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Calculations of baryon parameters in the extended models of hadrons

G. Cocho~
International Centre for Theoretical Physics, Trieste, Italy

M. Fortes and H. Vucetich~
Instituto Fisica, Universidad Nacional Autonoma de Mexico, Mexico 20 D.F., Mexico

(Received 27 August 1975)

Within the frame of the extended models of hadrons ("bag" theories), in the semiclassical (spherical cavity)

approximation, we discuss the computation of baryon parameters taking into account the interaction among

quarks. We consider, as trial wave functions, arbitrary sums of antisymmetrized products of one-quark wave

functions obeying the Dirac equation for an arbitrary central potential. It is shown that if the electromagnetic
interaction is the minimal one Qy„Q, then p=9lsr '/(rr ') & l, where p,„and (rr )'" are the magnetic

moment and root mean square radius of the proton (to be compared with the experimental value p 1.06). It
is also shown that if p = 1, then the axial nucleon charge g&/g& ——5/9.

I. INTRODUCTION

Even though free quarks have never been ob-
served, the idea of hadrons built of quarks has
been of great importance in order to describe and
predict not only the low-lying hadronic states, '
but also the deep-inelastic phenomena. ' However,
the negative results of the experiments designed
to observe free quarks have spurred the theoreti-
cian to investigate possible mechanisms to confine
the quarks. In particular, during the lastyear, a
family of extended models of hadrons has been
considered. In those models, the quarks are con-
fined by a constant pressure B by unit volume in
a finite region of space (the so-called MIT bag
model') or by coherent states built of canonical
boson fields. ' Both types of model are Lorentz-
invariant and, at the classical level, Creutz and
Soh' have shown that one may obtain the MIT
boundary conditions from a conventional local field
theory in a strong coupling limit. Although the
solution of these strong-coupling or unconvention-
al field theories is a very difficult problem, pre-
liminary results have been obtained based on semi-
classical approximations. ' Within the frame of
these semiclassical approximations, one considers
the particular case when the boundary in the bag
model or the confining coherent bosonic states in
the canonical field-theory models are static and
spherically symmetrical. '"' It is worth remarking
that these semiclassical "static solutions" are in-
compatible with quantum mechanics; the coupling
of the confined fields with the surface or wall
implies fluctuations of the "wall region" due to the
quantum fluctuations of the confined fields. How-
ever, by assuming that in a first approach one may
forget the "wall dynamics, " the magnetic moment
p, , the root mean square radius (s s)'Is, and axial

charge g„/g„of the nucleon have been computed.
In these calculations it is assumed that the three
quarks of the nucleon occupy the lowest quantum
level of the spherical potential. For the MIT
cavity the potential is an infinite square well with
the radius R related to the pressure 8, which may
be fixed by fitting the nucleon mass. Considering
the quarks inside the cavity to be free and mass-
less, Chodos et gl."have obtained, for the proton,
the values

2rrtslts= 2.6, (s s)s'~a= 1.04 fm, g„/gv = 1.09,

to be compared with the experimental values

(2msp )„,= 2.79, (rn')s&s= 0.88+ 0.03,

(s'„')s = 0 83+ 0.0. 7, (g„/gv), „=1.25+ 0.09.

In particular, for the quantity p =—9p,'/(&'), which
in the model is independent of the radius R, they
obtained a value of 0.69 to be compared with the
experimental value p= 1.06. De Grand et a/. "have
included, in lowest perturbation order, color-
gluon interactions between the quarks. They ob-
tain (s s') &' = 0.73 fm, but 2m' p = 1.9 (too low), and
as a matter of fact the values for p andg„/g„re-
main unchanged.

In the model considered by the SLAC group' the
quark wave function is concentrated in the region
s =R (whereR is related to the parameters of the
theory). They find (ss')' '=R, is = —",R (therefore
p= 1), and g„/gv= —,. Now p is close to the experi-
mental value but g„/g„ is too small by more than
a factor of 2.

One may wonder if by considering different
interactions between the quarks one might fit,
within the frame of the "spherical approximation, "
both p and g„/gv. We shall show in the next sec-
tion that if the wave function may be represented
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by an arbitrary sum of antisymmetrized products
of one-quark wave functions obeying the Dirac
equation for an arbitrary central potential, then

p ~ 1, with g~/g„= —,
' if p = 1. Note that these trial

wave functions are rather general; a Hartree-Fock
type of treatment would include only one antisym-
metrized product of three one-quark ground-state
wave functions. Although in order to obtain the
yreceding results one assumes for the electro-
magnetic interaction the minimal structure (y„g,
the analysis seems to suggest that the "wall dy-
namics" is important. A few remarks on this
topic are the subject of Sec. III.

SU,(T) instead of SU, (T, l').] These trial wave func-
tions are much more general thanaHartree-Fock-
type wave function. The baryon wave function
from a Hartree-Fock treatment would contain only
one antisymmetrized product of three one-quark
ground-state wave functions.

As we are interested in the magnetic moment,
root mean square radius, and axial charge of the
proton, we proceed to summarize the relevant
information which is needed to compute those
parameters. Then we shall discuss the restric-
tions that the structure of our trial wave functions
impose on the values of the proton parameters.

II. BOUNDS ON THE NUCLEON PARAMETERS IN THE
SPHERICAL CAVITY APPROXIMATION

As mentioned in the Introduction, in the extended
models of hadrons a strongly interacting particle
consists of fields confined to a finite region of
space. The confinement is accomplished in a
I orentz-invariant way by assuming that the bag
possesses a constant positive energy B by unit of
volume. ' In other models the confinement is due

to a surface tension. " In models where coherent
states confine the fermion fields, ~ ' both volume
and surface energy appear. In all cases, the
geometry and configuration of the wall region
depend on the fields inside and the wa)l mustfollow
the change of pressure and momentum of those
fields. As we mentioned before, due to the great
difficulty of these strong coupling or unconvention-
al quantum field theories, tentative results have
been obtained based on semiclassical approxima-
tions. These apyroximations allow solutions with
static spherical symmetry and, taking into account
the spherical equilibrium shape of a droplet of

liquid or a bubble of steam, it is reasonable to
think that such spherical shape is relevant for the
ground state of hadrons. Due to the interaction
between the wall and the confined constituentfields,
the wave function for these constituents must also
be spherically symmetric; otherwise the pressure
on the wall would not be balanced by the momentum
of the constituents. Even in the presence of inter-
actions among the constituents, the wave function
must obey such spherical symmetry.

In order to impose this spherical symmetry, we
shall consider trial wave functions built as an
arbitrary sum of antisymmetrized products of
one-quark orthogonal wave functions obeying the
Dirac equation for an arbitrary central potential.
Each term of the sum will be antisymmetrized with
respect to the product SU, (color) SU, (T, l') (where
T is the isospin and Y the hypercharge), spin and
configuration space transformations. [For the
case of nonstrange baryons one may consider

A. Wave functions

The wave function P of a Dirac particle in an
arbitrary central potential obeys the equation

HP= . +PM(r)+ V(r) g=Zg,J

where n and P are the usual Dirac matrices, Z is
the energy, M is a scalar potential (which includes
the mass of the Dirac particle), and V is the
fourth component of a four-vector.

In our case only spherically symmetric wave
functions are allowed and we may write'~

( &„(r)c rX

where X is a Pauli spinor, the lower index n labels
different wave functions, and 6 andI obey two
coupled first-order diff erential equations.

Taking into account the internal symmetries
SU,(color) and SU,(T) we write

where 4= 1,2, 3 is the color index and t=~ —,
' is the

isospin index. The wave functions obey the orthog-
onality condition

The trial wave functions for the nonstrange baryon
are
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g(p; S;r, r2,r,) = Q p p C„„„S(t,t,t„s,.s~g
1 2 3 123 1 2 3

g Ic„„„I'=1.
ngn2n 3

x
l

I I

y'"(1)q'"(2)q',"(3),
( F„,(r,)o, r,y., (1)) (&„,(r.)o. r.x.,(2))j (&. (re'r.X. (3)))

(5)

In Eq. (5) we have assumed that 4 is fully antisym-
metric under SU,(color). For the nucleon and the
b, (1236) [and all particles in the 56 representation
of SU,] S is symmetric under the simultaneous
exchange of both s; and t~ indices and C is sym-
metric under the exchange of the g, .

B. One-quark operators

Within the frame of the model the magnetic mo-
ment, root mean square radius, and axial charge
are given in terms of one-quark operators.

(i) Magnetic moment. For the minimal electro-
magnetic interaction T|ty&g the magnetic moment
depends on the one-quark matrix elements

p = —sg r'dr r(2 Rea*b),

where we suppress summation indices.
(ii) Mean square radius For th. e mean square

radius, we have the expression

(r') =g J r'drx (lbl +'lal').

(iii) Axial charge of the nucleon. If we define
the axial charge g~/gr of P decay as the expecta-
tion value of the one-quark operator

d rifts Tag f

~

d'r —,
' r && (pic.Q)), we obtain

where Q is the matrix in isospin space, " =3 Q „r'd (lbl'-klal')

0 1
3

From Eq. (6) and the wave functions (4) we obtain
for the magnetic moment of the proton"

C* C t
1

n~n2n3 n~n2n3

x ' r'dr r[G„*(r)E„(r)+ E„*(r)G„(r)],

(7)

C. Bounds on 9' /&pp) andg& /g

From Eqs. (7) and (9) we may write for the
proton

9LLL
'

PP (r 2)

Q ffr'dr r "dr'(2 Rea*b)2rr'(2 Rea*'b')

Z ffr'd r "d '(lal'+ Ibl')(r'+r")(la'I'+ Ib'I'i '

(12)with
or, introducing the quantities

a„„(r)=g C„„„Z„(r),
n3

b„„(r)=g C„„„G„(r),
"3

which satisfy

r'~[la„„(r)I'+ Ib„„(r)I'] = 1,
I 2

we can rewrite Eq. (7) as

a' = a„i„,(r'), b' = b„, „,(r').
1 2 1 2

Taking into account the inequalities

Sx' ~x'+x",
aRe *b Ial'+Ibl',

we have that

Pp ~& 1.

Also, from Eq. (11) we may write

9g—+ —~ =2 r2d lbl2,
2 10g

(13)

(14)

(16)
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and this equation implies

0~~ + — ~~ 2
1 9 g
2 10g

9 g~ 3

The experimental values" are

p~ = 1.06, g~/g„= 1.25+ 0.09.

Note that in order to reach in Eq. (12) the upper
bound p&

——1 we need M„„=a„„/0„„=1 for all
Byfl2 lfynp tfyH2

n,n, and all values of x. However, from Eq. (17)
we find that in this case g„/g„= —,

' . That was the
case for the computation of the SLAC group. '

In general, the M's will not be near unity and
the sign may be different for different n's or for
different values of r in the integration range. In

particular, when in the wave function the contrib-
ution of "excited radial states" becomes increas-
ing)y important, the M's will change sign in the
integration range and p- «1. Note that in order
to fit the experimental value of g„/gv we need for
the M's an average value of 0.48. This value
implies p~& 0.61. (In models with a positive mass
for the nonstrange quark one may fit g~/g» but

p~ will be too small by a factor of 2.)

rameters. However, in addition to the "spherical
approximation, " the results depend on the validity
of the one-quark operators. In particular, if the
electromagnetic interaction, in addition to the
minimal current Py&g, includes anomalous terms
one might fit p&.

However, this possibility, in addition to perhaps
being at odds with renormalizability, does not
seem to be suggested by the rather simple picture
that emerges in deep-inelastic experiments. More
than anything, the analysis seems to suggest the
importance of the "wall dynamics. "

I Remember
that PCAC (partially conserved axial-vector
current) and VMD (vector-meson dominance) with-
in the frame of bag theories are related to fusion
and fission of extended objects and therefore are
"wall phenomena. "] The above result will not
necessarily be valid for the more complicated
wave functions that would arise from the interac-
tion with gluons. One would expect anyway that
these wave functions would give corrections of
the same order of magnitude as those due to "wall
dynamics. " Although when one leaves the spherical
approximation the analysis becomes rather com-
plicated, " it is important to try to understand this
wall dynamics. The deep-inelastic regime sug-
gests a simple picture for the inside of the baryon,
and a better knowledge of the outer region wouM
allow us to achieve a rather complete understand-
ing of the baryon structure.

III. FINAL REMARKS

%e have shown in Sec. II that within the frame
of the "spherical approximation, " even in the
presence of interactions among the quarks, it is
not possible to get a good fit for the nucleon pa-
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