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The allowed domains of the parameters describing a chiral-symmetry-breaking Hamiltonian belonging to the

(3,3*) (3~, 3) (8, 8) representations of SU(3) )( SU(3) are investigated. In addition to constraints on these
parameters arising from spectral-function positivity we employ conditions corresponding to bounds on the
ratio f~/f of kaon- to pion-decay constants and on the nm S-wave I = 0 and 2 scattering lengths. It is found
that these constraints are extremely effective in reducing the size of the allowed domains. Particular attention
is focused on the Gell-Mann —Oakes-Renner, Okubo, and Sirlin-Weinstein forms of symmetry breaking,
which are special cases of the general (3,3*)(p (3*,3) (8, 8) scheme.

I. INTRODUCTION

The SU(3) &&SU(3) structure of the strong-inter-
action Hamiltonian remains uncertain despite many
attempts at its elucidation. In general, the Hamil-
tonian density is written

K(x) =K,(x) + X»(x),

where Ko(x) is an SU(3) x SU(3) invariant and

X»(x) breaks SU(3) && SU(3) symmetry in a well-
defined manner. In one of the most popular mod-
els' ' of symmetry breaking K»(x) transforms as
the scalar isoscalar component of the (3, 3*)6 (3 ~, 3)
representation of SU(3) && SU(3). This scheme has
been recently brought into question with the de-
termination thai the zN (T term may be as large as
60 MeV (see Ref. 4) and that the mw S-wave I=0
scattering length (aoo) may be as large as 0.5 I, '.'
In addition, there is some difficulty with the de-
cay q- m'z z in this model. "

In light of these developments other representa-
tions of SU(3) x SU(3) have been considered for
X». These include the (1, 8) 6(8, 1), the(8, 8), and
the (6, 6*)63(6*,6) representations. The (1,8)
$(8, 1) form has been considered by Gell-Mann,
Oakes, and Renner~ and its contribution (based on
soft-pion arguments) is expected to be small. The
(8, 8) representation was introduced by Barnes and
Isham' and studied in more detail by Genz and
Katz' among others. The (6, 6*)6(6*,6) represen-
tation has been investigated by Auvil, and McDon-
ald, Rosen and Kuo."

The entire symmetry-breaking situation is made
more complicated because the symmetry seems
to be realized in a Nambu-Go1. dstone manner. "
Thus, even when all explicit symmetry-breaking
terms are turned off, the chiral symmetry is not

realized in the usual manner, but the solutions
belong to some subgroup of chiral SU(3) x SU(3).
This subgroup is usually assumed to be SU(3).

One of the more interesting hypotheses of chiral
symmetry breaking is that K» belongs to more
than one representation of SU(3) && SU(3). This idea
is especially interesting when one of the forms
chosen is that of the (3, 3*)6(3*,3) representation.
Indeed, we can then let this part be the dominant
contribution and conserve chiral SU(2) && SU(2)
symmetry; the other representations provide
small corrections and generate the pion mass.
These ideas have been introduced by Okubo" and

by Sirlin and Weinstein" among others. Okubo has
argued that K» might contain the SU(2) && SU(2)-in-
variant part of the (3, 3*)$(3*,3) representation
plus any other SU(3) singlet. Sirlin and %einstein
suggest that X~s contain the even-parity SU(3)
singlet and I=0 octet components in the (8, 8) rep
resentation in addition to the SU(2) && SU(2)-invari-
ant part of the (3, 3 *)8 (3 *,3).

ln this paper we assign X» to the (3, 3*)g (3*,3)
$(8, 8) representations of SU(3) && SU(3) and invest-
igate the Okubo and Sirlin-Weinstein forms of
symmetry breaking and other special cases. A

(3, 3*)$(3*,3) 6(8, 8) symmetry-breaking struc-
ture has been considered previously by a number
of authors. """ The present study is devoted to
an analysis of the allowed domains of the various
symmetry-breaking parameters contained in X».
To this end we use the spectral representation
technique of Okubo and Mathur, "who analyzed the
allowed domains for the parameters describing the
(3, 3*)8 (3*,3) symmetry-breaking scheme.

In order to outline the technique of Okubo and
Mathur we first consider the Lehmann-Kallen
spectral representation for the chiral current com-
mutators. One has
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and

(0I[V„;(x),V„,(x')]I0)=i dm' p, ,(m') g „+," — ", -8 s„a( — ';m')
0

(1.2)

(0I[A„.(x),A„,(x')]IO)=i dm' p', , (m') g,„+ "," — ", e,e„a(x x';m'),
0

(1.3)

where V,.(x) and A,.(x) (i =1, . . . , 8) are the
usual vector and axial-vector current octets, the
space integrals of whose time components are the
generators of SU(3) &&SU(3), E, and E.', , respective-
ly; p, , , p', , and o„, cr', , are the transverse and
longitudinal weight functions. Taking the diverg-
ence of Eqs. (1.2) and (1.3), setting v= 0, and in-
tegrating over space leads to (assuming no sub-
traction is required)

(1.10)

This relation can be used to impose severe con-
straints on the symmetry-breaking parameters,
if we use the experimental values for the masses
and require that

—&0.8f»

and

K,, =- dm'cr, , m =i 0 8"V„,, I',. 0
0

(1.4)
—&1.7, (1.12)

and

K, , ~0 (no sum)

I,, ~0 (no sum) .
(1.5)

These conditions (Eq. 1.5) will be used as the pri-
mary constraints to limit the allowed domains of
the symmetry-breaking parameters.

Following Deshpande and Dicus' the domains
can be reduced considerably by investigating the
form of O', ,. Explicitly

q'o'„(q')

= (2p} g 6 (P„—q)(0
I

9 A „,. In)(n I
9 A„,. I

0) .

(1.6}

If we then assume that the one-meson states satur-
ate the sum over states and define, in the usual
manner,

(1.7)

we have

dm g'„(m ) =i(0 I[8"A,, E', ]I0) . .
0

The positivity constraints on o„.and o', , next allow
one to write"'9

as suggested by experiment. " We do not make
these requirements too restrictive a,s Eq. (1.10) is
not an identity.

We can restrict the domains further, if we make
use of a soft-pion relation" "for the g-7t scatter-
ing amplitude. To first order in the chiral-sym-
metry-breaking parameters the I =0 and 2 S-wave
g-p scattering lengths can be expressed as

and

2

ao = 5A+16
96gm, L

(1.13)

(1.14)

a,' &0 (1.15)

ao&0. (1.16)

The restriction in (1.15) seems especially secure.
These bounds imply that A is confined to

A, which depends on the parameters which char-
acterize the symmetry breaking in the Hamiltonian
and of the vacuum, will be given in Sec. II.
phase-shift analyses are in general agreement
that a,' and a', are restricted to the respective re-
gions

I„=m,'f,'

2,2I44™»f».
Consequently

(1.8)
(1.17)

Actually, we will relax (1.17) somewhat to take in-
to account the approximate nature of Eqs. (1.13)
and (1.14).

This completes the set of general constraints



13 STUDY OF THE ALLOWED DOMAINS FOR THE PARAMETERS. . .

used to determine the allowed domains for the
symmetry-breaking parameters. We will also re-
strict these allowed domains in several other
ways. For example, for aesthetic reasons"'" and
on the basis of past experience" we will usually
assume that the (3,3*)6 (3~, 3) part of R» is dom-
inant over that belonging to (8, 8). In addition, al-
though considerable latitude is permitted, we will
not concentrate on regions of the (otherwise) al-
lowed domains corresponding to excessive (rela-
tive to the GMOR model) SU(3) breaking in the
(3, 3*)B(3*,3) part of R». We will be especially
interested in the Okubo and Sirlin-Weinstein ver-
sions in which the (3, 3*)6 (3*,3) contribution is
SU(2) x SU(2)-invariant. Finally, we will assume
that the vacuum is much more nearly SU(3), than

SU(3) && SU(3}-invariant.
Other studies undertaken using similar approach-

es include the w'ork of Okubo and Mathur" who con-
sider both the ease where R, is U(3) && U(3)-invari-
ant and where it is SU(3) &&SU(3)-invariant. They
relate the domain boundaries to the realization
of various subgroupsof U(3) &&U(3) and SU(3) x SU(3),
respectively. They also briefly discuss the case
where R» is contained in the (3, 3*)$(3*,3) 6(1,8}
6(8, 1) representation of SU(3) && SU(3). Carruthers
and Haymaker" use this approach to discuss the
manner in which U(3) && U(3) symmetry is reduced
to SU(3) & SU(3). Hu" also employs this technique
to investigate chiral symmetry breaking of the
(3, 3*)6(3*,3) type with the addition of an isospin-
breaking term. More recently, Deshpande and
Dicus" have investigated briefly the (6, 6*)8 (6*,6)
and (8, 8) forms of symmetry breaking using this
method.

In Sec. II we derive explicit forms for the K,j
and I,, tensors for the case in which K» belongs
to the (3, 3*)$(3*,3) $(8, 8) representations. In
Sec. III we analyze the allowed domains of the sym-
metry-breaking parameters for some special
cases. Section IV contains a discussion of our re-
sults.

o.', P=0, 1,2, . . . , 8):

[E,, u (x)]=if, ,u~(x),

[F,, v (x)]=if„~v,(x),
[F', , u.(x)] = -id...v,(x),

and

[F', , v (x)]=id,. ~u~(x),

(2.1)

—(I x yR ~(8 8)

These tensors transform under F;= —,'(E,. +F. ',)and.
E, =-,'(F,. —.F',.), the generators of SU(3) && SU(3), as

(2.2)

[Fi &;A=if;~&~a

and

[Fr gga] if 'ai~gi '

(2.3)

Consequently

&;8=if;i&~a if
and

[F'* &)8 =if. ;&&i& if;xi&;~-.

(2 4)

Operators of definite symmetry can be defined as

s, , = —,'(g, , + q„.)

(2.5)

A;, =-'(0;, —0;;) .
These operators have the following transforma-
tion properties:

[F,, S,,] =if,, , S„ if,.„S,.„
[F*»;0=-ifviA. i+iAaiA, i

[F~~S&a]= ifviAar ~f&arA&t ~

(2.6}

where I',. and E',. are the usual generators of chiral
SU(3) && SU(3).

We next discuss the (8, 8) representation in some
detail. Consider the fields p~e(8, 1) and g~e(l, 8)
(i = 1,2, . . . , 8) . Then

II. CALCULATION OF K,, AND I,,

We begin this section by outlining the properties
of the (3, 3~) 63(3*,3) and (8, 8) representations of
chiral SU(3}x SU(3) that are used to form R».
Then, with the form of K» specified, we derive
the expressions for K,j and I,, . Some of the as-
sumptions to be used in Sec. III, where various
specific forms of symmetry breaking will be con-
sidered, are also discussed.

The (3, 3*)6 (3*,3) representation includes no-
nets of scalar and pseudoscalar densities, u (x)
and v (x), respectively, which obey the following
equal-time commutation relations'. (i =1,2, . . . , 8.

[F,,A, ~]
= if...S~, —sf,„,S,, .

If we assume that the S,, and A, j have definite
parity, it is clear from the above commutation
relations that they must have opposite parities.
The only SU(3) singlet which can be formed from
the S,, and A, , is S,, . If this is to be used in (a,

nonweak part of}R», then it, and the S,, , must
have even parity. Recalling the identities"

5
dijk l jk 3 ~il

(2.7)

A, aA;~=36 i
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we define the singlet and the even- and odd-parity
octets in (8, 8} by" [E w~ ] z(a) Qi go+1 di aza

and

z =(-')'"S,, ,

s, =(-', )' 'd, aS... (2.8)

. 2
+ g ~fjal fiam lm

—i(a)'"5,,z, i-d, ,,z„, (2 17)

w, = (3)' fiiaAia ~

respectively. With these definitions the 8,, and

A,.~ decompose into irreducible representations
of SU(3) in the following manner:

S„.= (')'i'5,.is, + (—',)'i'd„.a@a+ operators from 27

(2.9)

and

A, , = (-,'}'i'f,»w a+operators from 10EB10 .
(2.10)

These reductions will be useful in projecting the
various representations of SU(3) in which we are
interested.

The SU(3) singlet and octets satisfy the following
equal-time commutation relations with E,.:

where the term in brackets belongs to the 27 rep-
resentation of SU(3).

The symmetry-breaking Hamiltonian density
studied here has the structure

3C,s(x) =c,u, (x)+c,u, (x)+d, z, (x)+d, z, (x),
(2.18)

where the subscript zero denotes the SU(3) singlet
and eight denotes the I= 0 component of the octet.
With the form of Rss(x) specified we can proceed
to obtain explicit expressions for the tensors K&&

and I,,.
Recalling the definitions of these tensors given

in Eq. (1.4) and using the divergence relations'

S.V;(x) = -i[E,,X„(x)]
(2.19)

[E,, z, (x)]= 0,

[E,, z,.(x)] = if„.,za(x), (2.11)

B,A;(x) = -i[E'„K,s(x)],
we can rewrite the tensors as

K„=-(0~[E,[E„X,s]]~0)

[E,, w, (x)]=if,,,u, (.x) .

The commutation relations with I',. are more dif-
ficult to evaluate. The easiest is

(2.12)

[Ei ~i] = - 2v=i,' d, if;aAal. ~

Using the decomposition (2.10) and the identity"

(2.13)

which can be calculated in a straight-forward man-
ner. For the even-parity octet one obtains

and

f„=—(0
I [Ei[E; xas]] Io) .

(2.20)

In this form one can demonstrate easily that both

K,.~ and I,&
are symmetric in i and j by means of

the Jacobi identity.
Using the structure of X s given in Eq. (2.18)

and the commutation relations in Eqs. (2.1) and
(2.11) one obtains

(2.21)

gives

3
iia falmfmni a diln (2.14)

where

~, = &o iu, io&

5 ~ 3
[Eiiy zi]

and

g, = &o (~, (0& .
(2.22)

J
. 3 . v3+ i~A, , w —i2~& f, , Ad, ),

First, note that K,J = 0 for i 4j. Secondly, observe
that, due to isospin invariance, we need only con-
sider K33 K44p and K88 These tensors are

(2.15)

where the latter term is contained in )0$)0. For
the odd-parity octet

K33 =0,

fca4 = —«4ca ts+ dsts)

and

(2.23)

. 2
i ~ foal flam Sita (2.16)

Using Eq. (2.9) and the identities of Eqs. (2.7) and

(2.14) leads to

@88=0

The calculations of I,~
must be considered in

more detail. We start by evaluating [E5,K8s].
Using Eqs. (2.1}, (2.12), and (2.13}one finds
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[F';,&»]=-s[(s)'"cpv;+ cod,.s 5 + (s) dose, + 2(s)'~'dods„, f„„A,„].
The last term includes the components of 10EB10 that must be retained. From Eqs. (2.1) and (2.17)

3
[Fi[Fi ~RSB]] (s) Co di Jaiin+ Cs dsiudiosQs+ sdp6ii 8p + ~ dpdiis zs f2(s)' 'dodos, f;„~[Fi,A, ~]

+ terms from 2V .

(2.24)

(2.25)

Evaluating the remaining commutator expression using Eq. (2.6) and extracting the singlet and octet pa,rts
contained therein using Eq. (2.9), we find a value for this term of

Bn
d, iTn d«&so+ fds» f„(f»„d„„sfi d—i s)~s+terms from 27 (2.26)

By using various identities relating the f and d tensors" and the fact that I,, =I,, this expression can be re-
written in the form

3 12 9
ds F10 dsii ~0+ ds[fsisfsii s diisdiss+ 26si6ii s dsisdsii]~ i+ "erms from 27 ~

Nonvanishing terms in I„occur o.nly for n and z indices of 0 and 8. As in Eq. (2.22) we define

ol .10&

and

(2.27)

(2.28)

Then I,&
has the structure

Ii) 3cpbii $p (s ) cp dsiiks (s) cs dsii~o cs do isdsis~s sdobiiho 4 10 dods ii~s

3n , „ 3n—~ dsd„i$p+ds f„„f»,+ s ds;sd„„26,i —. — d„, $s+terms from 27. (2.29)

At this stage we will assume that operators be-
longing to the 2V representation have negligible
vacuum expectation values. We then note that I,,
=0 for i 4j. Again, using isospin invariance, only

I», I4„and I«need be considered.
In order to make the analysis of the structure

of the allowed domains of the symmetry-breaking
parameters easier, we will rewrite the K,J's and

I,J's of interest in a simpler form. To this end we
first define

1 Qsa=~ —,
1

K« ———(9ab + 20m yz),=y (2.31)

Iss =y[1+a+ b+ ah +a(1+2y+ 2@+12yz)], (2.32)

a b ab= y[l ——--+—+n(l —y —z + 5yz)]44 2 2
(2.33)

and

Iso =y[l- a —b+3ab+ix(1 —2y —2z+4yz)].

The last definition will only be used in cases where
d, =0. From Eqs. (2.23) and (2.29) we obtain

2y=-scot's

s do(f
4 j

Cp)p

1 ds

$s~g'
ds(o

4v'10 esto
'

(2.30)

(2.34)

It is interesting to note that these expressions are
symmetric under the interchange of a and b and of
y and g.

In order to make use of the g-g scattering length
bounds discussed in the Introduction, we need the
expression, in terms of the symmetry-breaking
parameters, for the quantity A appearing in Eqs.
(1.13) and (1.14). A is the constant term in a low-
energy expansion of the p-p scattering amplitude
and was found to be given by" "
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a(5,,5„+5„5,, + 5, ,5,,) = —,(&0 )
[F'„[z'„[F,'. , [F',, x„(0)]]]]

~
o&+ (ljfu)+ (ajar)+ 0(x„')]1

(i, j, k, f = 1, 2, 3) . (2.35)

The commutation relations developed above, to-
gether with Eq. (2.18), lead to

A = —,[1+a+ 3o.(1+—", y)] .

We will eliminate Z from Eq. (2.36) using Eq.
(2.32) and assuming that Eq. (1.8) holds, since we

are more interested in the other symmetry-break-
ing parameters. " f, will be taken to be 95 MeV.

To summarize from the Introduction, the sym-
metry-breaking parameters (2.30) will be restrict-
ed to those regions which are implied by the re-
quirements that

K4~~ 0,

I,3
—0,

I44 —0,
(2.37)

and

m
0.64~ ' —«2 89

I33

2 RZ-3.2 0.6m+ ~
«A~4 1.2g+

(2.38)

(2.39)

where the upper and lower bounds on A correspond
to the somewhat conservative restrictions a,'&0.1
and a~& -0.1, respectively.

The above constraints involve as many as five
parameters in whose domains we are interested.
Consequently, some method of simplification must

be employed to make a useful analysis feasible.
Thus, we will consider many approximations and

special cases that we feel may be physically in-

teresting.
As indicated in the Introduction we expect the

(3, 3*)$(3*,3) terms to dominate those from the

(8, 8) representation. Hence, the parameters a
and p should not be too large. In addition, we will
not consider the otherwise allowed portions of the
domains with

~

a
~

~ 2. Also, because the vacuum is
probably more nea. rly SV(3)-invariant than SU(3)
&& SU(3)-invariant, we will (where possible) re-
strict the parameters 5 and a such that

~
b ~, ~a

~

~ 0.5. Finally, the SU(3) octet and singlet nature
of the symmetry breaking implies that we can
neglect the 2V-piet contributions to the E and I
tensors (which we have done and will continue to
do).

Studies of (3, 3*)6(3*,3) 83(8, 8) symmetry break-

ing within the context of the linear SU(3) o model"
tend to support these assumptions. For instance,
in this model, b= -0.16 and s=-0.016. In addi-
tion to the GMOR scheme the o model also seems
to prefer those solutions in which the (3, 3*)
$(3*,3) contribution to%as is SU(2) && SU(2)-in-
variant (i.e., the Okubo" and Sirlin-Weinstein"
versions). Thus, we feel that there is some justi-
fication, other than merely that of simplicity, for
the special cases to be considered.

III. THE ALLOWED DOMAINS FOR THE SYMMETRY-

BREAKING PARAMETERS IN SPECIAL CASES

In the following analysis six possible variations
of the basic SU(3) && SU(3)-symmetry-breaking
Hamiltonian given in Eq. (2.18) are considered,
including the forms suggested by Okubo' and by
Sirlin and Weinstein. " Many parameters are in-
volved in the analysis. In order to demonstrate
the structure of the parameter domains clearly we

will employ a diagrammatic technique and consider
planes in a higher dimensional space. In most
cases the behavior of the domains as a function of
the symmetry-breaking parameters can be easily
isolated and the basic features can be illustrated
with a few diagrams.

In each of Figs. 1-4, used to illustrate the al-
lowed domains, a sequence of constraints is in-
dicated, progressing from what we believe are the
most firmly based to those conditions which depend

on stronger assumptions. Thus, within a particu-
lar figure, the largest allowed domain [shown as
diagonal lines (y~ 0) and vertical lines (y ~ 0))
corresponds to regions permitted by the general
positivity constraints (2.37). Superimposed on the

latter, the next larger domains (shown as diago-
nally cross-hatched) correspond to the imposition
of conditions (2.37) together with the fr/f, bounds

(2.38). Finally, the smallest domains (shown as
dotted) result from the complete set of constraints
(2.37), (2.38), and the w-w scattering length con-
ditions (2.39).

The domains presented in Figs. 1-4 are not in-
tended to reproduce the exact form of the domain
of the symmetry-breaking parameters. Rather,
they. are intended to demonstrate the basic struc-
ture of these domains. Some changes in the do-
ma. ins as the fr/f, and w-m scattering length con-
straints are imposed are too small to be shown.
In addition, some of the smaller domains pre-
sented in the figures have been slightly enlarged
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FIG. 1. (a) Allowed domains of a and 6 for &sB=couo+c8M 8+dos() with ~ = 0 and z = 0; (b) allowed domains of a and 6
for &sg=couo+csMS+dozo with o. = 0.1 ands = 0; (c) allowed domains of a and b for &sg=couo+c8M8+dozo with G.' = 0.4 and
z =0.

in order to be shown.
Our analyses of the various cases below will deal

with the behavior of the fully constrained domains.
Inasmuch as the constraint (2.38) seems to us to
be reasonably loose, we will not discuss the sen-
sitivity of the domains to changes in the (effective)
bounds on fz/f, . Although the scattering-length
conditions may be the least trustworthy of the

constraints, they do not, in fact, appreciably de-
crease the size of the allowed domains in most
cases. We will comment occasionally on the effect
of strengthening the scattering length constraints.

Finally, for all the cases considered here, the
allowed domains of interest (to us) correspond to
positive values of the parameter y [see (2.30)].
Its magnitude is not determined by the constraints.
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We begin our analysis by adding the (8, 8) SU(3)
singlet term to the general (3, 3*)63(3*,3) sym-
metry-breaking Hamiltonian so that

3C S~ con 0 + csu s + do. zO (3.1)

Hence y = 0. We also take the (probably small)
parameter z = 0 for the sake of simplicity. The re-
sulting tensors are (from Eqs. 2.31-2.34)

%44 4 gab

I„=y(1+ a+ b+ ab+ n),
a b ab

1 ————+—+ Q
4

(3.2)

I» ——y(1 —a —b+ 3ab+ n) .

For the diagrammatic analysis we will employ
a three-dimensional space with coordinates
(a, b, n) and investigate the (a, b) plane for various
fixed values of e . The resulting domain structure
is illustrated in Pigs. 1(a) through 1(c).

We note first that for n = 0 [Fig. 1(a)) the (8, 8)
contribution vanishes. This case has been consid-
ered in detail by Okubo and Mathur. " It is evident
that the restrictions of Eqs. (2.3T), (2.38), and

(2.39) severely limit the allowed domains of a and
b . The GMOB solution' is within the allowed do-

mains. The boundary of the domain clo se st to the
origin is sensitive to the upper limit imposed on

a,', while the other domain is sensitive to the lower
limit on a,'. For instance, the requirement a,'
—O.O will eliminate the Brandt-Preparata solu-

Imposing a, ~ 0.1 eliminates the domain
more remote from the origin. Imposing ao & 0.38
eliminates the entire plane.

For n & 0 the. allowed values of a and b change
dramatically as n varies. For n large and nega-
tive there are no allowed domains in the vicinity
of the origin. As n becomes less negative this
situation continues until n = -0.4, when a small
domain is allowed. This domain increases in size
as & increases and goes through the structures of
Figs. 1(a) and 1(b) to that of Fig. 1(c) with n =0.0,
0.1, and 0.4, respectively. Then as n continues
to increase the domains remain in the latter form
and move further away from the origin and axe s .

For b )-1 as 0. increases a must rapidly be-
come more negative. For example, at n = 0.75 we
must have a &-1.5. For small b and -1 .15 —a
« -0.85 we expect 0 «n «0.35. In general the con-
straints favor positive values for n, since these
lead to larger allowed areas of the domains.

Case 2

As the second special case the (8, 8) I= 0 octet
term is added to the general (3, 3*)6 (3*,3) sym-
metry-breaking Hamiltonian. The form of 3C»
is then

+sB Co QO+ Cs As+ ds ~s

For simplicity z is again set equal to zero. The
four tensors are

9
E~~ =

4 yab )

I» = y(1+ a+ b + ab + 2p),

a b abI =y 1-———+—- p2

(3.4)

and

I» =y(l —a —b +3ab —2p) .

FIG. 2. Allowed domains of n and s for ~,-~ = cp(N p

&2Q 8) + cfpp with b = —0.2.

The domains now lie in a three- dimensional
space with coordinates (a, b, p). The diagrams in
the (a, b) plane for fixed values of p have the same
general structure as Figs. 1(a) through 1(c). In

this case there are no domains in the vicinity of
the origin until p & -0.3 . The domains then move
through the three stages of Figs. 1(a) through 1(c)
faster than they did in Case 1. For instance, at

p = 0.5 a ~ —2.0 and b « -0.2. For p between 0.0
and 0.15 and

~

b
~

small, a is allowed in the region
-1 .15 ~ a ~ -0.85. On the basis of the size of
allowed areas, positive values of p are favored.
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Case 3

In this case we force the (3, 3*)B(3~,3) part of
X» to be invariant under SU(2) && SU(2) and add the
(8, 8) SU(3) singlet. This is the type of symmetry
breaking suggested by Okubo. " Thus

(3.6)

Xss = Co(Zlo MRS) + do ZD

so that a =-1 and y =0. The tensors are

(3.5) I8~ = y[2 —4b +n(l —2z)] .

We consider a three-dimensional space with
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coordinates (n, z, b) and investigate the (n, z) plane
for various fixed values of b. One immediately
finds that the conditions y & 0 and b ~ 0 are re-
quired. Figure 2 (with b = —0.2) illustrates the
general domain structure in this case. These
domains are relatively independent of b as b be-
comes more negative.

We expect that z will be small and, in particu-
lar, that z&-0.5. This, in turn, requires that n
be positive. In addition, as the domains are rel-
atively independent of b we expect (for b ~ -1.0)
that a~1.5. As z approaches zero n is further
constrained to lie in the region 0.08 ~~ ~ 0.2.

If the scattering length constraint on ao is
strengthened so that ao&0 30 only small negative
values of z (-0.35 ~ z &-0.25) and positive values
of n in the range 0.1 ~ a &1.0 are allowed.

This type of symmetry breaking has been in-
vestigated using a linear SU(3) a model. " In that
model it was found that b = -0.16, z =-0.016, and
n = 0.091. These values are in the allowed do-
mains.

Case 4

For this case the entire (8, 8) contribution is
added to the SU(2) x SU(2)-invariant (3, 3*)6(3*,3)
part of $C», giving

9
+44= 4yb ~

I„=yo.(1+2y),

I.,=y[-. —-'b+~(l -y)],
and

I„=y[2 —4b +o.(1 —2y)] .

(3.8)

Case 5

This case is identical to that of Case 4 except
that z is no longer forced to be zero. Thus, K»
is given by Eq. (3.7) and the tensors are now
(a=-I)

Z„=-(-9b+20nyz),

Due to the y-z symmetry of the general tensors
Eq. (3.8) has the same structure as Eq. (3.6). The
resulting domain structure is nearly identical to
that of Fig. 2 with the z axis becoming the y axis.
The only difference is that the straight lines
bounding the final domains are moved vertically in
such a way that these domains become larger.
This difference is due to the nonsymmetric con-
dition imposed on y and z by the scattering length
requirement.

It is again expected that b ~0, +~0, andy «-0.5
following the analysis of the previous case.

Kss co(uo v 2u )+dozo+dsz (3.7)

This form for K» was suggested by Sirlin and
Weinstein. " Again setting z = 0 for simplicity,

I» = yo'(1+ 2y+ 2z+ 12yz),

I„=y[-,' —,'b+ n(1-y ——z+5yz)],

alld

Iso =y[2 —4b+o(1 —2y —2z+ 4yz)] .

-2

FIG. 4. Allowed domains of y and & fox' Ksa = dip
+ dsz8,

2
y

The domain structure is analyzed by considering
a four-dimensional space with coordinates
(y, z, n, b). b is fixed and the domains in the (y, z)
plane are investigated for various fixed values of
e. First we note that, in order to get the allowed
domains in the vicinity of the origin, it was nec-
ces sary to have b negative or

~

o.
~

large (
~

n
~

2 2) .
Consequently we conc'entrated on the domains for
negative b. As in Case 3 the domains are relative-
ly independent of the value of b as b becomes more
negative. Figs. 3(a) through 3(c) give the allowed
domains for b=-0.1 and e=-0.25, 0.2, and 0.5,
respectively.

From the general form of the domain as a func-
tion of n it is found that the area of the allowed
domains decreases rapidly as ~n~ increases. For
Q. &0 we expect y and z to have opposite signs. For
z &--o (o.&0) note that y must be negative and,

1most likely, in the range -1~y ~-—,.
For e&0 the domains go through the structure of

Fig. 3(b), where there is a large area available
near the origin, to that of Fig. 3(c). Again for
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z&--', we require y&0 and expect -1~y ~--', .
This case has been investigated in the linear

SU(3) o model. " It was found that b = -0.16,o.
=0.20, y =-0.36, and z =-0.016. These values
are in the allowed domains.

Case ~

We now consider the (8, 8}contributions alone.
The Hamiltonian density is then

XSB=dozo+d, z8.

The tensors are

K44 = 5ynyz,

I» = yo.(1+2@+2z+ 12&z),

Igg =yn(1 —y —z+5yz),

I„=yo.(1 —2y —2z+4yz} .
The allowed domains for this case are given in

Fig. 4. We expect yn to be positive and y and z
both to be negative. The final allowed domain is
exceedingly narrow, but requires ~z

~

to be rather
large ( ~z

~

~ 0.7). The o model" does not give an
acceptable solution in this case as it cannot fit the
pseudoscalar mass spectrum.

IV. DISCUSSION

It is obvious from the above analysis that the
constraints (2.37)-(2.39) greatly restrict the
ranges of the symmetry-breaking parameters.
The positivity conditions (2.37) leave substantial
domains open to the parameters. However, the

condition (2.38) resulting from the bounds on

fz/f, (especially the lower bound) proves very
effective in reducing the sizes of these domains.

The p-m scattering length condition (2.39) usually
produces rather small additional shrinkage, but
its effects are important in Cases 3 (the Okubo"
form), 5 (the Sirlin-Weinstein" form), and 6 [pure
(8, 8) symmetry breaking] as can be seen from
Figs. 2, 3, and 4. In the Okubo case the constraint
(2.39) sharply reduces the range of n [which is
proportional to the ratio of the strength of the (8, 8)
contribution to that of the (3, 3")8 (3*,3)] from
what is allowed by (2.37) and (2.38). In the Sirlin-
Weinstein and pure (8, 8) cases it is the ratio of
SU(3) octet to singlet breaking within the (8, 8) (the
parameter y) which is impressively curtailed when
(2.39) is applied after (2.37) and (2.38).

Finally, it is quite satisfying that the require-
ment of relatively small SU(3) breaking [compared
with SU(3) && SU(3) breaking] of the vacuum (small
~b ~, jz ~) can be used in each case in conjunction

with the conditions (2.37)-(2.39) to place very tight
bounds on another parameter (a, n, or y) which
would otherwise not be nearly as well confined.
For example, the analysis of (8, 8) symmetry
breaking by Genz and Katz leads to perhaps un-
acceptably large values of ~z

~

in order to accomo-
date their value of y=-0.446 (see Fig. 4). This
would not be true if constraint (2.39) (which is
probably the least reliable of the three) were with-
drawn. Also, of course, if one gives up the notion
that, in the chiral-symmetric limit, SU(3) x SU(3)
is spontaneously broken while SU(3) is not, then
the relative sizes of SU(3) and SU(3) && SU(3) break-
ing of the vacuum (and, hence, the magnitude of z)
are not a priori obvious.
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