Direct lepton yields from vector-meson decay*

K. Raychaudhuri and H. Weisberg

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19174 (Received 22 September 1975)

Lepton yields from vector-meson decay for $p_T \le 1$ GeV/c are reasonably well determined by existing vector-meson production data and are small compared with $l/\pi = 1 \times 10^{-4}$. A class of reasonable extrapolations to higher p_T gives yields that remain small, but a rise in l/π cannot be ruled out. Vector-meson polarization effects are discussed.

Direct lepton production, with $l/\pi \sim 1 \times 10^{-4}$ for transverse momentum $0.8 < p_T < 5.5$ GeV/c and incident momentum $10 < P_{\rm inc} < 2000$ GeV/c, has been observed in a number of recent experiments. The source of these leptons and the reason for the constancy of l/π are not known. In another recent experiment, ρ^0 production in 6- and 22-GeV/c ρ^0 collisions was measured up to $\rho_T \sim 1.3$ GeV/c. The experimenters note that the ratio of ρ^0/π^- rises linearly with ρ^0 over the range covered and they suggest that, if this ratio continues to rise, then the ρ^0 could account for a large part of the observed direct lepton production, through the decay $\rho^0 + l^+ l^-$.

We have calculated e/π^- yields at center-of-mass rapidity y=0, for various parameterizations of the measured ρ production. Our emphasis is on the kinematic region where the lepton yields are constrained by measured vector-meson production. Thus we do not consider extrapolations to $p_T > 2$, and one do we consider $J(\psi)$ production.

In our calculations, we have assumed that the ρ^0 and π^- inclusive cross sections have the factorized form $Ed\sigma/d^3P = f(y)g(p_T)$. Figure 1(a) shows the $\pi^- p_T$ distribution for |x| < 0.5, where $x = p_I(c.m.)$ $p_1(\text{max})$. These data are well fitted over the measured range by the sum of two Gaussians $g(p_T) = A \exp(-Bp_T^2) + A' \exp(-B'p_T^2)$. However, we have instead parameterized the pion p_T distribution by the form $g(p_T) = A \exp(-Bm_T)$, with m_T = $(p_T^2 + m_{\pi}^2)^{1/2}$. This form fits the measured points equally well. In addition this form (with mequal to the produced particle mass) is known⁷ to give a good description of π , K, and p production at y = 0 and $p_T < 1.5$ GeV/c in 12- and 24-GeV/c ppcollisions, and furthermore it reproduces the known $\exp(-Bp_T)$ behavior of particle production in 24-GeV/c pp collisions at intermediate p_T ; 8 we see no reason why the shape should be different in πp collisions.

Figure 1(b) is the p_T dependence of inclusive ρ^0 production for |x| < 0.5. Here and in the remainder of Fig. 1 we show three parameterizations of ρ^0 production, all of which are consistent with the

data over the measured p_T region but imply rather different behavior at large p_T : (i) (dashed line) the Gaussian form $A \exp(-Bp_T^2)$, (ii) (solid line) the single exponential form $A \exp(-Bm_T)$ with m_T

FIG. 1. p_T and p_T^2 distributions for 22-GeV/c π^+p collisions (data from Ref. 2). (a) π^- production for |x| < 0.5. The curve is the function $g(p_T)$ = const $\exp[-6.93(p_T^2 + m_\pi^2)^{1/2}]$. (b) ρ^0 production for |x| < 0.5. The curves are $g(p_T)$ = const $\exp[-3.0p_T^2)$ (dashed line), const $\exp[-6.3(p_T^2 + m_\rho^2)^{1/2}]$ (solid line), and const $\exp[-5.5(p_T^2 + m_\rho^2)^{1/2}]$ (dotted line). (c) The ratio of ρ^0 and π^- production for |x| < 0.5. (d) Calculated values, at y=0, for e/π^- for electrons from ρ^0 decay.

= $(p_T^2 + m_\rho^2)^{1/2}$, and (iii) same as (ii) but with a smaller *B* parameter. Figure 1(c) then gives the corresponding ρ^0/π^- ratios for |x| < 0.5, and Fig. 1(d) gives the resulting e/π^- ratios at y = 0.9

It can be seen that all three parameterizations reproduce the dramatic rise in ρ^0/π^- for $p_T \le 1$ GeV/c, and that in all three cases the ratio e/π^- rises to $\sim 0.15 \times 10^{-4}$ at $p_T = 1$. But at higher p_T , e/π^- is free to rise, fall, or remain the same.

If ρ^+ , ρ^0 , and ρ^- are produced equally and are unpolarized, then the ratio(electrons from ρ^0 decay)/(all π^-) cannot exceed half the $\rho^0 - e^+e^-$ branching ratio, or 0.22×10^{-4} . However, polarization effects can enhance this ratio and in fact it is possible to construct a model¹⁰ in which $l/\pi = 1 \times 10^{-4}$ from ρ decay alone. In terms of the ρ^0 density matrix elements the pion decay angular distribution¹¹

$$W(\theta, \varphi) = \rho_{11}\sin^2\theta + (1 - 2\rho_{11})\cos^2\theta - \rho_{1, -1}\sin^2\theta \cos^2\varphi - \sqrt{2}R_{\theta}\rho_{10}\sin^2\theta \cos\varphi, \tag{1a}$$

while that for the leptons is

$$W(\theta, \varphi) = \rho_{11}(1 + \cos^2\theta) + (1 - 2\rho_{11})\sin^2\theta + \rho_{1, -1}\sin^2\theta \cos^2\varphi + \sqrt{2}R_{\theta}\rho_{10}\sin^2\theta \cos\varphi + O\left(\frac{m_t^2}{P_t^2}\right) . \tag{1b}$$

In our case the pion cross section is known and we are only concerned with possible enhancements of lepton production. Equation (1b) provides us with an *upper bound* of a factor of 1.5 for this enhancement at large p_T , for $\rho_{11} = \frac{1}{2}$ in the helicity frame (ρ_{10} and $\rho_{1,-1}$ do not affect the single-lepton yield significantly). Figure 2 shows the calculated effect in our model for ρ_{11} (helicity) = $\frac{1}{2}$. The effect for any other value of ρ_{11} is

$$l(\rho_{11})/l(\frac{1}{3}) = 3(1-2\rho_{11}) + 2(3\rho_{11}-1)f$$
,

where $l\left(\rho_{11}\right)$ is the lepton yield as a function of ρ_{11} and $f=l(\frac{1}{2})/l\left(\frac{1}{3}\right)$ is the quantity plotted in Fig. 2; $\rho_{11}=\frac{1}{3}$ corresponds to complete isotropy.

The $\rho_0 \to \pi^+ \pi^-$ decay angular distributions in 12- and 24-GeV/c pp collisions have been measured and are consistent with isotropy. We find $\rho_{11}(hel-icity) = 0.33 \pm 0.03$ from the 24-GeV/c data, implying that in fact the spin effects are completely negligible, at least at small ρ_T .

To compare with direct lepton measurements, we need to consider three factors:

- (i) The lepton yields were measured mainly in pp rather than πp collisions. In similar calculations we find that the l/π yield from ρ^0 production in pp collisions at 24 GeV/c (see Ref. 12) and $p_T \lesssim 1$ GeV/c is typically a factor of 2 smaller than shown here.
- (ii) Other vector mesons will contribute. φ production seems to be strongly suppressed^{2,13} and, despite its relatively large branching ratio into l^+l^- , does not seem to be an important lepton source. Using the upper limit² of 60 μ b for φ production in 22-GeV/c π^+p collisions and assuming the same momentum distribution as for the ρ , the φ contribution to e^-/π is <0.07 times that of the ρ . Inclusive ω^0 production has not been measured, but semi-inclusive ω^0 and ρ^0 production in 12- and 24-GeV/c pp collisions have been found to be

equal, 12 suggesting that inclusive ω^0 and ρ^0 production are also equal.

(iii) Much of the lepton production data are taken at much higher incident energy than the vector-meson production measurements of Refs. 2 and 12. However, ρ^0 production in π^+p collisions at 8, 16, and 23 GeV/c (see Ref. 14) and 205 GeV/c (see Ref. 15) has recently been reported, and the ratio of total cross sections for ρ^0 and π^- production appears to be the same over the whole energy range, ¹⁴ suggesting that e/π ratios at small p_T do not change much with energy.

Thus for comparison with the lepton-production experiments in pp collisions one should multiply the e/π^- ratios of Fig. 1(d) by a factor of ~1.5. For $p_T \le 1$ GeV/c, the resulting ratios are well determined, the principal uncertainty being the lack of information on ω^0 production. Thus vector-meson decay cannot explain that part of the copious direct lepton production which has been reported at low p_T . The bulk of the data, how-

FIG. 2. The ratio of lepton yield for a $1 + \cos^2\theta$ decay angular distribution to that for isotropic decay, for $g(p_T^2) = \exp[-6.3(p_T^2 + m_\rho^2)^{1/2}]$.

ever, are at high p_T . These data still can be explained by vector-meson decay, but only if the high energy, high p_T behavior of vector-meson production is quite different from that of the other hadrons. Explicit measurements of inclusive ρ^0 and ω^0 production and decay distributions at high

energy and p_T are needed for a conclusive comparison with the high p_T data.

We thank Professor Chang and Professor Langacker for helpful comments.

^{*}Work supported by the E.R.D.A.

¹For an experimental review and references see the talk of B. Pope, International Conference on High Energy Physics, Palermo, 1975 (unpublished).

²H. A. Gordon et al., Phys. Rev. Lett. <u>34</u>, 284 (1975).
³M. Bourquin and J. M. Gaillard, paper submitted to the International Symposium on Leptons and Photons at High Energies, Stanford, California, 1975 (unpublished).

⁴G. R. Farrar and R. D. Field, Phys. Lett. <u>58B</u>, 180 (1975).

⁵We studied the error expected from the factorization assumption by analyzing $pp \rightarrow \pi^-$ at 24 GeV/c [V. Blobel et al., Nucl. Phys. <u>B69</u>, 454 (1974)], where the doubly differential distribution at y=0 is available, and find that the error is everywhere less than a factor of 1.5. Furthermore, we make the factorization assumption both for ρ and for π production, so the error will tend to cancel in the ratios ρ/π and l/π .

⁶We thank the authors of Ref. 2 for providing numerical values. The requirement |x| < 0.5 excludes the pion

fragmentation region where there is a significant departure from factorization.

⁷V. Blobel *et al.*, Nucl. Phys. <u>B69</u>, 454 (1974).

⁸U. Amaldi et al., Nucl. Phys. <u>B86</u>, 403 (1975).

⁹The electron yields for Fig. $1(\overline{d})$ were obtained by Monte Carlo integration, using the y distribution from Ref. 2 for f(y), and the parameterizations of $g(p_T)$ described in the text. The ρ^0 was assumed to decay isotropically. The pion inclusive cross section at y=0 was taken to be $E d\sigma/d^3p=100 \exp(-6.93 m_T)$, where the normalization has been determined from the data of D. J. Crennell *et al.*, Phys. Rev. Lett. 28, 643 (1972).

¹⁰G. Chu and J. Koplik, Phys. Lett. <u>55B</u>, 466 (1975).

¹¹K. Gottfried and J. D. Jackson, Nuovo Cimento <u>33</u>, 309 (1964).

¹²V. Blobel *et al.*, Phys. Lett. <u>48B</u>, 73 (1974).

¹³F. W. Büsser *et al.*, Phys. Lett. <u>53B</u>, 212 (1974); J. A. Appel *et al.*, Phys. Rev. Lett. <u>35</u>, 9 (1975).

¹⁴M. Deutschmann et al., CERN Report No. 75-29 (unpublished).

¹⁵F. Winkelmann et al., Phys. Lett. <u>56B</u>, 101 (1975).