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Starting with a shielding mechanism which makes hard Regge surfaces compatible with two-particle unitarity
in the t channel, we present a model for the Pomeron and its associated shielding cut. The model provides a
unified description of pp, mp, and Kp scattering while conforming to the usual tenets of factorization and

exchange degeneracy.

We assume that cross sections rise asymptot-
-ically so that the Pomeron singularity is harder
than an ordinary first-order Regge pole. Under
these circumstances shielding cuts are required
in order to make the amplitudes compatible with
two-particle unitarity in the f/ channel. Threshold
branch points of the Pomeron trajectory af(t) in
the ¢ plane, which are sufficient and natural for
ordinary Regge poles, are generally no longer
adequate for the harder Regge surface, in particu-
lar if they are branch-point surfaces.!

The Pomeron may well be a hard branch-point
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surface with a complicated structure. For sim-
plicity, we choose here a double pole which gives
an asymptotic increase as Ins, and is the hardest
singularity which does not require a branch point
in a(t) at t=0.

Hard singular surfaces which do not possess
threshold singularities can be made compatible
with elastic f-channel unitarity in 77 scattering
using an ansatz proposed by Oehme.? Under the
above assumptions we write the continued partial-
wave amplitude F in the form
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Here a,(t)=a()+c(t-t,), c>0and t,=4m,2, «(t)=1+a't. The functions ®({, j) and K, (¢, \) are regular
at ¢t =t,, and the latter is defined so that K ,,(¢, a(t))=1. Expression (1) satisfies the elastic ¢-channel uni-

tarity relation.

For phenomenological purposes we must consider amplitudes of the form (1) in the context of coupled-
channel unitarity. This has been done in Ref. 3, where it was shown that a simple factorizable solution
to the unitarity equations can be found in the neighborhood of j ~ a(f) provided amplitudes in all channels
possess a shielding cut. In our model we make a more general ansatz and write the relevant spin-aver-

aged positive-signatured amplitudes in the form
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where, for example, a=NN, 7N, KN for nucleon-
nucleon, pion-nucleon, and kaon-nucleon scatter-
ing, respectively.

Unitarity equations then require that f, (¢, j)=1
and K, (¢, A) =K ,, (¢, \) =K .. (£, \)=K (¢, A) while the
remaining functions K, are left arbitrary up to the
requirement that K (¢, a(t))=1. It also follows
from the multichannel unitarity equations that
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where for definiteness we have assumed that
K (t, ) =14y, al) - 7).

Thus the generalized residue functions obey the
factorization condition (3a) at the pole, and the
corresponding condition (3b) at the tip of the cut,
J= o).

It should be noted that the kinematic factors
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coming from P,(cosé,) in the Sommerfeld-Watson
representation are absorbed in the definition of
f.(¢, 7), so that the same scale of energy appears
in all channels.

By construction, the amplitudes in (2) have sin-
gularities at j = a(t) and j = a4(t) whose contribu-
tions at high energies are obtained by taking the
Sommerfeld-Watson transform. At {=0, we find

(713—) [ImF, (s, 0)], = A, + B, (Incs)

+C,(cs) [ct, Incs]| ¥ |
)
where
A, =1 [37%057 G — 01/00)],
B,=f,31%¢,™),

Jo ) (cos?3mct, — singmct, )41 %

Ca= (1 +y,cty

r'(-ct,)

XB(3,3 —cty) TG cl)
m

Here we have defined
. 1 .
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and assumed that only the tip of the cut contributes
at high energies. In order to compare our model
also with the low-energy (15= P, < 40 GeV/c) data,
our final results include secondary terms which
are <10% of the primary cut contribution; the

inclusion of these terms has an insignificant effect
on the parameters A,, B,, and C,. It is interest-
ing to note that the secondary terms become suc-
cessively less important in going from pp to wp
to Kp, which is also the trend observed in the
primary term.

From (4) we see that ¢ sets the common scale of
energy in all channels, and hence we set ¢ =1
GeV ~2, This also means that the intercept of the
cut is close to unity (ct,~0.08). Taking account
of Regge poles with ayx(0)=0.5, the total cross
sections are parameterized by

0,=A,+B,1Ins +C, s~ (ct, Ins)™¥2~ctr

+Ap, s°Ra™t (a=pp, b, Kp), (5)
and if we assume an exponential ¢ dependence for
the generalized residue functions, the amplitudes
near {=0 are given by
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+Cas°‘8‘”'1(ct,, lns)as(t)-s/ze- vy ¢
AR, (8)=1,-bg |t
+ARaS Ra e "Ralfl], 6)
The slope parameters are then obtained (assuming
|ReF/ImF|<1) from
1 d
3b(s, t)= a In(ImF)|.

In Eqgs. (5) and (6) the parameters of the leading
singularity, A, and B,, are constrained by factor-
ization: (A, B),=¢,(A, B),,, with €,=1,/f,,, deter-
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FIG. 1. Fits to total cross sections (see Ref. 4). (i) 0,, : & Foley (67), @ Denisov, [ Baker, X Amaldi. (ii) %(a,r_,+o,r+,):
A Foley (67), @ Denisov, 0 Baker. (iii) 0., : A Galbraith, @ Denisov, [ Baker.
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mined phenomenologically. [The f’s are defined
in Eq. (2).]

The results of fits to the data* on o}, , 0¥, and
3(02% +oll) above P, ~20 GeV/c are shown in
Fig. 1, and in Table I we give the parameters. In
Fig. 2 we compare with experiments,® our predic-
tion for a,,=ReF,,(s, 0)/ImF,,(s,0). In all our fits
it was tacitly assumed that differences of total
cross sections are adequately described by w and
p exchanges.®

The present analysis in terms of the Pomeron
and its associated shielding cut points to the fol-
lowing systematic features of the data.*'®""

(i) Exchange degeneracy, which was invoked at
lower energies to account for the absence of a
falling contribution in the exotic channels, con-
tinues to be a stable feature of the data: Ag, =0
for X=p,K". Moreover, our determination of
A’;,,, is consistent with f-p exchange degeneracy
in mp scattering.

(ii) From Table I we see that the requirement of
factorization for the leading singularity is satis-
fied quite well by the data, and (A, B),,/(A, B),,
=€y,/€q,~1 indicates that this singularity may
well be an SU(3) singlet.

On the other hand, the contribution of the shield-
ing cut is considerably suppressed in Kp scattering
relative to mp scattering: Cy,/C,,~%. The shield-
ing cut thus possesses a nonsinglet SU(3) struc-
ture, which is plausible in view of its intimate
association with the 27 threshold in the present
model. Indeed it is possible to obtain the magni-
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TABLE 1. Parameters determined from fits to total
cross sections Py <20 GeV/c. See Eq. (5).

AF from exchange

a A, B, € C AF degeneracy
pp 18.56 2.64 1.0 2.16 0 0

mp 10.95 1.56 0.59 1.27 14.42 16.2

Kp 10.21 1.45 0.55 0.39 —0.05 0

tude of the suppression by making an octet-domi-
nance model at an effective particle—particle—
shielding-cut vertex if the strength of the cut is
determined by coupling via 27 intermediate states.
Observe that the nonsinglet character of the shield-
ing cut reflects an important feature of the data,
namely, the precocious dominance of the leading
singularity in K *p scattering, as manifested in the
early rise of the total cross section and the early
onset of logarithmic shrinkage of the slope pa-
rameter.

Unlike many other models® which ascribe a non-
singlet structure to the singularity at (¢, 7)=(0,1),
the present model retains the SU(3) singlet charac-
ter of this singularity while exploiting the non-
singlet properties of a nearby singularity
[a,(0)=0.92]. A similar approach has been ad-
vocated by Lipkin.®

(iii) The large f contribution in 7-p scattering
is relevant to the nonshrinking diffraction peak
in that channel. Similar effects of secondaries
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FIG. 2. Prediction for a,,p:ReF”/ ImF,,. Data from Baretnev e al. (Ref. 5) (@) and Amaldi e al. (Ref.5) (X).
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are observed in K~p and pp scattering, a quantita-
tive analysis of which will be presented else-
where. It is interesting to note that there are two
unambiguous methods of determining the f con-
tribution in 7-p scattering—exchange degeneracy,
and SU(3)—and both predict a large value.

(iv) In pp scattering the model predicts a change
of slope in the ¢ distribution around ¢=-0.15 GeV 2,
the magnitude of which decreases slowly with
energy. Insofar as this phenomenon depends on the

size of the (positive) cut contribution, it appears
that, at comparable energies, the K*p channel will
not exhibit a similar change. We believe that
definitive statements on this phenomenon at ac-
cessible energies can only be made for the two
exotic processes, since large secondary contribu-
tions would mask this tiny effect in other channels.
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