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Shielded Pomeron model for high-energy cross sections
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Starting with a shielding mechanism which makes hard Regge surfaces compatible with two-particle unitarity
in the t channel, we present a model for the Pomeron and its associated shielding cut. The model provides a
unified description of pp, m p, and J p scattering while conforming to the usual tenets of factorization and
exchange degeneracy.

We assume that cross sections rise asymptot-
ically so that the Pomeron singularity is harder
than an ordinary first-order Regge pole. Under
these circumstances shielding cuts are required
in order to make the amplitudes compatible with
two-particle unitarity in the t channel. Threshold
branch points of the Pomeron trajectory n(t) in
the t plane, which are sufficient and natural for
ordinary Regge poles, are generally no longer
adequate for the harder Regge surface, in particu-
lar if they are branch-point surfaces. '

The Pomeron may well be a hard branch-point

surface with a complicated structure. For sim-
plicity, we choose here a double pole which gives
an asymptotic increase as 1ns, and is the hardest
singularity which does not require a branch point
in o.(t) at t =0.

Hard singular surfaces which do not possess
threshold singularities can be made compatible
with elastic t-channel unitarity in n~ scattering
using an ansatz proposed by Oehme. ' Under the
above assumptions we write the continued partial-
wave amplitude I in the form

[(o,, —A. )/c] '"~' K, (t, X) 1

[(o —X+ct,)/c]" X —n —ic (j —&)']

(t-t. )'& '(t, j)=(j- ~)' ~(t,f) „(j—~)—- [(o, - ~)/c]'"~BC (t, ~) f
oo

Here n, (t) = o(t)+c(t —t, ), c)0 and t„=4m, 2n(t) =1++'t. The functions 4(t,j ) and K„(t,A) are regular
at t =t„, and the latter is defined so that K„(t, o.(t)}=1. Expression (1) satisfies the elastic t-channel uni-
tarity relation.

For phenomenological purposes we must consider amplitudes of the form (1) in the context of coupled-
channel unitarity. This has been done in Ref. 3, where it was shown that a simp'. e factorizable solution
to the unitarity equations can be found in the neighborhood of j —o.(t) provided amplitudes in all channels
possess a shielding cut. In our model we make a more general ansatz and write the relevant spin-aver-
aged positive-signatured amplitudes in the form

f.(t,j) I(t t.)-'~.(t,i)=-,' ' .~+(t, j)- —,(j- )
w 00

where, for example, a=NN, mN, KN for nucleon-
nucleon, pion-nucleon, and kaon-nucleon scatter-
ing, respectively.

Unitarity equations then require that f„(t,j)=1
and K,„(t,A) =K,v(t, X) =K,„(t,A) =K(t, A) while the
remaining functions K, are left arbitrary up to the
requirement that K,(t, o(t)) =1. It also follows
from the multichannel unitarity equations that

2
Iim f~g = lim fy~ 1 + ywNct

lim f„„f« = lim f« 1+y ct,
+~s y +ops +yg+C ~

where for definiteness we have assumed that

K.(t, ~) = I + y. (t)[~(t) —~].

(sb)

and

limf~ g =11m fN g q

1m f~g f~lC = i fICE i
(Sa)

Thus the generalized residue functions obey the
factorization condition (Sa) at the pole, and the
corresponding condition (Sb) at the tip of the cut,
j - o..(t).

It should be noted that the kinematic factors
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coming from P, (c os8, ) in the Sommerfeid-Watson
representation are absorbed in the definition of

f, (t, j), so that the same scale of energy appears
in all channels.

By construction, the amplitudes in (2) have sin-
gularities at j = ».(t) and j = a, (t) whose contribu-
tions at high energies are obtained by taking the
Sommerfeld-Watson transform. At t =0, we find

[ImE, (s, 0)], = A. +B.(lncs)
1

cs

+C.(cs) "[ct,lncs] ~' "~

(4)

inclusion of these terms has an insignificant effect
on the parameters A„B„and C, . It is interest-
ing to note that the secondary terms become suc-
cessively less important in going from PP to wP

to KP, which is also the trend obser;ed in the
primary term.

From (4) we see that c sets the common scale of
energy in all channels, and hence we set c=1
GeV '. This also means that the intercept of the
cut is close to unity (ct, =0.08). Taking account
of Regge poles with n„(0)=0.5, the total cross
sections are parameterized by

O', = 4, +B,1ns + C, s '™(ct, lns ) +' '"
where +As s"s~ ' (a = pp, mp, Kp), (5)

A. = f.[3w'p, '(—', —y, /cp, )],
B.= f. (3»'qr, '),

C, = ', (cos'-,' sct, —sin —,
' sct, ) 4' "~

1+y, ct„)

r(-,'- ct, )B(3, , —ct, )

Here we have defined

C'(0,j)=; [7&, +q, (-j —1)
1

and if we assume an exponential t dependence for
the generalized residue functions, the amplitudes
near t =0 are given by

1—ImE, (s, t) = [(A, +B, lns)s ""' 'e b' 'l

+C sabib&- (ct Ins)nb(t&-b/2e bal tl
a 'Ir

+A s"s"" 'e b&b.l'l] (6)Bg

The slope parameters are then obtained (assuming
!ReE/ImE!«I) from

and assumed that only the tip of the cut contributes
at high energies. In order to compare our model
also with the low-energy (15&Pz & 40 GeV/c) data,
our final results include secondary terms which
are &10% of the primary cut contribution; the

—,b (s, t) = —ln(ImE) .

In Eqs. (5) and (6) the parameters of the leading
singularity, A, and B„are constrained by factor-
ization: (A, B),=e,(A, B)», with e, =f,/f», deter—
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FIG. 1. Fits to total cross sections (see Hef. 4). (i) o'bb .i Foley (67), 0 Denisov, CI Baker, Amaldi. (ii) 2(o~ &+o'~+b):
4 Foley (67), ~ Denisov, U Baker. (iii) Oz+& . X Galbraith, Denisov, 0 Baker.



SHIE LDED POMERON MODE L FOR HIGH-ENERG& ~ ~ ~

mined phenomenologically. [The f's are defined
in Eq. (2).]

The results of fits to the data' on o~~", o~'"~ and

~ (&,'"-"~ + O',"P~) above I'~ =20 GeV/c are shown in
Fig. 1, and in Table I we give the parameters. In
Fig. 2 we compare with experiments, ' our predic-
tion for n» = Re—F»(s, 0)/ImF»(s, 0). In all our fits
it was tacitly assumed that differences of total
cross sections are adequately described by v and

p exchanges. '
The present analysis in terms of the Pomeron

and its associated shielding cut points to the fol-
lowing systematic features of the data. 4"

(i) Exchange degeneracy, which was i.nvoked at
lower energies to account for the absence of a
falling contribution in the exotic channels, con-
tinues to be a stable feature of the data: A„„=o
for X =P, K'. Moreover, our determination of
A, ~ is consistent with f pexchan-ge degeneracy
in nP scattering.

(ii) From Table I we see that the requirement of
factorization for the leading singularity is satis-
fied quite well by the data, and (A, B)~~/(A, B),~
=ez~/e, ~=1 indicates that this singularity may
well be an SU(3) singlet.

On the other hand, the contribution of the shield-
ing cut is considerably suppressed in Kp scattering
relative to vP scattering: C~~/C, &= —', . The shield-
ing cut thus possesses a nonsinglet SU(3) struc-
ture, which is plausible in view of its intimate
association with the 2m threshold in the present
model. Indeed it is possible to obtain the magni-

TABLE I. Parameters determined from fits to total
cross sections P~&20 GeV/&. See Eq. (5).

a Ca
&, from exchange

degeneracy

pp 18.56 2.64 1.0 2.16

xP 10.95 1.56 0.59 1.27 14.42

&P 10.21 1.45 0.55 0.39 -0.05

16.2

tude of the suppression by making an octet-domi-
nance model at an effective particle-particle-
shielding-cut vertex if the strength of the cut is
determined by coupling via 2m intermediate states.
Observe that the nonsinglet character of the shield-
ing cut reflects an important feature of the data,
namely, the precocious dominance of the leading
singularity in K'p scattering, as manifested in the
early rise of the total cross section and the early
onset of logarithmic shrinkage of the slope pa-
rameter.

Unlike many other models' which ascribe a non-
singlet structure to the singularity at (t, j) = (0, 1),
the present model retains the SU(3) singlet charac-
ter of this singularity while exploiting the non-
singlet properties of a nearby singularity
[o.,(0)=0.92]. A similar approach has been ad-
vocated by Lipkin. '

(iii) The large f contribution in n pscatte-ring
is relevant to the nonshrinking diffraction peak
in that channel. Similar effects of secondaries
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FIG. 2. Prediction for u» ——BeE&gimS'». Data from Baretnev et al. (Bef. 5) (4) and Amaldi et al. (Bef.5) (&&).
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are observed in K p and PP scattering, a quantita-
tive analysis of which mill be presented elsIE, -
where. It is interesting to note that there are two
unambiguous methods of determining the f con-
tribution in m-P scattering —exchange degeneracy,
and SU(3)—and both predict a large value.

(iv) In pp scattering the model predicts a change
of slope in the t distribution around t =-0.15 GeV',
the magnitude of which decreases slowly with
energy. Insofar as this phenomenon depends on the

size of the (positive) cut contribution, it appears
that, at comparable energies, the K'p channel mill
not exhibit a similar change. We believe that
definitive statements on this phenomenon at ac-
cessible energies can only be made for the two
exotic processes, since large secondary contribu-
tions mould mask this tiny effect in other channels.
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