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We discuss possible ambiguities in the reconstruction of m N scattering amplitudes from experimental data and
the elastic unitarity condition below the threshold of inelastic processes. We restrict ourselves to partial waves

with l = 0 and 1 and show that certain twofold ambiguities can occur if only two experimental quantities are
measured {the cross section plus polarization or one of the polarization parameters). We also show that these
ambiguities can be removed by a further measurement, unless the polarization happens to be zero or the
experiment is performed at an unfortunately chosen angle, for which both sets of amplitudes predict the same
value for the corresponding experimental quantity.

I. INTRODUCTION

The general problem approached in this article
is that of reconstructing scattering amplitudes
from experimental data and general principles
of quantum theory. More specifically, we con-
sider the case of elastic pion-nucleon scattering
below the threshold of inelastic processes (like
pion production). We investigate whether it is
possible to reconstruct completely the mN scat-
tering matrix, including all phases, from the
knowledge of the differential and total cross sec-
tions and some polarization parameters (the po-
larization of the recoil nucleon and/or the polar-
ization rotation parameters for a polarized target),
making use of elastic unitarity.

Generally speaking, from experiments alone it
is in principle (assuming that experimental errors
can be made arbitrarily small) possible to deter-
mine all elements of the scattering matrix, up to
one over-all phase, for any fixed value of energy
E and scattering angle (9. The optical theorem
can be used to fix the value of this over-all phase
for 8 = 0, but otherwise it remains unknown (since
all experimental quantities are bilinear real func-
tions of the scattering amplitudes). The elastic
unitarity equation (for energies below the first
inelastic threshold) can be considered to be an
integral equation (or.set of equations) for the over-
all phase. The kernel of the equation will, of
course, involve data from experiments performed
for all scattering angles. Since unitarity for the
total scattering amplitudes is expressed in terms
of nonlinear integral equations, it is, in general,
not guaranteed that the unitarity equations have a
solution at all or that a solution, if it exists, will
be unique.

Let us just mention that the problem of a com-

piete reconstruction of scattering amplitudes is
of fundamental importance for several reasons.
Indeed, in any dynamical theory (involving a La-
grangian, Hamiltonian, some sort of field theory,
etc. ) it is possible to calculate the scattering am-
pl. itudes completely. A complete check of the pre-
dictions of such a theory hence implies a knowl-
edge of the amplitudes. On the other hand, in
S-matrix theory, it is again the amplitudes that
are fundamental quantities. Assumptions about
analyticity, asymptotic behavior, Regge poles,
various discrete or intrinsic symmetries, etc. ,
always have stronger consequences for amplitudes
than for the experimental quantities [thus an equa-
tion involving three amplitudes, following, e.g. ,
from SU(3), will only lead to inequalities for cross
sections]. If we want to relate one process to an-
other one, e.g. , perform three-body calculations
in terms of two-body quantities, we need the two-
body amplitudes with all phases. The interference
between two interactions (like Coulomb and nu-
clear interactions) will also depend on the over-
all phases.

The problem of possible ambiguities in scatter-
ing amplitudes, due to the nonlinear character of
the unitarity equation, has been studied from two
points of view.

The first approach is of a fundamentally math-
ematical nature. Topological and analytical meth-
ods in the theory of nonlinear integra1 equations
are used to prove that under certain conditions on
the experimental data the unitarity condition has
a solution and under more stringent conditions the
solution is unique. For the scattering of spinless
particles we refer to Befs. 1-6; scattering of
spin-zero on spin-& particles is considered, e.g. ,
in Refs. 7 and 8; nucleon-nucleon scattering is
treated from this point of view in the Refs. 8 and
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9. The results of this approach are very illum-
inating but the conditions for their applicability
(for example, the "contraction mapping condi-
tions") are much too restrictive to cover all cases
of physical interest (e.g. , they essentially exclude
the existence of resonances' in the considered
region).

A different approach is more simple and explic-
itly displays existing ambiguities. Instead of con-
sidering the total amplitudes a partial-wave ex-
pansion is performed. Elastic unitarity then sim-
ply implies that the phase shifts are real. The
problem then is to find all different sets of real
phase shifts that reproduce the same data. The
first ambiguity of the above type was found for
spin-zero particle scattering by Crichton and it
involves only S, P, and D waves. " This problem
was pursued for scalar particles in several other
articles. " " The disadvantage of this approach
is that it is only manageable for a finite (and
small) number of partial waves. Also, the ques-
tion of whether ambiguities thus found are typical
for experimental quantities that are strictly ex-
pressible as polynomials in cose, or whether they
occur in general, remains open. See, however,
some relevant comments in de Roo's thesis. "

Ambiguities in xN scattering (more generally
in the scattering of spin-0 and spin-~ particles),
specifically different sets of phase shifts giving
the same cross section and polarization, were
considered by Puzikov, Ryndin, and Smorodin-
skii, "who also introduced the concept of a com-
plete experiment. They point out the existence
of a generalized Minami ambiguity, i.e., a trans-
formation of the amplitudes, leaving the cross
section, polarization, and unitarity condition in-
variant. Less obvious ambiguities, involving S
and P waves only, were recently found by Berends
and Ruijsenaars. " Related problems were studied
by Dean and Lee, "Klepikov and Smorodinskii, "'"
et al.

In the present article we consider pion-nucleon
scattering, i.e., an elastic reaction of the type
0+ 2

-0+ &. We write the scattering matrix in
the form

M=f(k, 0) +g(k 8) o' n,
where f and g are two complex functions of the
energy and scattering angle (say in the c.m. sys-
tem), o' represents the three Pauli matrices and
n is a unit vector along the normal to the scatter-
ing plane. Introducing three orthonormal vectors

Here I is the differential cross section, P is the
recoil nucleon polarization, and D;I, is the polar-
ization rotation tensor"'" (i.e., D„and D, are
c.m. Wolfenstein parameters). These quantities
satisfy the equation

P2+D 2+D, 2-] (4)

The problem thus is to reconstruct Ref, Imf,
Reg, and Img from two or more of the quantities
I, P, D», and D&~ plus the elastic unitarity con-
dition. Like the authors of Ref. 1V, we restrict
ourselves to l =0 and l =1 partial waves. We con-
sider ambiguities in the phase shifts if I and P,
I and D», or I and D, are measured. In each
case we explicitly construct the transformation
from one set of phase shifts to the other one,
leaving the pair of experimental quantities invari-
ant. We also show how the remaining two quan-
tities transform and show whether a measure-
ment of one or both of them will always eliminate
the ambiguity.

In Sec. II we consider some "global" ambiguities,
existing for any number of partial waves, discuss
the case of P =0 in some detail, and make some
general comments on the method. In Sec. III we
consider transformations of the amplitudes f and

g leaving I and P fixed. In Sec. IV we do the same
for I and D« fixed, in Sec. V for I and D& . The
results and future outlook are summarized in Sec.
VI.

Note that there is an overlap between our Sec.
III and Ref. 17; however, the methods and some
of the results differ.

II. GENERAL COMMENTS ON AMBIGUITIES

Throughout this article we make use of the stan-
dard partial-wave expansion" ' '4 of the amplitudes
f and g in (1):

f(k, e) =
k g [(&+I)f', +~f, j&,(cose),

L

&=o

where k; and kf are the initial and final c.m. mo-
menta, we can express four linearly independent
experimental quantities as

I=-.'»MM'= IZ I'+
I g I',

IP =
& Trv„MM = 2 Refg*,

ID«=ID.„=k»oiM~iM'= lf I'-
l
gl',

ID„,= —ID,„=—,
' Trv„Mv, M =2imfg* .

Ikey +~f l [ kg +kf ( Lkg xkf l

(2) 2
L

g(k, ~) =
k g (f i

—f i )»»
l=y
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Expansions (5) diagonalize the elastic unitarity
equation which then simply implies that the par-
tial-wave amplitudes satisfy

~, —1
l (8)

with real phase shifts &&.

Let us assume that a set of real phase shifts,
describing the data, has been found. We wish to
find all possible transformations

1.e.
y

f'=- f*cos8+ig*sin8,
g' =if *sin 8-g*c os 8 .

The experimental quantities satisfy

I'=I P'=P

D« =D»cos28+Dmr sin2I9,

Dml = —Dml cos28+D, l sin28 .

(12b)

(13)

1.e.)

f'=-f*, g'= g*
(8)

(the asterisk implies complex conjugation). The
experimental quantities (3) transform as follows:

Dll Dll v Dlm Dlmy and P' = -P. (9)

Thus, measurements of I, D», and Dlm will not
distinguish between the two sets in (8) whereas a
measurement of the polarization will, unless we
have P= 0. For P=0 the two sets are indistin-
guishable.

(ii) The original Minami ambiguity" is

such that ~,' are also real and reproduce the same
data (exactly, i.e., assuming that the experimental
errors vanish). Let us first consider "global"
ambiguities, existing for an arbitrary number of
partial waves. Three obvious transformations
that come to mind, are the following.

(i) The first transformation is

and then look for transformations conserving two
quantities: (I, P), (I, D,), or (I, D„).

ln the case (I, P) we follow Ref; 17 by introduc-
ing the function

G(t) f(t) +g(t) (15)

(we suppress the energy variable k). Restricting
ourselves to I terms in the expansion (5) we can
write

Both I and P are thus invariant, D, l is' invariant
only for 8 = 0, D, is invariant only for 8 = m/2.

In passing, let us note that it has been shown'
that under certain stringent conditions (for ex-
ample, the "contraction ms. pping conditions" ), no
other than the above ambiguities exist, even if
D» and D, are not measured.

In order to search systematically for less ob-
vious ambiguities, we modify methods used earl-
ier. "'" For convenience we replace the c.m.
scattering angle by the variable

2t 1- t'
t =tan~6), i.e., sln6)

1 2 y
cose1+t2' 1+t

(14)

5+'=6 6 '=5+
l l+ yy l l-j. (1Os.)

i.e.
y

f ' =f cos8+ig sin 8,
g = —&f sin 8 —gcos8 .

The experimental quantities (3) transform as

I'=I, P'=- P,
cos2 e+&l sin20,

Dml m l cos2 0+Dl l sin2 0 .

(10b)

The cross section is always invariant; the polar-
ization is invariant only if it is equal to zero.
Each of the polarization rotation parameters will
distinguish between the two sets in (10), unless
8=0, when D', , =D» (and O', = —D,) or 8=m/2,
when D~, = D„, (and D,', =. —D«).

(iii) The modified Minami ambiguity" —a com-
bination of the above two ambiguities —is

(12a)

where 1/f; are the complex roots of the polynom-
ial G(t). Since I= 2 [IG(t) I'+

I
G(- t) I2] and

IP=~z[l G(t) I' —
I G(- t) I'], any transformation

leaving I G(t) I

' invariant will leave I and P invari-
ant. Restricting ourselves to transformations
leaving the number of partial waves L fixed, and
also leaving the total cross section

o...= —lmf(O) = —„ lmG(O)
4m 4n'

invariant, we find that the only allowed transfor-
mations are the following.

(i) &: Ref(0) - —Ref(0) [f(0)--f*(0)], (18)

(ii) T;: f;-f( (complex conjugation of a root),
(19)

and combinations of such transformations.
In the case when the pair (I, D,) is assumed to

be known we introduce the function
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H(t) =f(t) +ig(t) . (20)

Since I= ~2[IH(t) I'+ IH(- t) I') and ID„,=-', [IH(t) I'
—IH(- t) I'] we again search for transformations
leaving the modulus of H invariant. We put

H(t) =, i (h; t —1)f(o)
&=1

(21)

and find that transformations of H(t), leaving
IH(t) I, Imf(0), and the number of waves L invari-
ant, are analogous to those in (18) and (19), i.e. ,
the transformation S: f(0)-—f*(0) and the follow-
ing:

(iii) T . hq - h,* (22)

Finally, if I and D, &
are known, both the moduli

If I' and lgl' are fixed. We can write f(t) and

g(t) as
f(0) . . —. (t —a;)(t+a;)

{1+t ) ~ "i —a;

The Minami ambiguity (10a) reduces to

&o
= &- &-' = &0

and the modified ambiguity (12a) is

j

(29)

(30)

can be easily solved. Indeed, if g=0 it is suffi-
cient to put

g2~ 0 g g g2

and to substitute into (26). If g+0 (note that
Ima &0 implies f&0) then (31) implies that

(32)

The sign ambiguity (8) 6,-—6, exists always
and the solutions &i and —6, (g, and gf) are indis-
tinguishable if P=O. For l =0 and 1 only, the
equation

21rP=2Ref g*=0 with o'„, = &, Ima &0

I, -y

g(t) =c
h {. ..) . (t b*)(t+-;),

&=1

(23) ImaRec -ReaImc =0

Imb Rec -Reb Imc =0

where a&, b;, and c are constants. Transforma-
tions leaving lf(t)l', lg(t) I', Imf(0), and L in-
va.riant are again S: f(0)-—f*(0) and also

(iv)

(iv) S~: ce'e, 0(y(2m.
(24)

The problem thus is to consider all the above
transformations and their appropriate combina-
tions, and to see how the remaining experimental
quantities transform in each case. Further, we
must assure that both the initial amplitudes and
the ones obtained after the transformations obey
the unitarity conditions.

From here on we restrict ourselves to S and P
waves only, i.e., put

f(t)=, (a+bt'), a&0

g{')=h '1+t

a = —i(go+2/, +g —4),
b= —i(&, —2&, —f +2),
c = —i{g —&-)

We have introduced the notation

(26)

where a, b, and c are complex constants, related
to the phase factors in (6) by

Since the unitarity conditions (28) can always be
rewr'itten in terms of the amplitudes a, b, and c
as

Im{a+b) =-,' la+b I',

Im(a —b+2c) = ~i2 la —b+2cl',

Im(a —b —4c) = —,', la —b —4cl'.

Using (33) we can eliminate Reb and Rec from (34)
and use (34) to express all the entries in terms of
a single suitably chosen parameter. The first
equation in (34) can be seen to imply

4(lma)'
b =-a or Imb =, —Ima .)a)2

Similar relations are obtained from the other
equations. Combining them all together, we find
five types of solutions of (31), summarized in
Table I. Notice that it is only in ca,se (i) that all
the polarization effects are trivial and that case
(ii) corresponds to a constant differential cross
section but nontrivial polarization rotation pa-
rameter s.

We now go over to a consideration of ambiguities
specific for the ease of S and P waves only and
corresponding to nonzero polarization.

00 =00,

The unitarity condition is simply

i=o, +, —.

(27)

(28)

III. TRANSFORMATIONS OF AMPLITUDES LEAVING I
AND P INVARIANT

We use the amplitudes f and g in the form (25)
and write (16) in the form
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G(t) =f(t) +z(t)

a= —(f,t -1)(f.t - 1) (35)

Considering a, f„and f, as independent quan-
tities, we shall use

The condition (g, (' = (g,'(' implies ReaIm( f,f,) = 0.
However, if Rea =0 then T, T2 is equivalent to
ST, T, already considered above. Hence we need
only consider the case when f,f, is real. The
condition (f,(' =

( g,'(' then implies either that
Im(f, +f,) =0, (but then T, T, is an identity trans-
formation) or that

and

a, b =af,f„c=—(f, +f,) (36)
6 Ima

1 2 2 (44)

Substituting (44) into expression (37) for g, and
requiring ( go (' = 1 we obtain

g, = 1+—[1-f,f, + i(f, +f,)], (37)
(a('=a'Ima, with z= 3 (45a)

(45b)

=1+—[1 —f,f, —2i (f, +f,)] .

Let us consider the transformations (18), (19),
and combinations of these.

(1) ST, T, . We have

%'e now have

3 ia a
&, =I+ia 1 ——,&,=I+———(f, +f,),

sa a=1+—+ —(f, +f,) .
K

(46)

a--a* f -f* f -f*
and hence

(38)

(39)

Requiring that (g+(' =
( f (' = 1 and putting

Q = arg(f, +f,) we obtain

g=0. (40)

Thus we obtain a special case of the "global am-
biguity" (8), treated above.

(2) S. We have

The new phase factor s p,' are obtained from f; by
performing the substitution (38) in (37). It is then
easy to see that the conditions ( t (

=
( K; (

= 1 imply
that

Im(f, +f,)
Re(f, +f,)

glal»f2
lal 2

We thus obtain a sign ambiguity Q
——P in the

phase factors and amplitudes, which have the form

3
g =1+iaa--a*, f, -f„ f, -f, . (41)

The original and transformed phase factors can
be written as"

(48)

g,. = 1+iaC, , g,
' = 1 —ia*C, (42) =1+—(1 —i &2e'~)

K

The equations (Q, (' = (Q,'(' = 1 imply that

i(a + a*) (C, —C,*) = 0 .

and

a 1+(1—6/z) t' 3a~2 e'~
2k 1+$2 '

2&K ] +)2 '

If a = —a* then S is an identity transformation (of
no interest), if C, = Cf then we see from (37) that
f,f, and i(f, +f,) are real. Transformation S,
in view of (36), then reduces to f- -f*, g-g*,
i.e., we again obtain the global ambiguity (8).

(3) T, T,. We have
8K2

fal' (50)

(49)

The values of the parameter a are constrained by
the condition (45a) or (45b) and from (47) also by
the condition

a-a, f, -f,*, f,-f*, . (43) The experimental quantities in this case are
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IP=I'P'=—

}a}'3v2 t 6
IDmr =

2I, 2~ (I+ f2)2 I+

The transformation T, T, can thus be seen to be

f-f, z-ze "

}a}'3v 2 t 61+ 1- — t' cosP,

lal' & 6 9, 6 ',
ID»=I'Drt =

4k' (I+I')' 1+2 I ————t'+ 1 - — t4
(51)

(52)

leaving I, P, and D» invariant, but changing the sign of D,. The two sets of amplitudes become com-
pletely indistinguishable if D, =0. The eases (a('=0 and sing =0 are of no interest, since in the first
case there is no scattering, and in the second there is no ambiguity. However, we can have D, =0 for
special values of t:

(53)

the cases t=0 or f'=I (/&=3, 8, =0, or m/2) are not very interesting; the case t'=5 (~=5) represents a
genuine ambiguity for that particular scattering angle, when no "complete experiment"" exists to deter-
mine f and @uniquely.

The transformations T, (or analogously T,) and ST, are more complicated to deal with. Using formulas
(25) and (36) we write general expressions for the experimental quantities (3):

~a)'I=, I » [1+((f,('+ (f, ('+4Ref, Ref, ) t'+ jf, ('ff, j'f'],

IP=-. .. [Ref, +Ref, +((f, ('Ref, + (f, ('Ref, ) t'],I a I' t

(54)

ID ~= 2&2 I &» [Imf, +Imf, —((f, ('Imf, +(f, j'Imf, ) t'] .

%e shall now consider the transformations Ty and
ST, and show how the requirement of unitarity for
the original and transformed amplitudes imposes
severe restrictions on the quantities a, f„and f,
and hence on the forms of the experimental quan-
tities.

(4) T,. Requiring that (g, j'= (f,'(' and jg, ('
= (&,'(' we obtain two constraints, namely

Rea Ref, —Ima Imf, = ——,
' (a ('Imf, , (55)

Rea Ref, + Ima(l- lmf. ) = —,
' la ('(1+(f2('- 2Imf~)

Ref, =0 . (57)

(56)

(these also assure that (r ('= (g' ( ). We can solve
these for Rea and Ima, unless the corresponding
determinant, equal to Ref„ is zero.

Let us first consider the case

Since Imf, &0 (otherwise T, would be equivalent
to T, T,) we ean solve (55) and (56) for a and f,
and obtain

a =i+e', 0 + a&2m (58)

f, =it&, x=1 or x=-2 . (59)

Ref, &0, Imf, &0 .

From (55) and (56) we obtain

(60)

Taking le =1 we obtain from (37) that $,=1; re-
quiring that j r (' = (K, j' =1 we find that f, = &' ~

and that n = + g/2 or P = + m/2. Both of these can
be seen to correspond to special cases of the
Minami ambiguities (29) or (30). Taking a = —2
we find that the conditions (g j'= (&, j'=1 cannot
be satisfied.

The second case is more interesting.
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ia )'
If, I'+Imf, —2

Rea = z Imf2, Beg,

I a I'
I a I'

Ima = z Ref, + (61)

6i
3+zf,

Using (61) and the three conditions I g; I' = 1 we ob-
tain three equations, linear in Ref, and If, I'.

Re@,(lf, I

' ~ r~f, —&) —I&', I *(!&&~i,)

2 If, I'- rmf, -1=0.
From (70) we find that f, can be expressed in
terms of one real parameter p as

(70)

with a and p related to g by {66)and (67) and q in
the region (68). The ambiguity T, corresponds to

From (54) we see that I=I', P =P' but
both D» and D

&
will distinguish between the two

solutions. The only exceptions are for t = 0 (then
Dr&=Dr» Dm&=Dm&=0) or for 1 —If2I t =0 (then

but Dii ~D»)
(b) Consider the case

(62b)

,' (-.' —Imf, —If. I'), (62a)
2

2Ref, (If, I'+2Imf, )+ If, I'Ref, =Ref»

f, =~ (i+Se'~),

jr
0 «p&2m, pl(2n+I) —, (n=integer) . (71)

2Ref, (- If21'+Imf, ) —If, I'Ref,
2 If, )' —10Imf, —1

If, i'+4Imf, +4

In equations (62b) and (62c) we have divided both
sides by certain expressions that are nonzero for
Ref, 40. Equations (62b) and (62c) can be solved
for Ref, and If, I' (the determinant is zero only
if Imf~ =0 or Ref, =0 which is excluded). Sub-
stituting the obtained expressions into the first of
equations (62) we obtain a constraint on f, that can
be factorized into the form

(If, I'+2Imf, ) (2 If, I' —Imf, —1) (If, I' —2Imf, +1)

=0. (63)

Three cases must thus be considered.
(a) First consider

From (61) we find that a is given as

a =16icosp[cosp(5+3sinp)
—i (1+3sinp) (1 —sinp)] (72)

and using (62) we express f, as f, = If, I
e' ~ with

33sin'p+30sinp+1
2(1+3sinp) (5+Ssinp) '

Scosp(1 —sinp)
2(1+3sinp) (5+ Ssinp)

(73)

(74)

(the denominators never vanish for Imf, +0). In
addition to being a real angle, p must be such that
If, l'~0 and —1 «cosQ «1. This restricts sinp
to the following regions:

—0.8253 + sinp + —0.4520

2Imf, +
If, I

' = 0 .

We immediately find

f2
= —i + e' ", 0 ~« 'g & 2 s .

From (61) we have

(64)

(65)

or

—0.0029 &sinp &1 .

To display the ambiguity explicitly we return to
the amplitudes f and g:f=, [1+-,' If, I(i+se'~) e't2],

6i
2 +28

and from {62)

(66)

2i (I+i )
[If I +4(i+3 )] (76)

4 4sing- 5f, = e'~, cosQ =
4cosg

where the angle q is such that

5-v7 . 5+v7
8 8

&sing &

Finally we obtain the amplitudes

a 1+e'~(-i+e'") i'
2k' j.+t'

g= —— (e' ~+e "—i)a t;g ]q
2k I+t'

(67)

(68}

The amplitudes f, g and f ', g', obtained by re-
placing Q- —Q, give the same values of I and P.
It follows from (54) that D„and D,„will distin-
guish between the two sets.

(c) The case If, I' —21mf, +1 =0 is of no in-
terest, since it implies f, =i and leads only to
the Minami ambiguity.

l„et us mention that the case (b} coincides with
an ambiguity found in Ref. 17; ambiguity (a) is
new.

(5) ST,. We write g; in the form (37), obtain
by replacing a -—a*, f,-f,*, f,-f, and re-

quire I &, I

' =
I g,

'
I

' and I &+I' =
I K+I' (then I &- I

'



R. C. BRUNET, L. GAUTHIER, AND P. WINTERNITZ

=
~

g' ~' is redundant). We assume Imf, 40 (other-
wise ST, is equivalent to ST, T,) and obtain, after
simple operations

Substituting these expressions back into (80a), we
obtain a relation between x and y, i.e., a con-
straint on f,:

jal'
Rea Ref, —Ima Imf, = — Imf, , (77a) 5xy +22x y —6xy —8y +8y+8x~ —22x —5x —2 =0 .

(86)

ReaRef, = Imf, (- jf, ~' —Imf, +2) . (77b)
[a/'

Two cases must be considered.
(a) Assume Ref, = 0. Equation (77b) implies

1f, =in,

6i If, I'+Imf, —2a= 8
3 —fz ' Ref, (79)

Imposing unitarity
~ g; ~

' = 1 itself, we find again
three equations, linear in Ref, and

~ f, ~':

Ref, (2 —x —y) +
~f, ~

' Ref, (2 —x- —,
'

y)

,'Ref, , (8—0a)

2Ref, (2x- y —xy) —
~ f, ('Ref, (2x+1)

= (y —4x) Ref, , (80b)

2Ref, (2 —x —5y+4x') +
~f, ~'Ref, (2x+y —6)

= (2y —5) Ref, , (80c)

where we have put

Using (77a) and imposing ~g;~'=1, we find that
z = 1 leads to the Minami ambiguity and that ~ = —2

is incompatible with unitarity.
(b) Assume Ref, 40.
We solve (77) for Re~ and Ima and find

Contrary to equation (63) in the case T„(86)does
not factorize. Since it is only quadratic in y we
can solve it, obtaining two solutions

—22x'+6x —8 + vD —B+ vD

2(5x —8) 2A

D=108x(3x'+4x' —2x —2) .
(87)

Thus, all relevant quantities, i.e. , a, f„and f,
(and thus the amplitudes f and g) are functions of
x=Imf, alone. For each value of x in the allowed
regions discussed below [see (88) and (89)] there
exist four sets of values of (Ref„Ref„ima; Imf,
=x) for which the transformation ST, leads to an
ambiguity. The ambiguity in f and g corresponds
to the two possible signs of Imf, =+[~f, ~'
—Ref,)'] ' ', leading also to the two values a or
—a* [see (79)]. Notice that (54) implies that D»
and D

&
will resolve the ambiguity.

Constraints on the possible values of x are ob-
tained by requiring D - 0 in (87) (i.e. , ~ f, ~

' real),
further that y —x' ) 0 [i.e. , (Ref,)' ) 0], and fin-
ally that (Imf, )' = (f, ~' —(Ref,)' = 0. These con-
ditions have been investigated numerically and
we find that the allowed values of x lie in the re-
gions

—0.6022 (x (—0.0486

x=lmf„y= If, l'. (81) or

We wish to solve (80b) and (8Qc) for Ref, and

(f, ~'. Consider first the case when the corre-
sponding determinant is equal to zero, i.e. ,

(2x —y —1) (4x'+xy+5x+y —2) = 0 . (82)

The first case is 2x-y —1=0; this implies f, =i
and we obtain the Minami ambiguity. The second
case implies

—4x2 —5x+2
x+ 1

for

and

or

0.7483 + x (1.0110

—8 —vD
2A

—0.6022 (x (—0.0243

0.7483 (x ~1.000

(89)

4x+y —5Re, =-Re,' 2(4x' + xy + 5x+ y —2) '

8x'+2xy+2x —3yI, I'= 4„.,„y,5„,y

(84)

(85)

[x= —1 is not compatible with (82)]. Putting (83)
into (80b) and (80c) we find y =

jf, ~

' = (1 + &3)j
(1 + & 3) (0, which is impossible.

We can thus assume that the determinant is not
zero and obtain

for

The results of this section agree with those of
Ref. 1'7, but our method, making use of the linear-
ity of (80) in Ref, and (f, (', has allowed us to ex-
press f„ f„and a explicitly in terms of x.

To summarize this section we can state the fol-
lowing. In addition to the "global" ambiguities,
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discussed in Sec. II, further ambiguities may
exist if only I and P are measured and if I has one
of several specific forms. These are the T, T,
ambiguity for I given in (51) and the T, or ST,
ambiguities for I given in (54), with the constraints
on f„ f„and a given in (65) to (68), (71) to (75),
or (79) to (89).

a, h =ah, h„c= —(h, +h, )
a

(90)

so that

IV. TRANSFORMATIONS OF AMPLITUDES LEAVING I
AND Dm ( INVARIANT

We write H(t) in the form (21) with l. = 1 and
use the parameters a, h„and h, . Three relevant
quantities are

i(a+a+) (C, —C~+) = 0 . (92)

Since a &- a* (otherwise S is the identity trans-
formation) we find C, = C,*. Requiring that

~ p& ~

' = 1
we find that h, h, and h, +h, are real. It follows
that transformation S is equivalent to ST, T, and
only provides the global ambiguity.

(3) T,'T,'. We again put g&=1+iaC& and have
f&=1+iaCP. The requirement ~P„~'= IP', ~' again
implies equation (92). If a = —a* then T,' T,' is
equivalent to ST,'T",. If C;=C& we find that h]Ap

and h, +h, are real and hence T] T2 ls the identity
transformation.

(4) T,'. We use the general expressions

(1) ST,'T,'. This transformation directly givesf-- f*, g-g*, which is the "global ambiguity"
of Sec. II.

(2) S. We put g;= I+iaC, and have g&=1 —ia*C,
The conditions ( P, (' =

( f,' (
' imply

$, =1+—(1+h,h, ), /+=I+ —(1 —h, h, +h, +h,),2

(91)ia= 1+ —(1 —h,h, —2h, —2h, ) .

a ZQ t
2h(I +t2) ( 1 2 )I g 2h ( 1 2)

(93)

Let us now consider the transformation S of
(18), T,', T,' of (22), and combinations of these.

for the amplitudes and express the experimental
quantities as

lal
f, , [I+(/h, I'+ fh, f'+4Reh, Reh, ) t'+ fh, /' fh, f'&'],

(a~'IP=
h I [-Imh, —Imh +(Ih, l'Imh. +

I h, I'imhi) t'],
lalID, =—, »[Reh, +Reh, +((h, ~'Reh, + (h, ('Reh, ) I'],

(94)

~al'
ID, g

—— h, , [1+(- /h, f' —
/ h, /' —4Imh, imh, ) t'+ Ih, /' /h, I' &']

Unitarity for the original and transformed am-
plitudes will be used to obtain relations between
the parameters &, h„and h, in (93) and (94). In-
deed, the conditions ( f; ~

' =
( f )' [where g; are

given in (91) and g are obtained by the transfor-
mation a-a, h, -h,*, h, =h, ] imply

The phase factors &~ can now be written as

g, =—(a —2i) (1+3h,),

Iaj'
Rea Reh, —Ima Imh, = — Imh, ,

JaJ'
Re&(1 —Reh, ) + Ima Imh, = Imh,

(95)

g+=- (a —3i) (2 —h,),

=-—(5a —6i)(1+h,) .
6

(97)

(we assume h, &h,*—otherwise T,' is an identical
transformation; and h, &k,*—otherwise T', is
equivalent to T', T,'). We can solve (95) for Rea
and Ima and obtain

We introduce a new variable

p =a —2$ (98)

and require that
~ P; ~

' = 1. We obtain three equa-
tions
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I +9jh, j'+6Reh, =
IpI' '

4+ jh, j' —4Reh, =

(99a)

(99b)

(a} D ~ 0 so that y =imp is real;

(b) Re'p =
j p j

' —(Imp)' - 0, i.e. , x —y
' o- 0;

(c) (Imh, )'= jh, j'-(Re@,)'& 0.

1+ j&, j'+2Ret, = 36
( 5p+4i )2 (99c)

where

2 1 27
3 3x 25x +40y+16 '

(100)

x= jpj', y=lmp. (101)

The condition that the three Eqs. (99) should be
compatible provides a relation between y and x,
namely

Ay'+By+ C = 0,
A = —80(7x+2)

B= —2(35x'+36x- 8),
C = 175x' —14x' —76x+ 32 .

(102)

Since (102} is quadratic in y it can be solved and
we find

Since the left-hand sides are again linear in Reh,
and jh, j', we can easily solve two of these equa-
tions, say (99a} and (99c) (note that p=0, p=i,
and p = —4i/5 are incompatible with unitarity). We
obtain

1 2 18
3 3x 25x'+40y+16 '

A detailed numerical analysis of all these con-
ditions yields the following result. The ampli-
tudes ff, g) and ff ', g') will satisfy all unitarity
conditions, if we take either

—B —WD
(i) y = for 0.1483 &x&4.6051 (104)

or

(ii) y, = for 0.1008 ~x ~ 1.0683 .
—B+vD

(105)

(5) ST,'. We use expressions (93) and (94) for
the amplitudes and experimental quantities. Writ-
ing f; in the form (91) and performing the trans-
formation a- -a*, h, -h,*, h, -h„we see that the
(g;)zr obtained from r~ by the transformation
ST,' obey (g,.) zr, = (p;)p„where (p;)r~ are the phase
factors obtained by performing transformation
T,'. Thus we see that the amplitudes f and g (or
fa, h„h,]) must obey the same constraints as for
the case T,', i.e. , the same as for T,', with h, and

h, interchanged. Since the conditions on a, i.e.,
on p, are unchanged, the allowed regions are the
same as in (104) and (105). The effect of the
transformation ST,' is

D =B2 —4AC (103)

= 324(1225x'+ 280x' —544x'+64x+64).

Finally, we see that using (103) we obtain h, [Eq.
(96)], h, [Eq. (100)], and n [Eq. (101) gives
ja j' =x+4y+4, Ima =y+2] as functions of a single
parameter x. For a chosen value of x in the al-
lowed regions discussed below [see (104) and

(105)] there exist four sets of values of
JRea, Imn, Reh„j h, j

', Reh„ lmh, ] for which the
transformation T,' leads to an ambiguity. The am-
biguity T,' then corresponds to the sign ambiguity
in Imh, for each given set. Obviously T,' leaves
I and D, invariant. It follows from equations (94)
that a measurement of I' will distinguish between
+Imh„unless t=0 or jh, j't'=1. A measurement
of D&& will always distinguish between the two sets
of amplitudes, except for the trivial case Imh, =0.

It remains to determine the region of variation
of x for each solution y in (103). The conditions
to impose are clearly the following:

i.e., ST,' boils down to T,' supplemented by the
"global" transformation.

To summarize, the only nontrivial ambiguity
that occurs when I and D

&
are measured is due

to the transformation T,' (or T,') and is analyzed
in formulas (93) to (105). It can always be re-
solved by a measurement of either I' or D«.

V. TRANSFORMATIONS OF AMPLITUDES LEAVING I
AND Dg INVARIANT

The case when I and D» are known is somewhat
simpler to analyze than the previous cases, since
now two moduli are known. We write the ampli-
tudes as

a (t- F)(t+F) ic t
2k(1+ t') —E' ' k 1+ t' '

(106)

Transformations conserving jf j', jgj', and

Imf(0) are listed in (24). In our case they reduce
to
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S: a- —a*, &-+, c- c;

T: a-a, E E*, c-c;
S~: a- a, J"-F, c ce'~,

(107)

and the results are obtained from (110) and (111}
by putting a=0 (since g= —2a).

(3) S. The condition ) g, )' =
( f,' (' with g, = 1

+ (ia/2)(1 —1/E'} implies

and all conbinations of these.
In this case we found a different parametrization

to be more useful. It gives an explicit solution
of the unitarity equations in terms of three real
angles, namely

(~+ z*)(E*2 E~)- 0 (112)

If a= —a~ then S is the identity transformation;
if J"'=&~', then E is either real or pure imaginary
and S is equivalent to ST.

(4} S~. The transformation is

f -f, g ge-", (113)

1

[1+8 sin'(a —p)] "'
2 sin(a —p)

[1+ 8 sin'(a —p)j ' ' '

0 ~& Q & p, 0 ~& a —p& v,
—w&a &n, —w& p&v,

(108)

f f g gest(n- 8) (114)

This ambiguity exists for all values of a, P, and

Q in (108) and we have

i.e., a'=a, b'=5, c'=ce'~. The condition that the
transformed quantities can be written in the form
(109) implies sin(a —P- P) =sin(a —P). The case
P= 0 corresponds to the identity transformation,
hence we only consider P= —m+2(a —P). The
transformation S~ then is

so that

a= 2 sing e'~- 3i(l& I

e'" —1),
5 = 2 sing e'~+ 3i( ~A ~

e'" —1),
c =31&

I
e* '

(109)

f g g gge2i(B a)- (110)

This ambiguity exists for all values of a, P, and

P in (108). The experimental quantities transform
as follows:

I~=I
~ Dt~r = D

P'= P cos2(a —P)+ D„, sin2(a —P),

D„', =Psin2(a —P) —D„,cos2(a —P).

We see that if we require in addition that P'= P
we find that a —P=O, i.e. , g=0 and hence P'=P
=0 (and also D', = —D„,= 0). Similarly, if we re-
quire instead that D„', = D„, we find a —P=v/2,
i.e., the global ambiguity f- f*, g- g*. —

(2) ST. This is a special case of STS~ with )=0

Consider individual transf ormations.
(1) STS~. The effect of this transformation is

fg g gael(28+0)

We must now rewrite the transformed quantities
a', b', and c' in the form (109), using new param-
eters a', P', and Q'. We obtain P'=m- P, a'= —a,
P'= P+ g, and the constraint sin(a ' —P') = sin(a —P).
This has two solutions:

(a) g= —v - 2P. Then f--f*, g- g*, which is
the global ambiguity.

(b) P= —2a. We have

I'=I, D,') = D)),

P'= —P cos2(a —P) —D„, sin2(a —P),

D„', = P sin2(a —P) —D„, cos2(a —P}.

(116)

Clearly, if we ask in addition that P'= P and/or
D„', =D„, we find 2(a —p) =m. However, in this case
S~ is the identity transformation. In other words,
a measurement of P or D, will always resolve
the ambiguity (114).

(5) T Wewrite. f,as/, =l+ia/2 —ia/2E'andre-
quire (f, ('= )fo ('. This implies equation (112). If E'
is real, then T is an identity transformation; if
a= —a*, then T is equivalent to ST.

(6) $$~. The condition [g, ~'= [f,' [' again implies
equation (112). If a= —a* then $$~ is equivalent
to S~, if &'=&~', then SS~ is equivalent to STS~.

(7) TS~. As above, (f, ('= (&0 (' implies equation
(112). If a=-a*, then TS~ is equivalent to STS&.
If +'= &*', then TS~ is equivalent to S~.

To summarize this section we note that non-
trivial ambiguities occur for the STS~ and the S~

transformations which can be viewed as the two
basic transformations. Both rotate the quantities
P and D, among each other and hence a measure-
ment of either of these quantities will resolve the
ambiguity.

VI. CONCLUSIONS

The results of this investigation are summarized
in Tables I-IV. Table I lists all cases when the
polarization is P= 0. We have seen in Sec. II that
in this case we have a "global" ambiguity, inde-
pendent of any partial-wave expansion, namely
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TABLE III. Amplitude ambiguities for I and Dm& measured rsee Eq. (94)].

Type Ambiguity a(1+hih, t ) ia(h, +h, )tParameter constraints for f = ' ', g=
2k(]. +t )

' 2k(1+t )

Possible resolution of
ambiguity through a measurement
of P and/or Dq~

h, -hi~ Ima=y+2, ~a~~=x+4y+4, h2 ——3(1—2i/a),

h( 2 ——-+——1 2 13
3 3x 26xt+ 40&+ 16'

Rehq = ————+
2 1 27
3 Bx 25x~+40y + 16 '

P: yes, unless t =0 or
t'fh, ['=1

D~~.. yes, unless
Imh2=0(case T&T2, i.e. ,
global ambiguity)

3& +36K —8+9t.1225' +280K —5446 + 64x+64]vrhere y~ =
-80(vx+ 2)

and for y+. 0.1008 —x —1.0683,

for y: 0.1483 —& -4.6051.

$T&' h& h&*, a —a* Equivalent to T2' and the global ambiguity.

(f, g} and '1f'= f*,g'=-a*}

are indistinguishable (this corresponds to the
ambiguity 5, - —5, for the phase shifts). In Tables
II III, and IV we summarize all ambiguities in
the amplitudes f and g, occurring when two ex-
perimental quantities (I, P), (E, D„,), or (I, D„)
are measured. The global ambiguity and the
Minami ones have been excluded. We also show
how the ambiguity can be resolved by the measure-
ment of a suitably chosen third quantity. We see
that "unremovable" ambiguities only occur for

very specific values of t (i.e. , of the scattering
angle). This points to the relevance of studies
of the type performed in this paper to the planning
of experiments. When performing an experiment
to distinguish between two sets of amplitudes it
is obviously necessary to avoid values of t close
to the ones where nonremovable ambiguities
occur.

The over-all situation for mN scattering thus
seems to be better than for spinless scattering,
in that Crichton-like ambiguities" can be resolved
by further experiments. Generally speaking, the

ie t
g(t) =-

k 1+t2

TABLE IV. Amplitude ambiguities for I and D&~ measured.

a 2 singes @ 3i(eia g + 8 sin2(~ p)]- 1/2 1)

0 =2 singe~&+ 3i (e'~b+ 8 sin (n- p)] —1)

c= 6 sin(ot —p)e ~b+8 sjn2(& p)]-i/2

-X&0.~ X

-x&P ~ x
0~ Q &7r

0 ~ n-P &7t

Quantity
rans formation $Tg

g =-2a
$T

($ = -2 G. =—0) g = —x+ 2(G. —P)

e2i(n» g)

D Dss Dsr

Dm)

Pcos2(e- p)+Dm& sin2(u- p) Pcos2p —D~sin2p -P cos2(n- p) -Dmssin2(& —p)

psin2(- p) -Dm~ cos2(G'- p) -P sin2p -Dm~ cos2$ P sin2(G,'- p) —Dm~ cos2(n- p)

Resolution of
ambiguity PorD Por Dm, P or Dml
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higher the spins involved, the more overdeter-
mined the amplitudes will be. Thus for spinless
scattering we have one amplitude, i.e. , two real
functions to determine from one experimental
quantity (the cross-section) and from one unitarity
equation. In nN scattering we wish to determine
four real functions, in principle from the four
quantities I, P, D», and D„, [see, however, Eq.
(4)] and from two unitarity equations [coupling
f (k, 8) and g(k, 8) together]. The amplitudes are
thus overdetermined and it can be expected that
this overdetermination can be used to eliminate
ambiguities due to bifurcation points in the non-
linear unitarity equations. Clearly, in nucleon-
nucleon scattering or in any scattering involving
higher spins the amplitudes should be even more
over determined.

In the near future we plan to return to the prob-
lem of amplitude analysis from several points of
view. The obvious ones are to look at mN scatter-
ing using a larger number of partial waves (in
particular l=0, 1, and 2) and to look at NN scat-
tering from the same point of view. An equally
important problem is that of ambiguities in other
parametrizations of amplitudes, like Regge-pole
fits, "eikonal representations, two variable ex-

pansions, "etc. A different problem presently
under consideration is the use of inelastic uni-
tarity, say above the first inelastic threshold but
below the second one, to reconstruct simultan-
eously the amplitudes of different processes, re-
lated by unitarity (e.g. , wN- wN and wN- wwN).

A related problem to be investigated is the use
of other general principles, in particular, ana-
lyticity, to remove continuous ambiguities in
phase shifts (due to the unknown over-all phase
of the total amplitudes above the region where
unitarity can be effectively used). For some rel-
evant results on the connection between the ana-
lyticity properties of phase shifts and time delay
in scattering we refer to the literature. "'"

All conclusions about the uniqueness of ampli-
tude reconstruction and phase- shift analysis in
particular are, of course, modified by the exis-
tence of experimental errors. The ambiguities in
the reconstruction of the parameters in amplitudes
from data and the question of the stability of re-
sults with respect to a variation of the data then
arises, in addition to the problem of the existence
and uniqueness of a solution. ""' We plan to re-
turn to some aspects of this problem in connection
with m'N and NN scattering.

*Work supported in part by the "Ministere de 1'Education
du Quebec" and by the National Research Council of
Canada.
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