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Classification of unquantized Yang-Mills fields
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A classification of unquantized Yang-Mills fields is given according to their algebraic and differential

properties. A method is used which is similar to the one employed by Petrov and Schell in their classification
of the vacuum gravitational field. It is proved that there is no inherently nonlinear solution to a sourceless
Yang-Mills field in a vacuum.

The classification of electromagnetic fields
according to their algebraic properties is well
known. ' We have essentially two types of Maxwell
fields: nonradiative and ra.diative. In the non-
radiative case we can find a Lorentz frame where
the electric and magnetic fields are parallel to
each other and the energy-momentum tensor has
a diagonal form. On the other hand, in the radi-
ative case the electric and magnetic fields are of
the same strength and are perpendicular to each
other. There is a flow of energy with the velocity
of light along the direction E xH.

In the case of a vacuum gravitational field a
similar classification has been obtained by Petrov'
according to algebraic properties of the Riemann
curvature tensor. In this case there are three
types of fields, I, II, and III, the latter two of
which have been shown to include gravitational
radiations. ' Petrov's classification h3s subse-
quently been improved by Schell '' by taking into
account the differential properties of the curva-
ture tensor. The theory of the infinitesimal
holonomy group (ihg) has been introduced and
Petrov types have been further subdivided into
classes having different ihg's.

In this note we apply similar methods to the
classification of unquantized Yang-Mills fields.
We first look at the algebraic properties of the
Yang-Mills field and show that there are these
fundamental types of fields: nonradiative, radia-
tive, and mixtures of the two. Then we further
subdivide these types by examining their ihg's.
In the case of SU(2) we find ten classes of fields.
The class IV, corresponds to a sourceless vacuum
Yang-Mills field and the class I, to a field pro-
duced by a classical point source either electri-
cally or -magnetically charged. In both cases the
ihg is simply U(1) and hence there are no in-
herently nonlinear solutions to these fields.

In the following we start with the descriptions
of the electromagnetic field and then reformulate
the theory in a manner useful in the non-Abelian
case. We next present a preliminary classifica-
tion of Yang-Mills fields into nonradiative, ra-

diative, and mixed types. This is followed by an
elementary discussion of the ihg and the full clas-
sification of Yang-Mills fields. Finally we make
some comments and discussions.

The classification of the Maxwell field is usually
formulated in terms of eigenproperties of the
electromagnetic field strength E„, or the energy-
momentum tensor T».' If we take, for instance,
the energy-momentum tensor, and consider its
characteristic equation,

its eigenvalues are given by'

x=+5, 5 = g[(Fp,F~')'+(Fp~F* ')']' '.
Therefore we have two distinct types of Maxwell
fields, corresponding to 5 c 0 and 5 =0.

It is easy to show that in the case 5 WO we can
find a. pa.rticular Lorentz frame, called a. canoni-
cal frame, where the electric and magnetic fields
become parallel to each other. If, for instance,
the z axis is chosen along the direction of fields,
E, and H, are given by

(g —'F F )

H, =+(t)+ 'F,F~ )'". —

Hence these parameters are Lorentz invariants.
If we introduce four independent vectors $„, g„,
p&, and q&, where

$ q
——(1, 0, 0, -1), q„= (1,0, 0, 1),

p„= (0, -1, 0, 0), q„=(0,0, 1,0),
we obtain the following expressions for I'„, and

T„, in the canonical frame:

F„„=-,'E,[(„,q, ]+a,[P„,q.], (5)

r„„=-.'(z,'+a,')(Q„,~„J-g„,). (6)

We have used the notations

[~p~ 4] kg U 4vqp ~ fkp~ lv) kp L +(vip

Then it is not difficult to see that the above four
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vectors span the manifold made of eigenvectors
of T„„. The energy-momentum tensor has in this
frame a diagonalized form, and hence there are
no shearing stresses nor energy flows in any
direction. The Maxwell field looks like a fluid at
rest except for the sign of T„.

Expressions for E„„orT„, in other frames are
easily obtained from Eq. (5) or (6) by Lorentz
transformations. Denoting the Lorentz transfor-
mation from the canonical frame to the laboratory
frame as a&, , we have the following expression
for F„, in the laboratory frame:

F„„=2E,[a„~)",a„„rl"]+H,[a„~p, a,„q']. (8)

%e have used the fact that the parameters E,
and H, are Lorentz invariants. If we also make
use of the inverse Lorentz transformation a, „,
these parameters can be written in terms of

F~~ =H~„P Epa,

H p „p,= g[(b—p o + b„,)b„(b„+—b„,) b„,]

(15)

x [(bp, b„b„bp,) (bp, b„b„b»)].
(16)

540, the manifold of eigenvectors of T„, is
spanned only by two vectors (& and p&. The
energy-momentum tensor takes the form of a.

flow of an ensemble of massless noninteracting
particles directed along the z axis.

Expressions for F„, in noncanonical frames are
obtained from Eq. (13) by suitable spatial rota-
tions. By denoting the spatial rotation from the
canonical frame to the laboratory frame as b&, ,
we have the following expression for F„, in the
laboratory frame:

E,= apoa 3FP

Qp laa2F ~
pa

(9)
Thus the 5 =0 electromagnetic field has also been
expressed as an eigenbivector of H»p . It follows
from Eqs. (10) and (15) that

Then by combining Eqs. (8) and (9) and making use
of Eq. (4) we find G

Jl u G x K pa
= G tl v pa ~

Fpfj =G pp Fpa ~ (10)
~l

Gpppa 2p (boa 3 pajti3)popo + 3 a p ap3)

+ (a„,a „—a, ,a„,) (ap,a ~ —a o,a, ) ] .

$ „=(1, 0, 0, -1) and p„= (0, -1,0, 0),

F„, and T&, can be expressed as

&p. =-&.[&p P.l

(12)

(13)

~p. =EH(„, Q. (14)

In this case the parameter E„=H, varies under
Lorentz boosts; however, it is invariant under
spatial rotations. In contrast with the case of

The physical meaning of Eqs. (10) and (11) is
quite apparent. We have made a round trip by
means of successive Lorentz transformations-
starting from the laboratory, going to the canoni-
cal frame, and then coming back to the laboratory.
The net result of the trip is Gp Fp which is
equal to F&, . Thus we have arrived at an inter-
esting characterization of a Maxwell field as an
eigenbivector of G„,p with eigenvalue unity.

On the other hand, in the case of the 5 =0 field
the electric and magnetic fields are of the same
strength and are perpendicular to each other.
Then after a suitable spatial rotation we find a
canonical frame where, for instance, E ~~x axis
and HIy axis and E„=H, . If we introduce two
independent vectors $„and p„, where

a'

These equations are in fact satisfied with Eqs.
(11) and (16).

Let us next consider the problem of finding
the canonical forms of G„,p and Hp p

From the
definition of G„„p„Eq.(11), we easily derive
its algebraic properties as follow:

('} Guvpo= (18)

(ii) Gpvpo = Gpvop ~ (19)

(iti) G pvpo Gpopv t (20)

(iv) Gpvpo+Gpovp+Gppov 0

p, pv 2kpv '

(21)

(22}

These are just the properties of the curvature
tensor in the vacuum Einstein space (the corre-
sponding cosmological constant happens to be —,').
Thus the classification of G„,p becomes the same
as Petrov's classification of vacuum gravitational
fields. Because of the additional constraint (17) in
our case, however, Petrov type II and III fields
are excluded and only one special case of type I
remains possible. In the 6-dimensional notation
G„s = G„,p„where A, B run over (0, 1}, (0, 2},
(0, 3}, (2, 3), (3, 1), and (1,2), G„,p, is uniquely
given by'
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0

B (23)

H„s= —,
'

(1 0 0 0 -1 0)

1

Then the general solution to Eq. (10) is given by

F„=(0, 0, o, , 0, 0, P), o, , P arbitrary. (24)

Hence the fields have the form E ~~H ~~a axis as we

expected.
In the case of the 5 =0 field it is also eady to

find a canonical form of H„,~,. Again in the 6-
dimensional notation, H„,~

is given by

1

like E~,F'~' or F',E' "(not summed over i) are
not gauge invariant by themselves, and F"s may
in general change their types under SU(2) rota-
tions. Thus, if we require F"s to remain of the
same type under SU(2) rotations, we obtain a
strong constraint on the possible form of F„,.

Let us first consider the case where all F ' 's
remain of the nonradiative type in all isospin
gauges. In this case we have

(27)

where each 0' is determined by the round trip to
the canonical frame of F'„„. At first we may ex-
pect that the canonical frames for different F"s
differ from each other. It is easy to see, how-
ever, that the correct transformation property of
Eq. (27) under SU(2) is guaranteed only when G "s
are isoscalars. Hence t""s are in fact independent
of i. By a single and common Lorentz transforma-
tion F"s are simultaneously brought to their
canonical forms. F„, is expressed as

I: Fq, = pA~, +(Aq, , (28)

0 0 0 -1 0

0

1000 1 0

(25)

where A&, ———,'[$» q, ], A&, ———,'[$» q, ]* = [p&, q, ],
p = E, , and ( = H, in the canonical frame. A„„ in
arbitrary frames is characterized by Az A~ =-2,

AgPa 0
We next consider the case where only one of

E' (&=1, 2, 3) can be made radiative by a partic-
ular SU(2)-gauge choice. In this case by using
arguments similar to those above it is possible to
show that the two remaining nonradiative fields
have a common canonical frame. The form of
F„, is given by

II F& z
—pAp v + ~Ap+v +NB (29)

0

where we have chosen 5;, ~~x a»s and &;2lly axis
(i =1, 2, 3).' Eigenvectors are given by

0

(26)E„=o.(1,0, 0, 0, -1,0), n arbitrary.

Hence E~~x axis and H([y axis and E„=H, as we
expected. Thus we have checked that Eqs. (10)
and (15) reproduce known results. So far as
electromagnetism is concerned the above method
is merely a reformulation of the theory. If we
turn to the Yang-Mills field, however, we find it
particularly useful to determine the mathematical
structure of non-Abelian fields. For the definite-
ness of arguments we discuss in the following only
the SU(2) Yang-Mills field. Our method is, how-

ever, not restricted to SU(2), and its generaliza-
tions to other groups are straightforward.

Our idea is essentially to classify the Yang-
Mills field according to the radiative or nonradia-
tive character of its component fields F'„,
(i =1, 2, 3). We note, however, that quantities

where p ~ o =( ~ o=0 and B» satisfies
B B~'=B B*"=0.pa po

The remaining possible types of fields are
enumerated as follows:

III: F
& u pA p v + ~A'p v +0 1B» +Q2 B

& ~,

p o =p o =f ~ o, =f o, =o, ~ o, =0.
IV: F

~ ~
—(xjB~ U + 02 B

p u +cr 3B tI ~ y

(30)

(31)

Fq„Hq, p,F'~ (i =1,2, 3). ——

In type III (IV) two (three) of the F &, become
radiative under a particular gauge choice. The
B"s satisfy B' B'~'=B' B'*~'=0 and may or
may not be equal to each other. In the extreme
case of type IV where B' = B' = B', all components
E&, (i =1, 2, 3) become radiative in all SU(2)
gauges. This special class is obtained directly
if we assume that
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F„,(x), V F„,(x), V „V F„,(x), . . . , (34)

where Lorentz indices are to be contracted with
arbitrary tensor quantities. If the entire ihg is
generated solely from F„,, then the ihg is said
to be perfect; otherwise it is imperfect. If the
field is analytic in a certain region 8, the same
ihg obtains at each point x R A. If there are sin-
gularities in the field, the ihg may in general be
different on the manifold of singular points from
that in analytic regions. For simplicity we do
not consider such possibilities in this paper.

Let us consider the extreme case of a type-IV
field where B'= B' =B' and F&, =oB„, in order to
illustrate the method. In this case we discrimi-
nate two kinds of possibilities, V),o x 0 = 0 and

Vzo & 0 w 0. In the first ease we have

(35}

with a certain vector field a~. It is obvious that
in this case the ihg is one-parameter perfect.
By taking a commutator of derivatives we have

[V, , V), j a = (8,a ~ —8 )a, )o =gF, ), x &x = 0 .
It follows that a„ is a gradient szp and e
is a covariant constant,

V),(y' =0 .

(36)

(37)

Thus the one-parameter perfect ihg is character-
ized by the presence of a covariant constant iso-
vector field.

On the other hand, if V'zcr&& oc0, F» and V'zF»
generate a three-parameter imperfect ihg. In
this way we arrive at Table I, which gives the
classification of SU(2) Yang-Mills fields.

In order to illustrate the physical meaning of
this classification let us consider a solution to a
sourceless Yang-Mills field. Its equation of
motion is given by

V"F„,(x}=0,

V~F„*„(x)=0
(38)

In this case F&, has a particularly simple form,

F~, =oB~, . (33)

By looking at the energy-momentum tensor of
the above fields we recognize that type I is purely
a nonradiative field, type IV is a pure radiation
field, and types III and IV are composed of both
components. These four are the fundamental
types of SU(2) Yang-Mills fields.

Our next step is to introduce the concept of an
ihg in order to examine the differential proper-
ties of F„„.The ihg of a field F„,(x) at a point
x is defined as a subgroup of SU(2) generated by a
set consisting of F&, and its covariant deriva-
tives,

TABLE I. Classification of SU(2) Yang-Mills fields.
The dimension of F» means the number of independent
isovectors given by F „when it is contracted with arbi-»
trary Lorentz tensors.

type dimension of F» dimension of ihg class

I~
Iy

Ic

IV IV~

IVy

IV~

IVg

at all x. It is tedious but possible to show that
F„„belongs to the extreme ease of type IV Eq.
(33). Then the above equation can be rewritten as

(78"B„,+ (v)'cr)B„, = 0,
(39)

&ra('B+, +(V'o)B+, =0.
Hence 0 x V"o = 0 and we arrive at the class IV,.
This proves that the vacuum Yang-Mills solution
has only a trivial kind of symmetry, U(1), and
there are no inherently nonlinear solutions to it.

Similarly, it can also be proved that a Yang-
Mills field produced by classical point charges,
either electric or magnetic, necessarily belongs
to the class I, . It then follows that F„, is propor-
tional to a covariant constant. For instance, if
we consider the magnetic case, we have

F~ = f ' exp($)A~~, = ('E~— (40)

r)(x, J') T*, exp(i); I X, (() =ed('), (42)

where the integral is along a certain path P and
T

&
denotes an ordering of v matrices. If V zg' = 0

holds, then g™becomes independent of path and
also independent of x. Hence g™xA~ =0. This
means that if a non-Abelian field allows a co-
variant constant, then the symmetry is neces-
sarily reduced to Abelian, i.e. , U(1).

where I' „, is identical to the Dirac monopole field.
The existence of a covariant constant in the non-
Abelian extension of Dirac's monopoles has been
pointed out previously. '

If there is a eovariant constant field g, it is
always possible to find a gauge where P'xA&=0.
In fact the desired gauge transformation is given
by the nonlocal transformation

~ ~ g'"(x, I') = V(x, I')7- g'(x) U-'(x, I'),
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In the above we have given a general analysis of
algebraic and differential properties of unquan-
tized Yang-Mills fields. It has been found that
they have relatively simple mathematical struc-
tures. An arbitrary Yang-Mills field is expressed
as a sum of a few terms each of which is a prod-
uct of two factors relevant to the isospin and
Lorentz structure, respectively. In the simplest
case F&, becomes proportional to an isovector
which can be made constant by a suitable gauge
choice.

As compared with the full-fledged quantized
theory of Yang-Mills fields, the knowledge of
their classical aspects has been relatively poor.
Our general examination of unquantized Yang-
Mills fields may, we hope, be useful in further
understanding the physics of non-Abelian fields.
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