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Boson-fermion correspondence in two-dimensional field theories
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The correspondence between boson and fermion field theories in one space and one time dimension is
examined in the context of a path-integral formulation of these theories. The advantage of this formulation is
that the translation, both for the Lagrangians and the field operators, is fairly automatic. Normalization of
products of fields, which in more conventional formulations required careful manipulation of singular
quantities, in this approach is a straightforward consequence of Lorentz invariance.

I. INTRODUCTION

A remarkable correspondence has been noted
between boson and fermion theories in one space
and one time dimension. Coleman' noted that the
Green's functions of the massive Thirring model
and those governed by the sine-Gordon equation
are related. Kogut and Susskind' provided a dic-
tionary whereby one could translate a fermion
theory into an equivalent boson theory. Finally,
Mandelstam' gave the correspondence for the
Fermi field operator itself. For the massless
Thirring model, much of this correspondence was
already noted by Dell'Antonio, Frishman, and
Zwanziger, ' who constructed a solution to this
model in terms of currents. For one-dimensional
electron gas problems this correspondence was
known to many-body physicists. '

In this article we investigate this correspon-
dence systematically using the path-integral for-
malism. ' The advantages of this approach are
that the delicacies of normal-ordering prominent
in the other approaches become somewhat auto-
matic. In fact we are able to present a machin-
ery, without excessive subtleties, for translating
fermion theories into boson theories, including
the correct correspondence for the field operators
themselves. We always work in a cutoff field
theory where all mathematical expressions and
manipulations are meaningful, and the limit of
infinite cutoffs, both momentum and spatial, is
taken at the end.

Section II is devoted to a review of the Green's
functions for massless free fermion and boson
theories. For the results on fermion theories,
free and interacting, we rely heavily on the work
of Klaiber. ' In Sec. III we set up the correspon-
dence between free massless fermion Green's
functions and path integrals over free Bose fields.
These results are extended in Sec. IV to a cor-
respondence between composite bilinear fermion
operators and functionals of the Bose fields.
Armed with the results of these two sections we

treat in some detail in Sec. V three interacting
theories. These are the massive and massless
Thirring models, quantum electrodynamics, and
interactions with a massive vector meson. For
the massless fermion cases results on the Green's
functions are obtainable in closed form; the mas-
sive fermion case cannot be solved either in the
fermion or corresponding boson language.

One advantage of the present treatment that will
be seen in the section on interacting fields is that
whereas the definitions of currents still require
care, other details of these modifications are
much more automatic than in other approaches.
The magnitude of these modifications is deter-
mined by Lorentz invariance.

Several points we wish to emphasize before con-
cluding this introduction. It is imperative to use
a Hamiltonian rather than a Lagrangian formalism
for the bosons. This is because we deal with func-
tionals of derivatives of the boson fields, including
time derivatives, and a naive application of La-
grangian formalism with path integrals would
yield incorrect propagators lacking contact terms. '
A spatial and momentum cutoff must be provided
in order to make any sense of this procedure.
Dependence on the spatial cutoff disappears by
itself when one looks at nonvanishing Green's
functions and the momentum cutoff is absorbed
in the normalization of various operators in a
standard way. The last point concerns the order-
ing of Fermi fields. The sign of fermion Green's
functions depends on their ordering. The corre-
spondence we shall present will be valid for one
definite ordering and the sign changes that may
result by varying this ordering do not occur auto-
matically in the boson language, but must be put
in by hand. This difficulty becomes important in
the construction of composite operators.

II. FREE-FIELD THEORIES

We shall summarize the notation and basic for-
mulas needed in subsequent sections. All deriva-
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tions are straightforward and will not be presented
in detail. The properties of free massless Fermi
and Bose fields will be discussed.

A. Massless Fermi fields

&g,(,) "g,( „)g,*(y,)" g,*(y„)&

1 &k

27ri . g (x,+ -y„')
j,-k

(2.5)

&o=O'x ~ Zo ~ ~~ g

the chiral components

The massless Dirac equation is
if'P= 0.

With the convention

(2.1)

(2 2)

&[[),(x,)" 4.(x„)P,(y,)" 4.*(y„)&

2&k

2mi g (x[ )-y[ ~)

with x' =x +x', and no mixed eontraetions be-
tween diff erent chiral components.

(2.3)

satisfy

t( Bo+Bg)(g= IBd. $) = 0 )

i(B, B,)y,-= iB y, =0. (2 4)

A compact form of the Green's function of this
theory was obtained by Klaiber':

B. Path integrals for massless bosons

Owing to infrared singularities the free mass-
less boson field does not exit. However, differ-
ences and derivatives do. We shall evaluate path
integrals for functionals of these derivatives. As
time derivatives will occur care has to be exer-
cised and instead of dealjrig with the usual path
integrals over fields alone we shall go to the more
fundamental functional integral over fields and
their canonical momenta. ' In all subsequent dis-
cussions we shall use the notations

f [dip dw]Iexp[i f d'x(ms, q ——,
' [w'+ (B,y)'])]F [w, y]]

f

[dydee]{exp[i

f d'x(7) B,p — [)T'+ (B,y)')]].

The basic propagators of the theory are
iA', 2k, (k,+ k )e '~'i" '[

&I ( )'B,y( )][ (y)'B,y(y)]&= &(,)( -y)- —
(2 ). dk(k. . )(k, A. . ),

&[~(x)~ B,q(x)] [~(y)+ B,q (y)]& = 0.

(2 6)

(2.7)

In order to make some of our subsequent discussions meaningful we softened the propagator by introducing
a cutoff A. The limit of infinite cutoff will be taken at the end of all calculations.

A generating functional summarizing the above is

exp ~' d'x ex px +B,yx + x px —B,yx

=exp —
2

d'xd'y n x &~,~x-y n y + x &~ ~x-y p y . 2.8

tion.
This difficulty is overcome by modifying the

integral in (3.1) through the introduction of a
spatial cutoff

III. FERMION-BOSON CORRESPONDENCE-FREE FIELDS

Following Mandelstam' it would be tempting to
make the identification

J
x' x~

d((x*e,p)- J d(e'r (x+e, rp).

x~

p, ,(x)=CexpI-(dx J d [()dxx, (dxe, e)]Ip. p,
(3.1)

However, it is straightforward to show that ex-
pectation values of such expressions are singular
owing to the infinite range of the spatial integra-

At the very end of the calculations we will set
It should be noted that this procedure would

have been necessary even if the fields were mas-
sive.
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All our expressions will be built up from
X~

», (~(=j d(~""(~(*',((+8 p(*'((I , (& N

&4.(x)4 (y)&=o,

with

The Green's functions are generated by the basic
two-point function [evaluated with the help of (2.7)] lny = e "1nydy =0.577 ~ ~ ~ . (3.6)

(3.4)

%e are thus led to consider

i

N N

exp -i p +4+ x, +,.4 y&
—i=1 j-1

(N+N )/2

(-ir~) '~"» "(-ir&) '~"'.. [Ix»"-x,'"I "»"'.[],Iy» '-y,' 'I'»' .
i&j i&g

(3.7)

In the above Io.»I=IP»l=l
Now the limit R-~ may be taken, and a non-

vanishing contribution is obtained only inthe case
Z~;=Zp; =0

In order to recover (2.5) we may identify

i/2

0, ( )= '" exp[- i W»» 4, (x)],2ry
i/a

(t, (x) =e"2 exp[-iW»r@ (x)].
27ty

(3.8)

The phases are arbitrary and may be adjusted by
a combination of gauge and chiral transforma-
tions. %eshallchoose ~, =&, =0 and thus obtain

(,(x) = exp[- i v»»@, (x)],
27ry

(C(, (x)= - exp[-tWir4' (x)].
27ry

(3.9)

We note that (3.7) agrees with (2.5) in the case
the operators in (2.5) are in the correct ordering.
The sign changes, which would be obtained by
shifting the anticommuting Fermi fields, cannot
be reproduced by expressions such as (3.7). The
substitution implied by (3.9) is valid only»vhen
the string of (,'s and p, 's is separately time-
oxdexed. This ambiguity will be important in Sec.
IV when we construct composite operators.

IV. COMPOSITE OPERATORS

In order to build up interacting theories we need
the correspondence between composite fields made
up of fermion operators and functionals of the c-
number boson fields. This discussion will be
limited to bilinear operators, namely gi'g. These
operators are sums of products of the form (t(*„$8.
At this state the anticommutativity of the fermions
begins to plague us. The correspondence between

: (t(*„(x)(t(8(x):and the boson fields will be estab-
lished by substituting (3.9) for g(x) and Ps(x} and

the over-all sign will be determined by ensuring
the correct expression for

A. Mass operators

In terms of the chiral components we find

4»4'+ &2—4»
(4.l)

As there are no mixed contractions, normal
ordering introduces no infinities and we may, up
to a sign, apply (3.9) without special care. Deter-
mining the sign by the argument discussed above
we obtain

X

xp 2i~1r d~e~t 9 q{x ~)

(4.2}
Xg

: (t,*(x)(t,(x):= exp -2ivw dg ' "etys( xg),

or equivalently

+ g,*(y)P,(~) + P, (y)4.*(e)1&,

with p'&z'. In the case of singular products a
similar expression will be used to fix the normal-
ization of these operators. If the sign and magni-
tude of the Green's function for a composite opera-
tor and two fermion operators, as above, are
correct then the Green's functions involving more
fermion fields will likewise be correct. The one
involving two Fermi operators is the only one that
is connected; the more involved are made up of
the simpler ones.
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A:T()(x)p(x): = cos 2v w dg e'~"a,y(x0, g)
7ry OO

(4 3)

malization by comparing

&:4.*(x)4.(x):[4,(y)4,*(e)+P.(S)4,*(e))&,

:g(x)y, g(x}:= sin 2)(w
7ry

dg e'~"a, p(x0, g) .
both by using (2.5) by substituting (4.V) and (3.9).
The results are

:T[)y,g: = sin2&wy .iA
7ry

(4 4)

However, it must be emphasized that this limit
may not always be taken before the end of all cal-
culations.

If we naively let R- at this stage we mould obtain
the results of Refs. 1-3, namely,

A
cos2vw p,

7ry

1:0*]1):= 2-~- (w+ a V),

:0, 4. :=-2~ (w-a, V}

The current operators have the form

1:4r,4:=, a, y,v7r

1
:T])y,g:= ~ w,

(4.8}

B. Current operators

The situation is more complicated for operators
of the form gy„g and gy„y, g. These are sums of

$,*]1), and g,*g„singular products needing care in
their definition. We shall choose the prescription

1:A.r,4:=,v 7r

(4.9)

1:]j)rgr04: =
v 7r

If we substitute B,y for 7r we find the results quoted
in Refs. 1-3,

(4.5)

with a, c, d constants and A the cutoff introduced
earlier. c is chosen to ensure that (:g„*g„:) =0;
a and d will be connected to the normalization of
the composite operator. We assume A is large
and expand in I/A retaining the first nonvanishing
term. Substituting (3.9) into (4.5) we obtain

v:yr„C:=
~w

'y,

1:Or](r04: = r
v7r

(4.10)

V. FERMION-BOSON CORRESPONDENCE-INTERACTING
THEORIES

A. Massive Thirring model

@ (w+s, p) —)I,
(4.6)

x'+0/A
exp ivw d&(w —a, y) —1~ .2'

d, A&
exp i& 1T

2wy (

For large A this may be reduced to

id~a~ ("+ai()0) ~2yv 7r

2yv 7r

(4.7)

d a may be determined by ensuring proper nor-

I. =T))(ig —m)g ——j j". (5 1)

It is tempting to let j„=7])y„g; owing to the asym-
metry between space and time introduced in the
definition of the currents, the interactions modify
the normalization of g, relative to go. Thus in
(5.1) we shall let j,=]ty0(; however, j, =&T[)y,g and
let Lorentz invariance choose ~ for us. Imple-
menting the correspondence discussed in the last
two sections the Green's functions of this theory
are obtained, up to an over-all normalization,
from

The Lagrangian for the massive Thirring model'
is

(s'[(„(,I)=mf [dydee](exp ) d'x ws rp—0
(a,y)' mJ].

2 7ry

xl
cos 2 7r

x E — exp(- i v w C', ), exp(-i)tw C' )
27ry 27ry -] (5.2)
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We shall now rescale n' by (1 —&g/v) ~2 and y by (1+g/v) '~2. The terms quadratic in v and (],qr have the
usual coefficients; however, ve, y is multiplied by (1+g/]r) '~2(1 —g&/w) ~2. Lorentz invariance is re-
covered only if this product is unity. Imposing this condition we find

~ = i/(i +g/s) .
Intr oduc ing

p=2v~v(1+g/]]) '~2

we find that the current is

(5.3)

(5.4)

which agrees with known results.
Returning to (5.2) we obtain

]]2 (a, y)2
(P[P„P,]) re J[drp —de] [expi rl'x ee rp

———
2 2

(5.5)

xy exp

exp -s a'g e"" (5.8)

From this we note that the Green's functions of
the massive Thirring model are obtainable as
those of the boson theory with the Lagrangian

mA x1

=d-', ( )e're+ ee,e d e' "e,r)r(x', ()) (5.))
ny ~ ()0

with Mandelstam's identification
1

2v p
(I)~ =c~ exp —2 dl e — v+ —s~

p

I

may solve for

e
81

(5.11}

e2f pff = 244 —
2 pro& 2 (I)ro(f) ~

1
(5.12)

The correspondence with the boson fields yields
an action

and find the effective Lagrangian for the fermions

2]]' p
P, =e, exp -i die'r e-

p
e, p)

(5.8)
A =@0&0y—0 0

(s y)2 e2 1

1

(5.18}
where c, and c2 are constants to be determined
by some normalization condition.

In the case m =0 the Green's functions may be
explicitly evaluated; requiring a finite answer in
the limit A- yields

A(ii /8 +8 A, eit)
Cat CL (5.9)

B. Quantum electrodynamics

and the Green's functions agree with those pre-
sented in Ref. 7 for currents defined in the manner
of Schwinger. '

](2 (s ~)2 N
2

A =7TB p—
2 2 2

(5.14)

(5.15)

The substitution for the fermions remains as in
(3.9). The Green's functions may be evaluated as
in the free-field case except that the propagators
are modified:

which may be simplified to that of a massive boson
field with mass

I. = i Pg(I) —,'E„,E2' —eT(]r„(I)A" . — (5.10)

It is convenient to work in the gauge A., =O. We

We shall first consider a massless fermion in-
teracting with the electromagnetic field 10,11 In
two dimensions there are no photons and thus we
shall look only at the fermion Green's functions.
The Lagrangian of this theory is

(c' d(x}@.(y))o,o = (@.(x)c', (y))„.,
+E, (x -y)+c in]uR+d,

(4),(x)C (y)) =E'(x-y)+clnpR,

where c, d are some constants and

(5.16)
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ip' „,& (e ""—1)(k,' —e')
(2w)' (k' —»i'+ ie)(k, '+e')' '

(5.17)

(t.+u, )2(e-»' 1)(t,2
(2w)' (k' —ie)(k' —»»'+»e)(k '+e')' '

Thus the Green's functions for the interacting
theory are equal to those for free fields multiplied
by an exponential of a sum of the I's. Terms in
lnp, A cancel as long as the number of conjugated
and unconjugated fields is the same. Instead of
writing down the most general expression we shall
give as an example a four-point function:

&41 (xi I'i*(&l )»1,(x.))I),*(s.)}o„

2
()' (* -& )+»'-(» -)')-&'(» - »)+ )'(», -3'.)+&'(», - »)-P (», - »')])

& (g, (x, )((),*(y,)g, (x,)$2*(y2)), (5.18)

This expression agrees with that given by Brown. "
Giving the fermions a mass changes the Lagran-

gian of the boson field to

w'+ (s, (»))'
Ay —mb y—0 2

(Aos, y -A, w) + e&A, '. (5.23)
(s(I())' »i', A

2 2 1ry
(5.19) Changing variables in the functional integration

As we are now dealing with a mas'sive boson theory
it is permissible to replace 1 d& e~~~s, y by

q -q(")."
e 8w-w+ ~ (8 A)

Ww s'

e 1
(»7

—~ 2 (&OA i —(» i A O)

(5.24)

C. Interaction with massive vector mesons yields

L =L~+Ly, (5.2O)

with

The last interacting theory we shall treat is
that of a fermion interacting with a massive vector
meson. ""The r. assless fermion case will be
treated first, and the inclusion of the mass term
left for the end. The Lagrangian of the theory is

+ e6A,'.
+B~p e 1 ~y e
2 4n "" 9' 2m

(5.25)

~2~ (g )2 e2
OP 2 4P +

Choosing & =-e/2w eliminates the noncovariant
part of A&, and combining with L„we find the ac-
tion corresponding to (5.19)

1 pp j.
L~ =-~E~„I"" +2go~A

(5.21) +—'p, 2A' (5.26)

I ~
= if''»I) —ef„A" .

Again, the current f„ is not given simply by T))r&P.

It is defined as a gauge-invariant limit of
T()(x+e)r&g(x)exp(ieeA) For sp.acelike e we find
that

The change of variables proposed in (5.23) induces
a modification in the correspondences for the
fermion fields

exp -ivy @,(x)+ e s, (A. -A, )- f
27ry w 8'

f, =fr.4,

f, =Vr, l+5A, .
(5.22)

(5.27)

exp -i)(w C, (x)+
e s (A. +A)-

27ry w 8

Again, we shall let Lorentz invariance fix & for
us. In the case of QED, treated in Sec. VB, no
such modification was necessary in the gauge
A, =0. Let us discuss the correspondence for Lz
first:

It is straightforward to evaluate all Green's func-
tions once the propagator for the vector fields is
known. Inverting the part of (5.25) involving A„
and being careful about contact terms one finds
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(A ( )A (0)) d2y —ik x 'All& ( ll Ulh )( I™) IJO &0 (5.28)

with

M' = p, '+e'/w.

These results agree with those of Ref. 13. If the fermion has a mass m we have to add

(5.29}

mAI. = cos 2&m
7ry ~ OO

to (5.25).

df 8 Bgp + . r 2 (BOA~ B~A0}
V7T 8

(5.30)
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