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Explicit expansions are derived for the wave functions, eigenenergies, and Regge trajectories of the
nonrelativistic wave equation for quark-confining potentials.

The recent discovery of heavy resonances in
electron-positron annihilation has generated con-
siderable interest in dynamical calculations of
the masses of quark-antiquark bound states. ' '
Since free quarks have not been observed, the
quark-binding potential is believed to increase with
their separation so that the quarks cannot be
pulled apart by any finite amount of energy. The
deeper theoretical justification for a simple phe-
nomenology based on such potentials comes from
a field theory of quarks coupled minimally to
non-Abelian gauge fields. Such a theory has the
desirable property of being asymptotically free
in the short-distance limit but coupled strongly
in the large-distance domain. The equivalent
effective potential behaves as 1/(r inr) in the
short-distance domain of quark-quark separations,
and as x", X ~ 1 in the large-distance domain.

Confinement potentials have been used recently
in numerous investigations' dealing with hadron
spectroscopy. Lacking explicit solutions of wave
equations for such potentials, many authors re-
sort to numerical methods.

The purpose of this paper is to show that it is
easy to find explicit perturbation expansions for
both the eigenvalues and eigenfunctions of Schro-
dinger-type wave equations containing conf ine-
ment potentials. By application to alp spectroscopy
one can check that even the few terms evaluated
explicitly here for the eigenvalues yield very good
agreement with the results obtained by numerical
methods.

We consider the Schrodinger equation for the
unscreened power potential V(r) =g~ r~ . Sepa-

where, as usual, 4 = (1/r) ((v')P t (cos 6)e'

p, =m,m, /(m, +m, ) is the reduced mass of the two
quarks and r is their separation. Throughout we
ignore an arbitrary additive constant in V.

Inserting the power potential, we have the equa-
tion

ds( Y

cf'Y
+ ts —pr ——(=0y2 (2)

where we have set

2 pE 2LILg

and A. ~ 1 for confinement of the quarks. We now

solve Eq. (2) in a region where the dimensionless
quantity ot"' "/p'i" is large but finite. The use-
fulness of this solution will be discussed below.

%'e set

(4)

Equation (2) then becomes

dg2. + [-r —e+ v(e)] 0 = o,

where -~ & z & ~ and

&sz p&(s+ k)z

rating off the motion of the center of mass in the
usual way, we obtain the radial wave equation for
the relative motion of two quarks of masses
may m2

O'P 2p, l(l+ 1)It'
dr' it' 2yr'.
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v(z) =v(z, )+ Q . ,
' v"(z,), (8)

where

Next we find that value of z, say zo, for which
v(z) becomes maximal. In the vicinity of this
maximum v(z) -y ——,

' can become positive and the
solutions therefore oscillatory as required for the
existence of eigenvalues. Simple differentiation
yields the result

1 2n
,

(2+)()P

for ()/&0, P &0. It may be noted that the spectrum
of bound states lies in the domain E &0 in much
the same way as for the simple harmonic oscil-
lator.

Expanding v(z) in the neighborhood of the max-
imum at zo we obtain

solution we set

1 h
h' 4(2+) )

+ = 2V+ ~

The quantity ~ in (12) remains to be determined.
We proceed as follows. Substituting (13) in (12)
we have an equation which may be written

where

2~ 1 " (2+)(.)' ' 2'-'
Zti=3

(14)

d jS:-2 2
—g + 2(d

d(cP
(15)

Equation (14) is now in a form suitable for the
application of our perturbation method. To a
first approximation Q = g(o) is simply a parabolic
cylinder function D(, ,)/, (&v), i.e.,

(f) 2Q

P(2 ))

—2/X

[2' ' —(2+)()' ']
%'e have

for i =0, 1,2, . . . . For i =0 this expression is
positive, for i = 1 it is zero, and for i & 1 it is
negative [as required for a maximum of v(z) at
z = z, for c( &0]. We now set

2
—2/X 1/4

p(2+&)

2

( ) 2(a-3)/4 -QJ /4 y q 3 .
( -l)/ 4

&0y, = (q, q+2)y„, + (q, q -2)y. .. (17)

where 4' is a confluent hypergeometric function.
The function Q, is well known to obey the recur-
rence formula

8 ATE/ 2Z.
h' (2+)(.)g

2-A,

and change the independent variable in (5) to

(v =h(z —z, ) .
The equation then becomes

(10)
where

(q, q+2) =1, (q, q —2) = —,'(q —1) .
For higher powers we have

2$

(v 0 = g S((q j)(t' +;
j- 2'l

(18)

(19)

--,' —y+ h' j[4(2+ )()]
de

1 ~ (2+)(.)' ' —2' '
2m~ .h' '

i=3

For large values of h the right-hand side of this
equation may —to a first approximation —be ne-
glected. The corresponding behavior of the
"eigenvalues" (Ijh') [-& —y+h'/4(2+X)] may then
be determined by comparing the equation with
the equation of parabolic cylinder functions. The
solutions are square - integrable only if

and a recurrence relation may be written down
for the coeff icients S,. The first approximation
P = P( ) then leaves uncompensated terms amount-
ing to

(,) 2a 1 ~ (2+)(.)' '-2' '

i=3

1=
h y, —ph, , QS, (q, j)q„,( ), (20)

i=3 j=2f

where we have set

h 4(2 +)()

where q is an odd integer, i.e., 2n+1, n

=0, 1, 2, . . . (provided the wave function is re-
quired to vanish at infinity; otherwise it is only
approximately an odd integer). For the complete

1 (2+)(.)' ' —2' '

We rewrite (20) in the form

i=3

S;(q, j) . (21)
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where

[q, q]. =2&-S,(q, o)

and for jwo,
[q, q+j].= S,(q-,i)

and for i&3,
[q, q+j l; =-S;(q,i) .

Since B„,. = u, —j,u, Q„~ =j (1)„&,
8, may be removed by adding to
bution ]).P„,/j except, of course,

(23)

a term )],(t)„& in
@") the contri-
when j=0.

Thus the next-order contribution of P becomes

(x) ~ 9 ~+9 i

i=3 2 —2$
j vq'P

(24)

g(2) ~ 1 ~ [q q+ j]ig(0)
q ~ha-2 ~ ~ q+j 0

i=3 j-24
j Wp

and yields the next contribution of (t):

(25)

In its turn this contribution leaves uncompensated

(&) ~ 1 ~ [qq q+jli ~ 1 ~ [q+j qqj++j ]1'

t-3 j=2i iI=3
j+ j'&p

(25)

Proceeding in this way we obtain the solution (I) = (t)'o) + p(')+ p(2)+ ~ ~ ~, which is an asymptotic expansion
in descending powers of h valid for

])n(r/r, )]& O(5), (27)

where x, =e'() = [2E/(2+)()g]'~ and jointly an eigenvalue equation from which 2), in (13) may be determined.
The latter is obtained by setting equal to zero the sum of the terms in P, in R('), R,'), . . . which have been
unaccounted for so far. Thus

i=3 j=2i i'=3

0=-[q, q], +h , )[q, q],+P—'. '[q+j, q], +0
h
—, .

j=6
(23)

This is the equation from which 4 and hence the eigenvalues are determined. The expansion on the right-
hand side is much simpler than may appear on first sight because [owing to the fact that there are no
terms in (]),+ „P„(j),, in (17)] many terms are zero. E.g. , S,(q, 0), S,(q, a 1), S,(q, + 3), S, (q, + 5) vanish,
Thus

6 = —[S (q, 0) --'S(q, 6)S (q+ 6, -6) +';S(q, -6)S(q —6, 6)--S(q, 2)S(q+ 2, -2) + —S(q, -2)S(q —2, 2)]+0(—,)

[9(q + 1)(1' + 61 + 12 ) —((59*r 7 I (1r 4 )'] + 0 (qi )

(51q'+1)+ 0 —, when, &= 1
1

23h h

=- —+0 —, when X=2.q 1
h h (29)

We now consider the case )(=l. Inserting (29) into (13) we obtain

Si( Es 2~2q p
~2 Es 2

(17q 3- 9) IgI(l'l)=27
g h

—
3 h g

'
72
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Solving for I we obtain (q = 2n+ 1)

2p. '"E'" 9qk g 3(3q' —1) h' g'
3 graf 4(2p. )'I E i 128 p E

~ ~ ~

and solving for E we get (q =2n+1)

(3o)

2/3

3Q y/2 Sq + 17 +72l /+1 (31)

In (31) [and hence in (30)]we choose the upper
sign in order to obtain a real value of E for the
ground state.

The masses of the bound states are given by

formula for the zeros of the Airy function:

2+ yv &/»/3
(&)2/3 3q ~ (37)

M"=m +m +E1 2 (32)

apart from the arbitrary additive constant in V.
In the literature'2' ' '7 the case of S waves (1=0)
has been discussed. There the formula corre-
sponding to (32) is given in terms of zeros of
Airy functions. It is interesting to see the con-
nection. Thus, setting I=0 and X =1 in (2) we have

d
„+(n' —r')y=0, (33)

for o. ' real and r' &n' where K,(z) is a modified
Bessel function. For x'& cy' this function is given
by

Ai(r' —c') =L'(n' —r—')'"[J ( 3(n' —r—') ")
+J -gag (3 (o"—&')" )] ~

(34b)

The eigenvalues are now given'bythe zeros of the
function Ai(-o. '). lf o.,' (q=2n+1, n =0, 1, 2, . . . )
are those values of n' for which Ai(-o. ')=0, we
have

(35)

and so

g.2@.2 1/3~"=m +m + n' (I=O X=1).
2p, q (36)

Comparing (35) with (31) we obtain an approximate

where r'=P'I'~ and n'= n/P"'. The solution of
this equation which is finite at both x = 0 and ~ = ~
is the Airy function' which is given by

pl ~ I 1/2
Ai(r' —n') = — K, ,(-', (r' —o. ')'"}

which is most accurate for low q (0.8% error for
q=1).

The eigenfunctions normalized according to

f P'(~')d~'= 1 are"
Ai(~' —o..')
—Ai(r)lJ'

By expanding Ai(r' —o.,') around r'= 0 and realizing
that the full wave function is normalized according
to J ~C (x, e, Q) ~'dQdh= 1 we obta. in at the origin

(38)

Formulas (36) and (38) coincide with those given
by Harrington et al. '

Thus, Eq. (30) gives the Regge trajectories and
Eqs. (31) or (35) the eigenenergies of the nonrela-
tivistic system for the linear confinement poten-
tial. The solution Q derived above is valid in the
region (27). It is possible to derive other branches
of the solution in other regions of validity but the
eigenvalue expansion is the same. The method can
also be applied to relativistic equations, or equa-
tions incorporating relativistic kinematics, al-
though the algebra becomes more complicated.

Of course, the simple power potential considered
here represents the unscreened quark-quark inter-
action. As the quarks separate, this unscreened
potential between them grows until the energy is
such that a pair of light quarks is created out of
the vacuum, which then combine with the original
(heavy) quarks to form a pair of mesons. This
creation of quark pairs has the effect of screening
the confinement potential. These screened inter-
actions are roughly analogous to Yukawa or Gauss
potentials, for which the wave equation has been
solved in a similar way. "
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