a. ~.~U. "]» +Q Q &oz;z;n;, n;, (U,"]» =o
c agTX ierM c i ge TM

A A t
(A4)

holds for some constants a„,- and a,-, Let LH be the number of loops of HA. Then we can successively
remove L„—2 chains containing the lines b(l), b(2), . . . , b(L„—2) from the set H„—T„ in such a way that
we are left with only two loops c, (containing two lines b c: T», i c T„")and c, (containing two lines i,jc T"„).
Noting that this is equivalent to differentiating (A4) with respect to the variables z,&», z,&», . . . , z,«»,

H
we obtain
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2 Z 2;.*,n, , n... E n,. *,)yp ~ X ger'M g M 2
A A A

+ 2 P P z,.z~,.g, q, , g el;,.'z, +P, z, ,e,eeel, , g. ,, g qe, , z )
= 0, (A5)

A

where c,' =c, —c, A c„c,' = c, —c, A c„c,= c,'+ c,'. This trilinear form vanishes identically if and only if
a„=0, a, , = 0 for all lines b c cf 0 T», i jc c2 0 T"„. Repeating this for all possible choices of b(1),
b(2), . . . , b(L„—2), we find that a„,.=0, a,, =0 for all bc T», z, jc T~~.
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