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Using a field-theoretic description of nonzero-spin particles, we have obtained center-of-mass helicity
amplitudes corresponding to pole terms in four-particle reactions with arbitrary-spin external particles. We
have discussed how to construct a van Hove-Durand-type model starting from these helicity amplitudes

(which have a well specified kinematic structure in the field-theoretic description). Special attention has been

paid to boson-fermion scattering. Straightforward Reggeization of helicity amplitudes assuming linear
trajectories is known to produce parity doubling. Because of the generalized MacDowell symmetry of the
helicity amplitudes, cuts appear in the J plane which prevent the occurrence in our model of parity-degenerate
states in the physical J plane. One cannot have a pure fermion Regge pole unaccompanied by cuts. This
conclusion has important consequences on both fitting data using Regge formulas in, say, backward scattering
in boson-fermion scattering and theoretical considerations such as dual bootstrap models.

I. INTRODUCTION

Regge formulas for four-particle scattering and

production amplitudes involving one or more
high-spin external particles are becoming in-
creasingly necessary from both the experimental
and theoretical point of view. Experimental infor-
mation concerning reactions such as wN m +iso-
bars or Pp- two isobars is accumulating. Theo-
retically, the spin dependence of the Regge resi-
dues must be taken into account when imposing
constraints such as the combination of SU(3) sym-
metry, crossing, and the absence of exotic
states. Several people' in the last few years have
derived important consequences on the hadronic
mass spectrum and hadronic couplings using such
constraints.

For arbitrary-spin external particles, the he-
licity amplitudes form a natural starting point for
Reggeization. This procedure is well known, 2

but suffers from a lack of clear-cut separation
of kinematic singularities and constraints. It is
necessary in particular to define kinematic-
singularity-free or "regularized" helicity ampli-
tudes and impose kinematic constraints at ap-
propriate points. ' Some of these difficulties are
avoided if one uses the invariant amplitudes.
However, for other than the simplest low-spin
reactions, the decomposition of the scattering
amplitudes into invariant amplitudes becomes a
formidable task. Further, such a formalism does

not lend itself to the simple partial-wave expansion
inherent in the helicity formalism.

We consider in this paper a Reggeization pro-
cedure for arbitrary-spin helicity amplitudes
which is the generalization of the method used
by Durand and van Hove4 for zero-spin amplitudes.
In such a method the Sommerfeld-Watson trans-
formation is performed on the sum of particle-
exchange contributions from all particles lying
on a Regge trajectory. If we use a proper field-
theoretic description of the spins of the external
and exchanged particle, we obtain helicity ampli-
tudes with explicit kinematic structure which
automatically satisfy the various analyticity con-
ditions including the kinematic constraints. The
conditions necessary to implement the analytic
continuation in the complex J plane become trans-
parent. Also in such a model, since one starts
with a Feynman diagram, the relation between
the particie coupiings (and hence the resonance
widths) and the Regge residues is clearly ex-
hibited.

The present work also has an important bearing
on another longstanding problem concerning parity
doubling in boson-fermion scattering. Straight-
forward Reggeization within the helicity formal-
ism' and with linear trajectories leads to parity
doubling' owing to the MacDowell symmetry.
There is no experimental evidence for such a
phenomenon, at least for low-lying baryonic
states. There are mechanisms by means of
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which any finite number of unwanted parity part-
ners can be eliminated. However, such mech-
anisms are somewhat ad hoc and artificial.
Carlitz and Kislinger and Durand and Lipinski'
have shown that parity doubling is avoided in a
very natural way in 7)Ã scattering if one uses the
Durand-van Hove type model under discussion.
There is a price one has to pay, however, and
that is the appearance of Regge cuts a.ssociated
with the Regge poles. It will be clear from our
analysis that such cuts have a very simple origin
and are natural in any boson-fermion scattering.

The plan of the paper is as follows: In Sec. II,
we review the construction and properties of
local fields with arbitrary spin. The reader
familiar with this construction may wish to skip
directly to Sec. III.

In Sec. IIIA, we construct a three-particle inter-
action Lagrangian which describes the coupling
of particles with arbitrary spins Sg S2 and J and
general values of the Lorentz quantum number ~,

of the spin-J particle. (The couplings are extended
to arbitrary values of po for all three particles in
Appendix B). The results are new. The corre-
sponding vertex functions are calculated in Sec.
III 8, and the two-particle scattering amplitude
resulting from the process S,+S,-J- $3+84 is
calculated in Sec. III C. The contributions of
intermediate particles and antiparticles are ob-
tained separately. This separation leads to a re-
markably simple interpretation of the generalized
MacDowell symmetry considered in Sec. IIID.

The two-particle scattering amplitude for gener-
al spin is Reggeized in Sec. IVA using the methods
of Durand and van Hove. The reader interested
mainly in the applications of Regge-type models
can skip the derivations and begin with this section
if desired. %e find that for boson-fermion scat-
tering with a single intermediate fermion trajec-
tory, the usual parity-conserving helicity ampli-
tudes obtain contribut:ions only from intermediate
particles (G") and intermediate antiparticles
(G '). We complete the discussion of boson-
fermion scattering in Sec. IV B by considering a
generalization of the Carlitz-Kislinger model
proposed by Durand and Lipinski. This model
contains a Regge pole with a linear trajectory,
and a moving Regge cut. There is no parity-
doubling of the resonances on the Fermion tra-
jectory.

In Appendix A, we give a particularly simple
form for the three-particle interaction vertex for
arbitrary spins. This form displays clearly how
factors associated with orbital angular momen-
tum affect the vertex function, and is appropriate
for consideration of particle decays. It is not
appropriate for Reggeization in scattering. In

Appendix B, the coupling considered in Sec. III A
is generalized to the ease of arbitrary Lorentz
representations for the external particle.

II. COVARIANT FIELD OPERATORS —A REVIEW

A. Unitary representations of the Poincare group-
helicity representation

Any relativistically invariant theory of elemen-
tary-particle interactions contains as an under-
lying element unitary irreducible representations
of the Poincard group a.s discussed by Wigner. '
In the helicity representation' of the Poincard
group, the states of a single particle of mass
m &0, spin S, momentum p and positive energy
E = (p'+m')'~' are described by

1/2

IR~)=(z &(&(P))l~), (2.1)

where
I o) is the state of the particle at rest with

S, =o, and U(H(p)) is a unitary operator that cor-
responds to the Lorentz transformation H(p) that
takes the particle from rest to a state in which
it has momentum p and helicity o. H(p) is taken
to be

H(p) =&(E)L(l pl z), (2 2)

where I,(l pl z) is the boost which takes the particle
at rest to a state in which it has momentum

I p I z,
and B(P) is the rotation which takes it to the final
state Ip, o). This construction and the normaliza-
tion condition,

&p', o'l 0, o) = ~'(p'- p)f. .. (2.3)

where a, A represent, respectively, an arbitrary
space-time translation and a homogeneous Lo-
rentz transformation, fJ(a, A) is a unitary opera-
tor, p'=AP, and A~ is the well-known Wigner
rotation R((, =H '(p'}AH(p). The coefficients
D, (R~) are the matrix elements of the familiar
(2S+ 1)-dimensional unitary matrix representation
of the rotation group. '

To build multiparticle states, one introduces
creation and annihilation operators a (p, o) and

a(p, o) satisfying commutation (anticommutation)
rules for Bose (Fermi) particles:

Ia(p, o), a'(p', o')], =~..f'(p-p'), (2.5)

define the representation completely. Under an
arbitrary Poincard transformation (a, A), the
transformation property of the state (2.1) is given
by

I 1/2

U(a, A) I p, o) = e"' — g I
p', o') D'. .(Hw),

a'

(2 4)
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lp, ~&=~'(p, o)IO&, ~(p, ~)10&=0. (2.6)

It follows from (2.4) that the transformation prop-
erties of these. operators are given by

vE U(a, A)a (p, o', U '(a, A)

=e "' vE' Q D'„i(R~ ')a(p', v').

B. Construction of local fieiRs

Since R~ depends on the momentum I it is
clear that the transformation coefficients in (2.7)
depend on spin and momentum mixed in an intri-
cate manner. Hence, although it is possible, "o

construct the S matrix" using the above canonical
representation, it has proved more convenient
in practice to use local fields such as Dirac,
Klein-Gordon, Proca, Pauli-Fierz, and their
generalizations to higher spins to write relativis-
tically invariant interactions. Such fields have
simpler transformation properties in that the
transformation coefficients are independent of
momenta. They also give rise to manifestly co-
variant S-matrix elements with suitable analyt-
icity properties and well-specified "kinematic"
factors. There is a vast amount of literature"'"
on the subject. Our purpose here is to collect
together some main results necessary for our
di.scussion.

The central idea underlying the construction of
a. local field describing an arbitrary-spin particle
is to introduce a finite-dimensional nonunitary
representation of the proper Lorentz group. One
standard way is to use X and K, the generators
of rotations and pure Lorentz transformation,
respectively, to define new operators

A = —,'(X+iK), B = —,'(J —iK) . (2.8)

A and B have the commutation properties of two
commuting angular momenta,

[A;, A, ] = ie;q» A»,

[B;,B,] =it;,»B», .

[A„B,]=0. (2 8)

F inite-dimensional irreducible representations of
the proper Lorentz group are characterized by
two numbers (A, B), where 2A, 2B are integers
and A'=A(A+ I), B' =B(B+1)in the representa-
tion (A, B). The representation (A, B) is the direct
product of the representations (A, O)cm (0, B)

=~"' ~E' Q a~(p', v')D', ,(R~),

(2.7)
~ZU(a, A)a(p, o)U-'(a, A)

States in the (A, B) representation carry additional
indices a, 5, corresponding to the eigenvalues
of A.„B,. Following steinberg" we denote the
matrices which represent a finite Lorentz trans-
formation A by D"(A) and D (A) in the (A, O) and
(0, B) representations, respectively. The general
representation matrix D,";s, (A) is then given by

D,", s,, (A) =D"...(A)D„.(A) . (2.10)

The two representations D"(A) and D"(A) are re-
lated by

D"(A) =D"(A ')' (2.11)

We note for future use that a four -vector x"
can be associated with a 2 & 2 Hermitian m:.trix
in either of the forms'

X =x„o"
x'- x' —x'-zx'

—x +'Ex x +x
(2.12)

or

X =x "o"
0 8 1 ~ 2

(2.13)
x'+ix' x —x' f

'

where ~' is the unit matrix and the o' are thi.'

Pauli m~~rices. The effect of a Lorentz trai~s-
formation .-'" = A,"x' is described in this represen-
tation by matrix multiplication,

X'= D"'( A)X D"' t( A), (,t.14)

where D(A) E SL(2, C, ', and M(A) corresponds ".o
A. Similarly,

X'=D' '(A)XD"' (A) (2, 15)

ab=~po ab ~

~ab ~ + ab~

with the transformation properties

s'=D' '(A)BD'" (A)

O' = D (A)BD (A)

j? .16)

(2.17)

Local field operators are basically linear com-
binations of annihilation and creation operators
such that the resultant fields transform according
to finite-dimensional nonunitary representations
of the Lorentz group, and thus have simple trans-
formation properties. A simple way to understand
how one constructs such fields is to start from the
elementary or fundamental spinor representations
of SL(2, C), the covering group of the proper Lo-

The gradient operators s,, =s/Bx" and s~ =s/8&„
=g""e„can be represented in an analogo ls fashion
by matrices 8 and F
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rentz group. The elementary spinor representa-
tions have two components and can be used to de-
scribe particles of spin 2. Higher-spin fields can
be constructed from these by taking suitable
linear combinations of direct products of such
elementary spin- —,

' fields.
Let g, (x) and tl (x) denote elementary spinor

fields which transform according to the fundamen-
tal representations of SL(2, C). Their transfor-
mation laws under an arbitrary Lorentz transfor-
mation A are given by

Equation (2.20) is the familiar Dirac equation in
the Weyl representation.

Spinor fields of higher rank can be defined as
objects which satisfy the Klein-Gordon equation
and transform under Lorentz transformations the
same way as direct products of the fundamental
spinors f and r/. We note in particular that the
fields $( ... )(x) and g('1'2"''»)(x) which are
totally symmetric in the 2S indices 0,o2 0» sep-
arately describe a particle of spin S without the
imposition of any subsidiary conditions.

U(A)1i (x)U '(A) = gll', "(A ')r/ (Ax).
(2.18)

C. Local fields for general spin

is„2t'(x) = m$, (x),

is.,t, (x) = mt)'(x) .
(2.19)

Equations (2.19) can be combined into the single
equation

They will be assumed also to satisfy the free
Klein-Gordon equation for particles of mass I,
( +m')$ =0, ( +m')ted=0, thus assuring that the
mass-shell condition P' =m' is satisfied for plane
wave states.

The transformation properties of the fields $

and q are interchanged by the parity operation,
6'$6' '~t), 6'2ilP '~$. Fields of both types are
therefore required for the construction of inter-
actions invariant under space inversion. These
fields are not independent. The relations con-
necting them (the "subsidiary conditions") can be
obtained by factoring the Klein-Gordon equations
for $ and 2i using the identity BB = and the fact
that 8$ and 82) transform respectively like t) and

$ under Lorentz transforma. tions,

(2.22)

)(
S (x)

—~1/2, 1/2, ... ,1/2(x) (2.23)

These are clearly fields with spin S and S, = S.
By applying the angular momentum lowering op-
erators, we can obtain the remaining Q, (x) and

X,(x) fields as linear combinations of the $(x)
and q(x) fields, respectively. The fields take the
form

For the purpose of constructing general inter-
actions and propagators, we need local fields
g,"'2 (x) discussed by Weinberg. " To see the con-
nection between these fields and the spinor fields,
first consider the (2S+ 1)-component fields Q,(x)
—= (~', (x) and X2(x) =(,'~(x). We can easily show
that Q, and X, are related to the spinor fields

) and q('1'2'" '22) by a simple change
of basis. Suppose we start by defining 11122(x) and

X,'(x) as

iy"sp(x) =my(x),

where

(2.20) y'. (x) = Q &So lo, o. &t(......„)(x), (2.24)

X' (x) = g (Solo ~ 022) 1)(""'»)(x)
al '.a2&

(2.25)

01 Oo (2.21)
where the "parallel coupling" coefficient"
(Solo, ~ o22) is defined by

&s lo," o»)=c(s--2', —2', s;o-o», o22)c(s-l, —,', s--2';o-o»-o», o» ) ~ ~ ~

1 1 ~ 1 1 ~xc(2, 2, 1;o-o22 —~ ~ ~ -o»o, )C(0, 2, 2,o-o22 —~ ~ ~ -o»o,). (2.26)

2S
Note that the last Clebsch-Gordan coefficient in (2.26) is given by C(0, —„-„'o-Z, ,o, , o,)=5 z, . Also,f —1 t& 1 a2ZO~
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since the coefficient is real, &Sv~v, .v, z) =&v, v,~ ~Sv). Evaluation of (2.26) gives

&Sv I
vi' ' ' v2s) = ba, z 0;

(S+v)!(S -v)!"'
(2S)!

(2.27)

The coefficients also trivially satisfy the orthogonality relation

&v,".v,~lSv)&v," v..lS ) =6..
0' ~ e~02S

Using these coefficients, we can show that

D:. (A)= Z 2, &., ~ ~ v., IS.&&v,. ~ ~ '., IS")D... '(A) ~ ~ ~ i~.„.;,"(A).

(2.28)

(2.29)

Then it follows from (2.18) and (2.29) that under an arbitrary I orentz transformation A

U(A)4. (x)li (i~)= gD. (A )4.(Ax), (2.30)

U(A)X'. (') &-'(it) = g D'..(i~ ')X'. (A ). (2.31)

The general local fields" (,"P(x) transform like the product of Q, (x) and }t& (x). Thus

U(A)t!". (x)U '(A) = gD."'; (A ')4 (Ax)
a' n'

(2.32)

where D,"~', , (A ') is defined in (2.10). The fields g,"P(x) can. be used to describe a, particle of spin S
when

(!A -B( (S (A +B.
Using the parallel-coupling coefficients, we can also generalize the differential operators s, 8 in (2.16).

Define

II,",".(is„v")= Q Q &a, ~ ~ a~~Aa)&a', ~ a~~Aa')(is„v"). ..~ ~ ~ (is„v"), „. (2.33)

llxx (~P P) (a, ~ ~ a~ ~
Aa)&a', ~ a~~ Aa') (ie~v")..., (is"v"),,„,,„ (2.34)

With the aid of (2.33) and (2.34), Eqs. (2.19) can
be generalized for the free fields to

Q Il"..(ie„v ")X'. (x) =(- )'0'. (x)

V(A)ll"" ( 8 v ~)U-'(a) = g D' (A-')&'* (A ')

x II" (is'„v"),

=m" y'. (x), (2.36)

a'
(i~"v")0 (x) =(- ) X (x)

=m "y', (x) . (2.36)
where s'„=s/Bx'".

x II"„„.(is'~v'),

(2.38)

The operators II and II obey the orthogonality re-
lation

Q II~.".(is„v")II",",-(is "v")= 5,—.—.--(-= )'~ (2.37)

D. Momentum-space expansions of Q,"g (x)

Our next task is to express the general fields in
terms of annihilation and creation operators. Fol-
lowing Weinberg, "define

o.'(p; a, b) = g C(ABJ; a'b'&)
and transform under Lorentz transformations as
(mixed) tensors,

a' n' X

x D,";,, (H(p)}a(p, x), (2.39)
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P(p;a, b) = g C(ABJ; a'O'X)

c'c =1, c*c=(-1)".
It can be chosen to be real,

- ~J&~&C=e "~
c„=(-1)"'5,

(2.41)

(2.42)

C ', =(-1) 'bb

In (2.40),

(DA, Bc 1) (DAC -1) (DBC ).
)

( 1)A+a'( 1)B+bDA DB ~

(2.43)
Now let

x]DA'(H(p))C ']„., b b'(p, X),

(2.40)

where a(p, A. ) and b (p, A) are annihilation and
creation operators for particles and antiparticles
of spinZ, respectively C. is a (2J+I)-dimen-
sional matrix which satisfies the relations

1/2
()":s' (")=(2,),g, )&'P(22 ()(b ~ &)"*

(2.45)

(A, B (x) gAB, + (x) + ( 1 )2ByAB, -(x) (2.46)

u, ' (p, X) = P C (ABJ; a'O'X)
sty I

x D„(H(p))D ()b'( H(p)), (2.47)

It is a straightforward matter to check the trans-
formation properties of o. (p; a, b) and P(p; a, b) and
verify that the linear combination (2.46) has the
correct Lorentz transformation property (2.31).
Also as noted by Weinberg, " (2.46) leads to a
causal propagator.

For later convenience, we note here that we can
write the momentum space expansions (2.44) and
(2.45) in a form analogous to that familiar for the
Dirac field by introducing the "wave functions"

)i/2

P,"'bB'(x) =
( ),&, d'P a(p; a, b)e "'",

(2.44)

v", b (p, X) =(-1) "u,"'b (p, X).

Then,

(2.48)

1/2

Q [u." B(p, z)a(p, X)e "*+(-1')'BvA bB(p, z)b'(p, Z)e't'*] . (2.49)

The momentum-space expansions of the (28+1) -component fields (I) (x) and y (x) can easily be obtained
from those of p,"'bB(x) by setting 8=0 and A =0, respectively. Thus

(x)=Q ' (x)+(p ' (x)

X.(x)=X; (x)+(-1) X.' (x)

where

(2.50)

(2.51)

l./S

4". (x) =
2 .~. d'p

ZZ g D'.~(H(p))a(p, &)e "'*, (2.52)

X/2

b' (*)= ) ~ ~ f '(' 2— p I& (H(b))(' ) ', &'(b, -&)'~". '*
2v "'

X

(2.53)

and

1./2
y~'+(x)= 2&2 d p — pD (H(p))a(p, A, )e

2)T "'
X

(2.54)

l./2

y
' (x) =

2 &, d p 2 g [D (H(p))C-'] zbt(p, -g)e'&'".
2v "' (2.55)

For later use, we note here that the momentum-space expansions of products such as llltB and 11(p2 are
easily obtained by using the relations
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and

IIAA(ie„o")e ' '"=(p')"D„"(R(p)L(lpl B) L(l Pi B)R-'(p)) e *'*
(2.56)

IIA,"(iS"o")e " *=(p')"D,","(R(p)L(lple)L(lull)R '(P))e "'* .
These follow from the definitions (2.33) and (2.34) and from the relations

P P"= ('I ')"D' '(L(P)L(P))

=(I ')' 'D' '(II(P)R '(P)H(P)R '(r)),
p vg P = (pa)~t2D~t2(L( P)L( p))

=(O')"D' '(&(P)R '(&)&(P)R '(P)),
where L(p) is the Lorentz boost to the frame in which the particle of mass (p')'t' has momentum p.

Using (2.56) and the orthogonality relation for II and II given in (2.37), we find in momentum space

QD,",,(R(P)L'([p( z)R '(P))D,",„(R(P)L'([p [z)R '(P)) = P D", ,(L'(p))D,",,$L'(p))

(2.57)

(2.58)

This relation may also be derived by noting that
for a pure boost L, D(L)t =D(L), hence, that
D(L'(p)) =D(L (p))" =D(L (p)).

E. Properties of P„"~ 4'x) under space inversion

Under an arbitrary Lorentz transformation,

where the matrix ~,"&, , is defined by

(2.63)

Under space inversion 6', the annihilation oper-
ators for particles and antiparticles transform ac-
cording to

(Pa(p, Z)(P-' = (-1)~'~ exp [inert (p)] qua(- Ir, —A),

(2.59)

(Pb(p, A)(P ' =(-1)~'~ exp [iAy(p)]qBb(-p, —A),

/ DAB(A, -r.
)

n„,,b (A )=

Under space inversion 6',

DBrA (P-1)
a

(2.64)

where q is the intrinsic parity. Then it follows
that

6'g" (t x)(P '=q (—1)"' ~y, A(t, -x) (2 60)

(P4',"b (t, x)(P ' =qB(-1)"' ~4, ,"(t, —x) . (2.65)

For momentum-space expansions of 4 fields,
we shall introduce

where we have used"

np = (- I)"n,*. (2.61)

'Ll ~ 'g p, )E

Ua'b(P, X) — B Ar~
&b,'a (Pr ~) /

(2.66)

(yA, B(x)

a,a (X) =
~B,A(„)

@A B

a

(2.62)

To construct parity-conserving interactions, it is
convenient to define composite fields 4,"b (x),
where

Then

1)aB,A, B(~p ~) )
ab(pr ) ,

I ( I)2A&B, .A( y) )
(2.6'I)

d'p — P[U," (p, r)a(p, ~)e " "+V", (p-, &)'b'(p, —A)e"'']. (2.68)

F. Related fields lit and 4
The Lorentz-transformation properties of the Hermitian conjugate field g (x) differ from those of |tr(x).

Therefore, in constructing Lorentz-invariant interactions involving the destruction and creation of parti-
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cles, it proves convenient to use fields related to the Hermitian conjugate fields but which have transfor-
mation properties identical to the fields themselves ". Such fields, which we denote by (j) and 4 may be de-
fined by writing

or

&pA, Bt(&) —
( 1)28 - J + a+ beTB, A

(&)

pAe B(~) ( l)2A-7- a- be]B Ate(+)
~ -b, -a

(2.69)

(2.70)

~

(- ) '0,",';)~
(Be A

(2.71)

Under space inversion,

(P+"' (t, x)d' '=q'(-1)"' ~4 "(t -I) .
The g fields are linear combinations of antiparticle-annihilation and particle-creation operators,

M
p,",', (e)= &,v f '

a(&p& g (e,"; ( , p) v(pp, )ev'e'*v( —()' v,"'e (p, v)vv(p, -v)e'e'']

(2.72)

(2.73)

1/2
O'A' (x)=,&, d'p

2 g [U."b (p, ]].)b(p, ]].)e 'p'"+ V.", (p, X)a~(p, X)e'p'-"],
2& '/' 2E (2.74)

where

((-1)'~u,"'b (p, X), (2.75)

t ( 1)2(Z +B)~A B(p~e] ))
(-1)'"~ '"(p ~)

(2.76)

Note in particular that the expansions of P and g
(2.49) and (2.73) differ only by the interchange of
particle and antiparticle operators, a(p, A)—b(p, ]].), b'(p, -x) —a'(p, -x).

III. INTERACTION LAGRANGIAN DENSITIES
AND SCATTERING MATRIX ELEMENTS

A. Three-particle interaction Lagrangians

From Sec. II, we see that we can use any of a
number of fields to describe a particle with a given
spin. There are consequently an arbit;rary number
of ways to construct interaction Lagrangian densi-
ties. It is not our intention to develop a full-
fledged field theory of high-spin particles. Our
aim is limited to obtaining the contributions as-
sociated with single-particle intermediate states
lying on Regge trajectories to the scattering
amplitudes for external particles with fixed spin.
It will be sufficient for this purpose to consider
one choice of fields, and discuss the results in
some detail.

The external particles will be represented for

simplicity using the 2(2S+ 1)-component fields
discussed in Sec. II. This restriction is not es-
sential. The results given here are easily gener-
alized, but with some loss in simplicity. The gen-
eral coupling is given in Appendix B.

The possible choices for the fields used to
describe the intermediate particle are more re-
stricted. %e are primarily interested in the lead-
ing trajectory in a parent-daughter sequence.
This trajectory can be characterized by the value
of the (complex) angular momentum Z and the
Lorentz quantum number j, which specifies the
minimum angular momentum contained in the
representation chosen, j,= ~A —B ~. The highest
spin (leading trajectory) for a given A, B has
J=A+B. We will therefore use the A, B represen-
tation for the intermediate particle with

A = —,'(Z+ j,),
B = 2(~-j.)

(3.1)

The scattering amplitude will be Reggeized by
continuing to complex J,A, B with j, fixed. As
is well known, "an amplitude constructed in this
way, with a single fixed value of jo, will factor
properly, and will have the correct analyticity
properties at 5'=0. The value of jo determines the
dominant helicity amplitude at that point. 'The

cases j, =0, & have been considered in detail by
Morrow, "who used the explicit tensor construc-
tions of Bose and Fermi fields in the (-,J, —,J') and
(2'(7+1), —2'(7- 1)) representations to construct sym-
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metric three-particle couplings and Reggeized
scattering amplitudes for particles of arbitrary
spin and parity. The present construction extends
these results by a different method to arbitrary
values of j,.

The coupling scheme we have adopted is as
follows. We first couple the external fields in the
(S„O}and (S«, 0) representations into a combined
spin-S field in the (S,O) representation. This is
combined with the spin-Z field in the (A, B) rep-
resentation and the derivative tensors II(9,), II(8»)
to obtain a Lorentz scalar. The number of deriva-
tives in the coupling scheme is taken as the mini-
mum number necessary to obtain the most general
behavior of the vertex function at thresholds and
pseudothresholds, ' that is, as the number neces-
sary to obtain the most general JLS coupling
schemes at thresholds and pseudothresholds inde-
pendently in the corresponding nonrelativistic
limits. This coupling scheme is new.

The total-spin field 4'~'pP(x) is defined as follows:

(~P,
' ~(x)/j

(3.2)

and

~pp „(x)= g C(S,S,S;m —p, , p)Pp'„' „(x)Pp'„(x) .

(3.4)

The composite field 0 ', transforms under Lorentz
transformations according to the representation
S~', (2.64). The general interaction Lagrangian
is now given in matrix notation by

Sy +S2
2"p'~' (x) = g &"p'6'(x) (3 5)

s = fs, -s2l go=-s
with

with

g.',.'(x) = g C(S,S,S;~ —IL, V)g„"'„',,(x)e",, (x)

(3.3)

g& Jp Jp&(x) -g&Jp/p8I
aQg'Q) &2ggg2m

C(BBO; b, b, 0)C(A-SA', a, rn, a')C(k'kA', k,', k2, a') C(k'kB; k,', k„-b)

(I«2) ««[11«, '«, (s )yA'B( )]xpr[II ' «(«s )@8'p(x)]+H.c. , (3.6)

where g's«(x) is defined in (2.71), y, is an arbi-
trary scale mass, and

A' = [(~+a)/2] -~.',

k -=(~ -~.')/2, k'=-b. -~.'I/2.
I" is a numerical matrix

(3.7)

1 0

0 x "7P 7J7112'
~P

(3 6)

The derivative matrix II is defined as

(s )
/11,"...(is,",o")

k g02 12

0

0

II"„'...(z S„„o")f
(3.9)

with the corresponding definition of II « "«,(S,).
In (3.9), the notation B~p,o " denotes (9," 8«p)o ". -
Note that the independent coupling constants are
introduced through the sums on jo' and S. The re-
maining structure and sums produce a Lorentz
scalar [ (0, 0) representation] by coupling the A
and B indices to zero separately using the coupling
schemes [(kk')A', A, S]=0, [(kk')B, B, 0]=0. The
fields g"'e and PP "and the derivative operators

II and II have been combined so that R~'~' trans-
forms properly under the discrete operations of
6', 6, and&,

O'Z, "o(t x)6' ' = Z,"(t -x)

8Zz' (t, x)8 =gz' p(t, x),

&z,,"(t, x)& '=z,"( t, x).

(3.10)

As remarked earlier, we have chosen a form
for 2, 'p(x) appropriate for continuation to com-
plex J. If one is not interested in the analytic
continuation of the matrix elements, but instead,
say, in the form of the decay matrix elements of
high-spin particles, a simpler choice of the in-
teraction Lagrangian may be made. In particular,
by setting B =0 in (3.6), we obtain a form of the
interaction in which the orbital angular momen-
tum of the final-state particles is explicit. This
is discussedin detail in Appendix A. Unfortunately,
this simple form of the interaction Lagrangian
requires the choice j,=J, and is not suitable for
continuation. (If both J and jp are continued, with

j, =J, the resulting amplitude violates the known
analyticity requirements on the scattering am-
plitude at zero total energy, W=O. )
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B. Calculation of three-particle vertex functions

Let us now turn our attention to the evaluation of the matrix element for the vertex function for S, +S2-J (see Fig. 1) defined by

v(sos;v, s,z„s,s, x,)= f s'v(szsls,"* * (x)lps, x„v,s, x,). (3.11)

By substituting the momentum-space expansions of the various fields, we find

V(k JA; p, s,A.„p,s,A.,) = (2w)'5'(k -p, -p, )
' '„; (- 1)' ' exp[i'. ,Q(p, )]

jp'S
g

J',apJps C(BBO; b, —b, 0)C(A. SA';a, m, a')C(k'kB; k,', k„k —b)
aba'klk2kl k2'm

x C(k'kA; k2'k2a')g b„~ C(ABJ;aha)QC(S, S2S;I —p, p, m)

X (g2) k k [(p +p )2]k (p 2)k(—I)2

x[(-1)'{""Dkk k. (Z2(k))[D"(H(t ))C-'] -[D'(H(t ))C-']-

»a, k,(I'(Pi2)»".-8,~, (H(Pi)»8'k, (H(P2))

+(-1)'"' ' Dk, k, (1'(k))[D (H(k))c '],2[D"(H(k))C ']„—

x D k, k,«'(pi2) ) D '- s, )„(H(pi)» 2 ~,(H(p2) )), (3.12)

where P» —=P, —P, and X; = [(M, /2E, )]'j'. In the above, wehave adopted the "particle 2" phase convention
used by Jacob and Wick; that is, we add a phase to the usual definition of the single-particle state (2.1),
and define

(3.13)

This is purely a matter of convenience in order to avoid the presence of a similar phase in the final cen-
ter-of-mass hei. icity amplitude.

Equation (3.12) takes on a simpler form in the center-of-mass system of particles 1 and 2. By sep-
arating the boosts and rotations in the various D functions, and then by using the Clebsch-Gordan series
for the rotation functions, ' we finally obtain the vertex function,

V(MgJA; p, siA.„p2S2A2) =(2n) 5 (k-p, -p) ';j2 DA i(A(p))f g", g (W), (3.14)

with

Sl+S2
f';,j;,(w) = g c(s,s,s; ~„-~,)

s=l s, -sal

S
x 2J —2g+1 ' 2C J- ~, S,J; OA

J'p = - s & =i p'

x[ -{xi()i+x262)
( 1)J-K&{xi()i+%2()2)]( 2)-k-k'IV2k'

k A. '
)js k k

(
( )( )i/2 k A k A. B eT

I3 k J—lc J —zSA. '

x dkk ({j )
Jj()jos (3.15)
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S2

Flo. 1. Vertex involving particles of spins Sf S2, 1and

a particle of spin J.
FIG. 2. Vertex involving particles of spins S&, S&,a

and an antiparticle of spin J.

The bracketed quantities f ) are 6-j symbols, "
and ~ =—~, —~,. The limits of summation given
in (3.15) are those appropriate for large J' (J~2S).
For J &2S, some terms vanish. The function
d (8„) is the boost d function. ""Wand the
hyperbolic angles 8; are defined in terms of the
center-of-mass four-momenta by

p„=—(E„p)=—m, (cosh8„p sinh8, ),

P,
-=(&„-p)=-m, (cosh8„-PsinhI8, ),

(3.16)
p„=—(8, E„2p)-=(p»')'~'(cosh8», psinh8„),

p, +p, = (Z, +Z„6-)=(W, 6).

The decay matrix element for J-S,+S, is, of
course, obtained from the complex conjugate of
(3.14).

The function fz' ~~, (W) transforms simply under

parity or, equivalently, under the reflection Y
in the xa plane considered by Jacob and Wick'
which changes A. ; to —a&. It follows from (3.15)
and the symmetries of the Clebsch-Gordan co-
efficients that

f '1 1. (W) =(-1) ' 2rl~t1, 112f1', , 1. (W).

(3.17}

The kinematic structure of the vertex functions

is displayed explicitly in Eqs. (3.14) and (3.15).
We wi1.l not enter a discussion of the well-known
kinematic behavior of vertex functions in the
helicity representation. ' However, the factor
W" in Eq. (3.15) requires some comment. The
matrix elements of the derivative tensor II' "
in Eq. (3.6) introduce a factor (k')' in the ver-
tex function [comp. Eq. (2.53)]. For the decay
of a real spin- J particle, k =M~' = (P, + P,)'.
However, when we use Eq. (3.15) to describe a
vertex in a scattering amplitude, it is necessary
to use the second form of the equality, k'
= (P, +P,)' = W, to obtain an amplitude with the
correct analytic structure for W-0. (Alternative. -
ly, if we wish to avoid the appearance of non-
covariant terms in the vertex function or S matrix,
we must arrange by partial integration that the
derivatives 8, act on the external fields, and not
on the spin —J field or its propagator. See, for
example, the discussion of similar problems in
Weinberg. »)

Finally, we note that in calculating the single-
intermediate-particle contribution to two-par-
ticle scattering amplitude, we also need the ver-
tex shown in Fig. 2. This is easily computed
along the same lines as the vertex in Fig. 1. We
ha, ve

V(k JA; P,S,A.„P,S, Z, ) =- d'x(0l&1'"' '(x)Ik JA, P,S,~„P S2~, )
~I

=(»)'~'(k+P, +P, ) 2, ~gg,
'

D'A, 1[&(P)]f1.;x,(W), (3 16)

with

s s

f 1' 10 (W) = C(S,S2S; h.„—A, )
s= ),-s, l

s
x (2J-2K+1)' 'C(J —I1, S,J;OX)

~ tJo= -S K= Jo

x[e "' "2'~' „„,„(-I)""e'1,e,+1,e, ))(L12)-a-

k A.' k'

B k J—I(: J-K SA'x W2~ ( 2}"( ]) +" + "(2/'+1)(2k+1)1 2

00 Ji Oj Osd ~-II &0,0( 12) g (3.19)
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The functions f),' 'z (W) and f '),o )„(IV) are related by

(3.20)

C. Two-particle scattering amplitudes

We shall now proceed to evaluate the center-of-mass helicity amplitudes corresponding to the graph
of Fig. 3 in which the four-momenta, masses, spins, and helicities of the external particles are denoted
by P, , m, , S,, and A. , (i = 1, 2, 3, 4), respectively. The intermediate particle has mass M~ and spin J. The
amplitude to be evaluated, then, is given by

G» ., » (~, s) =(- t) ~td'~
J

d'~'(P. ~.;P,~, l T(&,"""'(~')&,""~"(~))lP, ~, ; P.~.&, (3.21)

where the interaction Lagrangian Z~ is defined in (3.5) and (3.6). T denotes the time-ordered product.
Finally,

u = (P, +P,)' = (P, +P~)', s = (P, -P,)' = (P, —P,)'. (3.22)

Evaluation of the amplitude (3.21) involves the calculation of the propagator of the intermediate spin-J'
particle,

[s"' (x' -x)].. ., =- t(ol T(4".,",, (x') e,";(x))lo),

Instead of writing a manifestly covariant expression for 8„, we shall find it convenient to keep the par-
ticle and antiparticle contributions separate on the right-hand side of (3.23). Introduction of the momen-
tum-space expansions (2.74) for 4'"'s into (3.23) allows us to express the propagator (3.23) as

"dk[8"' ' (x'-x) . = —(IH(('-t) 2 QCi"', (» E A)(T '(k E A")e"" '~*
7T'

A

with E, =(k2+M~')' '. If we use the integral representation

(3.24)

(3.25)

the propagator can be put into the form

p U," ~~ (k, E, , A)U,"» (k, E„,A) ),g V,",+ (- k, E„A)V,
"»s (- k, E„A)

(3.26)

with k=(k', k). In (3.26), U and V are evaluated on the mass shell, and the variable ko which appears in
the exponential and denominator is unrestricted.

It may be helpful to see that the expression (3.26) corresponds to the familiar spin-» propagator in the
Dirac representation, namely,

[s (~'-~)]...=- t&ol r(q. , (&')q.(~)) lo&

1 " ~;».~„. „& m g u, i(k)E» A)u, (k, E» A) vai(-k, E„,A)v~(-k, E3)»

(3.27)
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Equation (3.27) can be cast in the more familiar
form if we substitute

Q u(k, &», ».)u(k, &», ».) =—

(3.28) S) Sp

FIG. 3. Two-particle scattering with intermediate
particle of spin J.

Then we obtain

(3.29)

which is the usual expression of the conservation
parity.

(3.30)

Now we return to the calculation of the helieity
amplitude G», ~, .z, z, in (3.21), which we shall
evaluate in the center-of-mass system where
k = 0, E» =M~, and we put k3 = W= Mu. As noted
after (3.1'?) all derivatives which appear in the
coupling must be taken as acting on the external
fields. Using the form of the propagator express-
ed in (3.24), one can carry out the calculation of
the center-of-mass helicity amplitude in much the
same way as the calculation of the vertex func-
tions described earlier. The contribution to
Q& z .&, & of an intermediate particle of spin J
is given by

x5 (Pq+P3 —P3 —P4)(&4 3)

xg»» .»» (W)D~"», (4 e —p )

(3.31)

where & = A., —X„X'= A3 —&„$„,8„are center-
of-mass scattering angles, and the partial. -wave
amplitude is

(J. &

)
J

(W)
f»,'»3(W) f»3'g4 (W)

+ 2 g g3g4;g1g2

D. MacDowell symmetry in boson-fermion scattering

From now on, for simpl. icity, we shall con-
centrate on the case of boson-fermion scattering.
The results are easily generalized to boson-boson
and fermion-f ermion scattering. It is customary
to use parity-conserving partial-wave ampl. itudes
defined by

J,~ J
g X3) 4; X.1X2 =g ) 3X.4., X.1X2

+~1314(- 1) ' g- » -»»»
(3.34)

where for FB scattering for a definite spin J
(3.35)

and P =q J is the parity of the given 4 state. A

complete set of independent amplitudes also in-
cludes

J,-a J
g ~3) 4:~1) 2 g ~3~4') 1~2

—«&(
(3.36)

From (3.1'7), (3.20), and (3.32), we find that this
somewhat obscure construction simple separates
the particle and antiparticle contributions to

J
g~ x,x, )

( 1)3Z f»;»'3(W)f~3'~4(W)
8'+M- i&

(3.32)

with f "and f "given by Eqs. (3.15) and (3.19),
respectively.

Note that when the azimuthal angle @„=0,we
have the relation

G+ (s u) —( 1)3]+33 33 $4( 1)» v

and

(~ ~) ~,, (W)
f&i»3(W)f». »4(W)+ 2 g g3 ~4 ~1 ~2 g7

&=@~( 1)' ' '-
J,io

(~ ~) z, -o
(W)

f»i»'. (W)f»3»'4(W)
+ 2 g X3 X.4, k1 X2

(3.37)

(3.38)

X »» (sou)~
13.14

(3.33) The g ' satisfy the simple symmetry relations
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J', gg -k3, -k4, k~X2 'L ) ~& 13~4g X3X4., Xg) 2~

(3.39)

J'. -a
3 4:&2 34 4

(3.40)

Note also that the g '" consist of a product of
two factors which depend separately on the initial
and final helicities ~„~, and A„~4. The complete
partial-wave amplitude g does not have this
property.

The MacDowell symmetry relating g '(W) to
g ' '(- W) is derived with the aid of the relations
given below. From

IV. REGGEIZATION OF A SEQUENCE OF
FERMION-RESONANCE AMPLITUDES: REGGE POLES

AND REGGE CUTS

A. General considerations

The partial-wave helicity amplitudes derived in
Sec. III will be the starting point for a Regge re-
presentation to be obtained by summing resonance
contributions lying on an infinitely rising linear
Regge trajectory with definite signature 7.' We
will drop the kinematic factor in (3.31), and work
with the usual center-of -mass scattering ampli-
tude. The full scattering amplitude corresponding
to this sequence of resonances is then given by

.) 8 &+P (3.41) Gg g . g q(u, cos&g ) =Q (J +~a)g z ~ . x x (W)dr~'(B„)
J

and

E(W) =-E(- W), (3.42)
=z g(J+ 2)[gz', z, ; x, &, (W)

P(W) =-u(- W),

we have ( I )/-I/2

(4.1)

e tea(lv)
( 1)axe &x8(-w)

In turn, the I.orentz boost function d '(B»),
which can be expressed as"

d~~'. ..(B») =Q C(kk J —((; g, —p)

xC(kk0; p., -g)e '" »

obeys the relation

dkA ( B (W)) ( I)2A dAA ( B ( W))

Finally,

(3.43)

(3.44)

(3.45)

where, we recall, A. = X, —X„A.'= A., —A.„and P„=0.
The sum is restricted to physical values of J such
that (-1)~ '~' = r. A resonance of spin J, parity P,
and mass M(J) leads to a pole in the amplitude
g~'with v =rP [cf.(3.37)]. It is important to note,
however, that the resonance also gives a finite
contribution to the amplitude g ' '. It is necessary
to retain this contribution if we wish to obtain a
complete Reggeized amplitude which satisfies the
MacDowell symmetry relation for W-0 (backward
EB scattering).

Although there is no need with the Van Hove-
Durand construction to follow the usual procedures
to obtain a properly Reggeized amplitude, it is
illuminating to do so. The Reggeization is normally
carried out using the "parity conserving" helicity
amplitudes defined by

It follows that

g&,'z;x, z, (W) = ( 1)" gx', x';x, z,(- W)'

(3.46)

(3.47)

~O '

~X.3X.4l X) X2 GX3&4i Xg X.2

+ o'(4 ~lc( 1)

-0
3

(4.2)

This is simply the MacDowell symmetry relation
generalized to arbitrary FB-FB scattering. "
We shall explore the consequences of this symme-
try on the Reggeization of the contributions from
a sequence of resonances lying on a Regge tra-
jectory.

—crl, (i4(-1)' ' G g, g; g g

(4.3)

Here @denotes the helicity amplitude with the
half-angle factor removed,
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-(x.+ x')
~

-(x- x')
G«, «, ;«,«, (M, cos8„}= (cos—" si««—'

G«, «., ««, («««««sii }„

z g(J+ 2)[g X3 }«4i Xi k& (g ) +8 }i3%4' X}}«2 (g]dX X.'(8}()i
J

(4.4)

with
—~a+ v)

"x~'(8 )= sin —" d ~ „(8„).
(4 5)

where

[d}"i(8.)]~ =d },'g.(8.)+d ~", } (8.) . (4.9)

(We assume for convenience that the helicities are
such that A. ~ iA'. i. Other cases can be treated using
the symmetries of the d's and the parity relations
given in Sec. III.)

The restriction of the sum in (4.4) to values of
J~A. such that (-1) ' ' =T can be removed by re-
placing d „'„'(8„)by the signatured d-function
dqq'(8„) defined by

d~i.'(8. ) =k[d xx (8.) +7(-l)"'"d~,-x (&-8.)] .
(4.8)

Because of the identity

d~, v(& -8.) =(-1)""d~~ (8.) (4.7)

satisfied by the d for physical values of J; d },~.(8„)
is equal to df„(8„)for physical Jwith (-1)~ "=r,
and is zero for (-1)~ 'i'= -7. The partial-wave
expansion for G can be written using the fore-
going definitions and the relations (3.39) and (3.40)
as

For A. )iA.' i, icos8„i-~, and general values of

J, d&zi and d z ~i approach a common limit,

d}',v(8.)

-d}', } (8.)

x (cos 8„) (4.10)

4pp cos8~ -s~ s ~

The corrections are of order (cos8„) '. As a re-
sult, [d&('], is of order (eos8„) for ieos8„i -~,
while [d~'},'] is of order (cos8„) ' and can be
neglected in (4.8) if we retain only the leading
contributions in coso„or s. If we use the rela-
tion

=-', g(J+ ~)[[dxk'(8, )]~g ~,"~:~,~, (N
J

cos(v —8„)=e '"cos8„-s, s-~, (4.12)

the sum of the leading contributions to (4.5) in
powers of s gives the asymptotic relation

2 ' 1(2Z+1)" '4'"1" ', ' ' '[r(J+z+1)r(J-~ + l)r (J+~'+1)r(J ~ +1)]'"

We thus find that the leading contributions to G
are provided by the particle and the antiparticle
contributions from the intermediate state, a re-
sult which is not obvious in the usual approach.
This result could, of course, be obtained direct-
ly from (4.1) without the formal construction.

The pole structure of (4.13) which results from
the sum over resonances can be displayed by

2-~+~-&r(2J+ 2)
r(J+ ~+1)r(J-~+1)

x (4p)-"'f„'",, (~, (4.15)

substituting (3.37) and (3.38) in (4.13). We will
introduce the definitions



1424 KIN G, DURAND, AND WALI

2 +" ~P(2J+2)
F(j+&+1)I'(J-&+1)

x (4P) ""T~"~'(K

and similar definitions for Pz'z (J, 8'). Then
3

(4.16)

xP~', ~ (j,W)P-„~„(j,W)

1
W+ [M (J) —ic] (4.17)

(u, s)
4

~jh(j)~ P, ,(j W)P, (J W)

We will assume that the p' (J; W) and M(J') are
functions of J which satisfy the requirements of
Carlson s theorem, and can be continued uniquely
to complex J. The continuation is performed with
the summation indices j, and a in (3.15) and (3.19)
fixed at physical values, -S&j,'( S, j,' - ~ - S. The
Clebsch-Gordan coefficients and 6-j symbols in
(3.15) and (3.19) consist of finite sums of ratios of
I' functions, and can be continued using the explicit
expressions given, for example, by Edmonds. "
Application of the Sommerf eld-Watson transfor-
mation to (4.17) now gives the desired result for
the leading contribution to G for s -~ with u fixed
(backward scattering in the s channel),

M(J W') = M [J-o. (W')]' ' (4.20)

where M, is a constant and the function o,,(W') is
given by

o,, (W') =a, +u,'W', u, (-,'. (4.21)

The last factor in the integrand for G then has
the form

tion satisfies the requirements of MacDowell
symmetry, and eliminates the linear dependence of
the complete amplitude on M(J). This model,
though widely used, has the obvious disadvantage
of requiring parity doubling of the fermion
resonances, a phenomenon which is not observed.

Carlitz and Kislinger' showed that the appear-
ance of physical resonances of the "wrong" parity
could be avoided if the J-plane cut associated with
M(J) was retained. As we shall see, there are
still two Regge trajectories o.'(W) and a (W) as
required by MacDowell symmetry, but for S")0,
the wrong parity pole is on the second (unphysical)
sheet of the cut J plane reached through the cut,
and does not lead to resonances at physical values
of J. The Carlitz-Kislinger model uses a mass
function M(J) = M, (j-o.,)' ', a, fixed, and has a
fixed cut at J=u, . Durand and Lipinski' noted
that the model can be generalized to obtain a mov-
ing (Regge) cut by taking M' as a linear function of
J and 5".~' We will use the latter model, with

1
W+ [M(J )-ie]

where $(J ) is the usual signature factor,

$(j)=(1+7e " ' ' )/sinw(j-&) .

(4.18)

(4. 19)

1 1 8'+Mo[j-u~(W )]'
W- (M, —fe) M,' J-o.'(W')

with

a'(W') =uo+(a,'+ Mo ')W +i'

(4.22)

(4.23)

B. Models with moving poles and cuts

The discussion so far has been quite general.
We.turn next to specific models which illustrate
the phenomenological content of our analysis. VVe

will require that our models contain a fermion
trajectory '(o)Wwhich is a linear function of W2,

as suggested by experiment. This will be assured if
M'(j) is a linear function of J [see (4.18)]. Note,
however, that the denominator function in (4.18)
depends on M(j) rather than M'(J), and will there-
fore have a square-root branch point in the J plane.
The customary models with linear parity-de-
generate trajectories eliminate this branch point by
introducing a second traj ectory with the same
signature, but opposite parity, a (W)=n'(W), and
with P" (12)P"(34) =P'(12)P'(34). This construc-

Mo[j —n, (W')]' ' =-W+ie . (4, 24)

This corresponds to a linear Hegge trajectory

J =a (W')

=o'. 0+(o'. ,'+MD 2)W -iq . (4.25)

The integrand thus has a moving pole at J=a (W'),
and moving branch point at J= a, (W'). The fixed-
cut model is recovered for z,' =0.

The J-plane structure of the integrand in Q
in (4.18) is somewhat more subtle. There is the
expected branch point at J= n, (W2). In addition,
there is a pole corresponding to a value of J on
an unphysical sheet of the J plane, namely, for
J satisfying



RESONANCE-SUM MODEL FOR REGGEIZATION IN THE. . . 1425

If the contour integral is deformed in the physical
J plane before continuing to 8'2&0, it appears to
pick up only the branch-cut contribution due to
o., (W'). However, the unphysical pole (4.25) con-
tribution can be considered as "buried" in the
branch-cut integral. In order to see this more
clearly, consider the position of the pole after
continuation to 8' &0 as indicated in Fig. 4. Here
the pole has shifted to the lower part of the path
of the branch-cut integral and must be taken into
account.

It should be emphasized that for physical values
of W, W&0, the fact that the pole at Z=o. (W') is
on an unphysical sheet in J means that this pole
does not give rise to physical resonances. There
is consequently no parity doubling of resonances
despite the fact that n (W'} =n '(W'} in our model.
This can be seen somewhat differently if we write
the last factor in the integrand for C in the form

1 M, [Z-u, (W')]'"- W
W+[M(~)-f. l M,' J-~-(W )

(4.26)

a, CW' ~O)g

u (ws &0)~

=ReJ
ta (W& O)

It is then clear that the residue of the pole at
Z=o. (W') vanishes for W&Q.

It is now straightforward to extract the Regge-
pole contributions from (4.18) for W'& 0, and
express G' as

FIG. 4. Contour of integral for 6& ~4. ~&~ when S' & 0.
The dashed line shows the position of the pole u on the
unphysical sheet when W2 & 0.

C;. ...(., ) — .t( (W')) ""'-'P;, ( ', W}P:,(;W)

n (Iv) (W2 g]i/2~ ((~)s' P~, ~ (~ W)P~, ~ (~, W)' " ~ W2
(4.27)

Gp„„„(u,s)-v, ((a (W'))s" pox (o', W)ppg4(n, W)
0

cQ $(J')s Pg~'g (J W)Pj, y~(J; W)
0 ~oo

(4.28)

s ~, u=S'2 fixed.
Equations (4.2'I} and (4.28) give the final results

of our paper. They are generalizations of the re-
sults of Carlitz and Kislinger' and Durand and
Lipinski' to arbitrary spins. The factored resi-
dues P" defined by (4.15}, (4.16), (3.15), and

(3.19) satisfy all the kinematic constraints on the
helicity amplitudes at thresholds, pseudo-
thresholds, and S'=0.' The coupling constants
gros which appear in (3.15}and (3.19) can be
taken as functions of 8"' for purposes of pheno-
menology without disrupting these kinematic
conditions. However, we shall leave the investi-
gation of specific models for future papers.

As a final note to this section, we observe that
cuts of the type considered here are specific to
fermion Reggeization. For boson resonances,

g~,"z .z ), is a function of 8" and g&,'q', .~, q, is
identically zero. Thus, simple boson Regge poles
can exist without parity doubling or J -plane cuts.

V. SUMMARY AND DISCUSSION

We have shown how to construct a Regge repre-
sentation for four-particle reactions with arbi-
trary spins using a Van Hove-Durand type model.
A field-theoretic description of the single- particle
contributions in the intermediate state permits us
to specify the kinematic structure of the center-of-
mass helicity amplitudes. A judicious choice of
fields and the form of interaction lead us to a
relatively simple and physically transparent re-
sult for single-particle exchange contributions.
We have shown, for example, that in fermion-
boson scattering, the parity-conserving partial-
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wave amplitudes g~" and g ' are simply related
to the contributions to the scattering amplitude of
intermediate states containing particles and anti-
particles.

Our main result concerns boson-fermion
scattering. In a field-theoretic description of
such a reaction, the natural variable is W=Mu

and the partial-wave helicity amplitudes obey a
generalized MacDowell symmetry which relates
g ' (W) to g ' (-W). The consequences of the
MacDowell symmetry are well known. Whenever
there are resonance poles associated with given
total angular momentum J and parity, there are
also nonvanishing contributions to partial-wave
amplitudes belonging to the same J but opposite
parity. However, as we have seen, the existence
of poles of given 4 and parity on a trajectory
linear in TV does not necessarily imply the ex-
istence of physical parity partners for observed
resonances. We have constructed a simple model
without parity doubling in which a moving cut in
the J plane prevents the appearance of the parity
partners on the physical sheet of the J plane. The
MacDowell-symmetric poles are present, but far
from the physical region.

To our knowledge there is no definitive experi-
mental information which rules out the existence
of such cuts. Because of the flexibility afforded
by our general parametrization of the functions
P, one probably can make a variety of models in
specific reactions. While this needs further in-
vestigation, we would like to emphasize the general
result, that within the framework of our model one
can always get rid of the conspiring opposite-
parity trajectory necessary from MacDowell
symmetry (and analyticity constraints) by putting
it on the second sheet in a cut J plane. This holds
for any external spins in fermion-boson scattering,
and generalizes the result of Carlitz and Kislinger. '

Finally, as remarked in the Introduction, another
consequence of our investigation has to do with the
duality constraints. When such constraints are
imposed, one generally assumes pure Hegge poles.
If there are associated cuts, since the cuts have
an energy dependence different from that of the
pole, it is necessary that the constraints should be
applied to the cut contributions as well. The con-
straints on the cut contributions involve the same
residue functions as those in the pole contributions.
Consequently it would be interesting to see whether
these two sets of constraints are mutually com-
patible. Such a study may lead to modifications

in the conclusions concerning hadronic spectrum
and hadronic couplings reached by several authors
in recent years.
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APPENDIX A: COUPLINGS FOR 2(2J+1)-COMPONENT

FIELDS

and

If me set J3=0 and hence'= J, jo=J, k=0, I=2k,
in (3.6) we can easily show that the interaction
(3.6) reduces to

S «+S2 J'+s

gzs ~s2 P g gzls(x)
s=l&«-Sgl & =g-s

where

(A2)

In Sec. III, the requirements of analyticity
on the scattering amplitude at zero total energy
led us to choose a general g"' (x) field for the
intermediate particle with spin J. If we are in-
terested, however, only in the decay vertex of
three arbitrary-spin particles or the scattering
amplitude in the neighborhood of a narrow-reso-
nance pole with spin 8, we can choose the 2(2J'+I)-
component fields p~'(x) for the intermediate par-
ticle. This particular case merits special atten-
tion because, as we shall see, it leads to results
which have a simple physical interpretation.

For simplicity in notation we shall henceforth
define

~mls ( )
/is

aa'A«A2g 1g 2m

C(Jsl;a, ma')C( ,'l, 2l, I; km@, a—')C(2l,al, 0; ",'&p)(li')

(A3)
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The sum on I in (3.2) can be restricted to values
such that

(—1)' = q~q, q, (A4)

without losing the most general behavior at the
physical thresholds and above. We will use this
restriction.

The vertex function is given by a matrix element
similar to (3.11),

momentum" I (the number of derivatives jn the
coupling) to total angular momentum J.

The result for f~,„ in (A,7)—(&9) is quite simple,
incorporates the proper threshold behavior, and
can be used to obtain the most general param-
etrization of decay matrix elements. However,
we should emphasize that L and s are not the orbi-
tal angular momentum I and total spin $ in the
proper Russell-Saunders Jl, S coupling scheme for
f„,z, . The latter coupling can be constructed, but
the results are complicated and not nearly as easy
to use as those above.

By substituting the momentum-space expansions
of the various fields and going to the rest frame
of particle with spin J, we obtain

V(kJA; p,S~A.„p2S2A ) =(2w) 5 (k —p~ —p2)
'

)9)~

x DA ) (Q(p))f~ ~ (W),

(A6)

where

(A7)

fz, q, (W) = G(Zls)C (S,S s; A,„—A. , A}C(is+; OAK)

x(PW/p. 2) cohs(A. i8, +A 8,),

and

G(JIs) = (-1)" 2l +1
2l! (I+ I}(2J+I)

2'+ 'I!g(Jls).

(A9)

fy 'y (W) ~ G(Jls)C(S,S2s; X„—X2, A. )1 2

xC (IsJ; OAR)(PW/p, ')' . (AIO)

In this limit, we clearly have an effective "JL,S"
coupling. The Clebsch- Gordan coefficients des-
cribe the coupling of S, and S, to "total spin" s,
and the coupling of s and the "orbital angular

The kinematic structure of f "is explicit in the
factor (PW)' cosh(A. ,8, +X,8,). Since 8,- 0 and

8~ - 0 for P - 0, cosh(A, ,8, + A28, )- 1 near
threshold, and f "vanishes there as P',

APPENDIX B: COUPLINGS FOR FIELDS
OF ARBITRARY LORENTZ TYPE

The three-particle interaction Lagrangian con-
sidered in Sec. III was constructed using fields

(x), g+' (x), and P ~'(x) to describe the in-
ternal particle with spin J, and the external
particles with spins S, and S,. The choice of the
(A, B) representation of the Lorentz group for the
internal particle, withA+B =J a.nd ~A B~ =j„-
was necessitated by our desire to obtain scatter-
ing amplitudes which could be continued to complex
J while retaining the correct analytic properties
at W=0. The choice of the (S„O) and (S„O) re-
presentations for the external particles was mo-
tivated simply by convenience.

In this appendix, we will generalize the inter-
action Lagrangian to include the case of external
fields which transform according to general re-
presentations (A„B,) and (A, B,) of the Lorentz
group, with A, +B,=S„ IA, —B, (

=j», and

A, +B,=S„~A,-B,) =j, , These couplings are
inevitably more complicated than those of Sec.
III, but provide the natural framework for the com-
parison of scattering or decay processes which
involve different members of a Regge sequence as
external particles. [For example, the set of re-
actions m+N- m +N', with N' any of the physical
states on the nucleon Regge trajectory, S=-,', ~,
-', . . . , should be described using fields in the
(A, B) representation with A+B = S, ~A -B

I
= —',

to describe the particles N' ]The gene.ral cou-
pling is also a natural starting point for the con-
sideration of multi-Regge couplings.

The scheme which we will follow involves cou-
pling the external fields in the (A„B,) and (A„B,)
representations into a combined intermediate
field in the (S„,Ss) representation, and then com-
bining this field, the spin-4 field in the (A, B)
representation, and the derivative tensors
II(B,) and II(B„)to obtain a Lorentz scalar. The
number of derivatives in the coupling is the
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minimum number necessary to obtain the most
general behavior of the vertex functions at thres-
holds and pseudothresholds.

The combined field Cs" sB (x) is defined as
follows:

g'B sA (x) = Z C(A, A.,S„;a,a2B«A)

xC(B,B2SB;b1bamB)

X q'«1 "1(X)y«2 "a2 (X) . (83)

with

gA„,'B,(x) = g C(A, A,S„;a,a, mA)
~1~ 1~ 2~ 2

XC @1BBSB,' b1b 2mB)

X 0a 1I «', (X)ga 2, «,'(X),

and

(81)

(82)

(84)

g S1$2 (X) Q gSASBA'B'(X)
SASPA 8

with

(85)

We assume, as noted above, that A, +B,=S, and

A, +B,=SB 2 The field 4 A sB(x) transforms under
proper Lorentz transformations according to the
representation & "' B, (2.64), and transforms
under space inversions as

The generalized interaction Lagrangian is given
in terms of the composite field 4BA'sB(x), the
spin-J field (11"' (x), (2.62), and the derivative
operators II, (3.9), by

2" " (x) =g "B" Z (-1) ' C(AS Ar a m a')C(BS B'b m b')

1 1

xC(k'kA';k, ', k a')C(k'kB';k', , k, b')(p, 2) " '-

[Il«' «'
(6 )@A,B( )]Tg[II«,«(6 )@s,sB ( )]

+ H. c., (86)

A =-,'(~ ~.), B=-,'(~-j.),
2 (S1 Jp ~ 1) I 1 2 ( 1 2011)1

2 (S2 20 ~ 2)P B2 2 (S2 20/2)

(87)

Note that
~j» ~

is equal to the lowest physical spin
in the corresponding sequence of resonances. The
parameters k, k ' are defined in terms of A', B' by

k=-,'(A.'+B'), k'=~z lA' —B l ~ (88)

The I,agrangian Z~s's2(x) in (85) and (86) is re-
lated in the special case B, =B,=S~=O to the
Lagrangian g~'0 122(x) of Sec. III, (3.5) and (3.6),
by the identifications

where p. is an arbitrary scale mass, and I' is the
numerical matrix defined in (3.8). The parameters
A, B, . . . are defined in terms of the spins and
Lor entz quantum numbers j, of the various parti-
cles by

IIIAA ( I)A-O'll AA

II sAA
( 1)A-a' IIAA

(810)

with the transformation property

u(A)rr'.".".(ia„a2)U-'(A)

=pa" (~-')D". (A-')ll A", (ia„oB),
aa

The lack of symmetry between the A couplings
and the B couplings in (86) is associated with the
fact that the derivative tensors II and II transform
under Lorentz transformations as D" and D" on
their first index, and as D * and D rather than
D' and D' on their second index, (2.38). One can
obtain a symmetrical coupling by using instead
modified tensors II' and II' defined by

s=s„

g J'gp 1pS (2B+1)1/2g SAQA B
(89)

U(A)11'",".(i62oo)II-'(W)

=Q D" (A ')D" (A ')Il'"" (ib'"o")
aa'

(811)
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The evaluation of the vertex functions corre-
sponding to gI & 2 is straightforward but tedious.
The results are of the forms given in (3.14) and
(3.18), but with f and f given by expressions con-
siderably more complicated than (3.15) and (3.19).
These functions can be expressed, if desired, in
terms of Lorentz d-functions summed with
Clebsch-Gordan, 6j, and 9j coefficients. How-

ever, it is as simple or simpler to express f and

f entirely in terms of Clebsch-Gordan coefficients
and exponentials. These expressions are easily
obtained by evaluating the vertex functions in the

A
special case p, =-p, =Ps, A =A. =X, —A using the
results of Sec. II [cf. (3.14), (3.18)]. The details
will not be given here.
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