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We investigate the space-time evolution of a local excitation in hadronic matter (h.m.) in
connection with the establishment of local thermodynamical equilibrium as assumed in statis-
tical and hydrodynamical models. After a critical discussion of the concept of instantaneous
equilibrium, we point out that peripheral reactions are a particularly useful source of infor-
mation for the study of the fate of an excitation in h.m. We consider a local excitation (“hot
spot”) corresponding to a pre-equilibrium phase and which is created in peripheral inelastic
reactions with m < ¢<<p;, where p; is the incoming momentum of the projectile and ¢ the mo-
mentum transfer. By solving the diffusion equation we obtain the distribution of the tempera-
ture field in the excited target (projectile) and compute all the relevant physical quantities
such as average momenta of secondaries, multiplicities, and mass and energy distributions
in semi-inclusive peripheral reactions. It turns out that these quantities have a pronounced
angular dependence leading to an asymmetry in these observables. The measurement of this
asymmetry can provide information on the constants of h.m. We also discuss how large-p
events observed in the CERN ISR energy range might be due to pre-equilibrium emission in

close analogy to pre-equilibrium nuclear decay.

I. INTRODUCTION

The most characteristic phenomenological fea-
ture of strong interactions is probably the fact that
provided the center-of-mass energy of a reaction
is sufficiently high, it is at least as easy to pro-
duce many hadrons as few hadrons. This high-
multiplicity effect which is not seen in reactions
which are governed by electromagnetic or weak
interactions has suggested to some physicists the
fruitful idea that high-energy strong interactions
are describable by statistical methods.'~* One bo-
nus of such an approach is the possibility of ex-
plaining the cutoff in the transverse-momentum
(p ) distribution of secondaries produced in strong
reactions, a phenomenon which is intimately re-
lated to the high-multiplicity effect and probably as
characteristic of strong interactions as the first
effect. (It is probably fair to say that statistical
models are at present the only models which
can explain in a natural way the cutoff at small
p..) In connection with these theoretical develop-
ments the new concept of hadronic matter (h.m.)
was introduced by Hagedorn, and it is the deter-
mination of the equation of state of h.m, which
some physicists believe is the main task of strong-
interaction physics.®

As a matter of fact the statistical bootstrap mod-
el, e.g.,”3 provides such an equation of state, at
least in the asymptotic limit E -, On the other
hand, the hydrodynamical model in its initial ver-
sion* starts from a blackbody-type equation of state
and in later developments a somewhat more general
equation is assumed [p =c,%, where p is the pres-
sure, c, the speed of sound assumed to be a free
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(but constant) parameter, and € the energy density].

Statistical methods in general and an equation of
state in particular assume the existence, at least
at a certain stage, of thermodynamical equilibrium,
and it is this so far unprovable assumption which
makes it difficult for many physicists to accept the
statistical approach to strong interactions. We will
explore how essential, indeed, is this assumption
in the development of statistical methods in the
theory of strong interactions.

II. THERMODYNAMICAL EQUILIBRIUM IN STATISTICAL
(AND HYDRODYNAMICAL) MODELS AND THE PRESENT
APPROACH

A. Role of equilibrium in statistical models

The first application of statistical methods to a
strongly interacting system was done in nuclear
physics a long time ago® and the extensions of these
methods to h.m. are in some sense influenced by
this early development. The applicability of statis-
tical methods to nuclear systems has been justified
by the high density of nuclear states. It is as-
sumed that a nuclear target bombarded by an en-
ergetic projectile is excited to a compound state
which corresponds to thermodynamical equilibri-
um; this compound nucleus then decays with an
isotropic angular distribution of “evaporation” nu-
cleons and with an energy distribution character-
ized by a Boltzmann distribution and a temperature
T related to the excitation energy FE by the equation
of state of nuclear matter

E=E(T). (2.1)

A characteristic element in such a statistical mod-
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el is the assumption that the formation of the com-
pound system and its decay are separated process-
es so that the equilibrium state does not “remem-
ber” how it was formed. This point of view re-
mained unchallenged for almost 30 years until
more recently deviations from equilibrium behav-
ior have been observed ( pre-equilibrium decay),
which will be discussed later on.

A rather straightforward, but bold extension of
these ideas to particle physics is due to Fermi”
who considered central collisions of two hadrons
and postulated that the kinetic energy available in
the small Lorentz-contracted volume of the two
colliding particles as seen in the center-of-mass
system is instantaneously transformed into inter-
nal energy of a system in thermodynamical equi-
librium, This system then decays according to the
laws of its equilibrium state.

Fermi does not try to explain how this “instan-
taneous” equilibrium state is reached, and as we
shall see, all the other more sophisticated and
more successful statistical models are deficient in
this respect. Moreover, Fermi’s simple model
could not explain the cutoff of p , and the mass dis-
tribution of secondaries (dominance of pions), un-
less the argument was invoked that Fermi’s model
does not apply to the energy regime where observa-
tional data exist, but to much higher energies. On
the other hand, physicists were interested in a
model which could explain available data. That is
why Pomeranchuk® put forward the idea that the
equilibrium state is not formed instantaneously in
the Lorentz-contracted volume but after a certain
time has elapsed, during which the system has ex-
panded into a volume the radius of which exceeds
the range of strong-interaction forces. During this
time the system has cooled down to a temperature
T,~m 5, and the decay from this equilibrium state
explains the cutoff of p , and the dominance of light
secondaries.

Pomeranchuk did not elaborate on the expansion
phase of the initial fireball. This was done by
Landau® who treated the expanding system of h.m.
as an ideal fluid with an equation of state

p=€/3, (2.2)
according to the laws of relativistic hydrodynamics
8T,/ 0%, =0, (2.3)

where T, is the energy-momentum tensor of the
(ideal) system and x, the space-time coordinates;

T;p=(€ +p)uju, +p6;,, (2.4)

where u; is the four-velocity of the fluid.

Although Landau’s theory represents a huge step
forward in comparison with Fermi’s model, it is
still unsatisfactory for many reasons, some of
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which are discussed below:

(1) It applies only to central collisions.

(2) It assumes that h,m. is an ideal fluid with
viscosity v and heat conductivity k=v =0,

(3) It neglects particle emission during the ex-
pansion phase when the energy density is still very
high. Large-p , events are thus essentially ig-
nored.

(4) It does not elaborate on the first stage of the
collision when the kinetic energy is transformed
into internal energy within the Lorentz-contracted
volume,

Deficiency (1) is eliminated in some sense in the
statistical bootstrap model® by the introduction of
an empirical velocity weight function

F\,yo) = J Bxdt2nbdbul(n, X, t,b,v,), (2.5)
where
A= sign(v)yy : i ,
° (2.8)

Y= (1 - 212)—1/2, Yo= (1 - Z702)-1/2,

b is the impact parameter, v the local collective
velocity at space-time point X, ¢, v, the c.m. system
velocity of incoming particles and u(\, X, £,5,y,)
the probability density of finding the collective ve-
locity A at the place x at time £ in a collision with
impact parameter 5. With the help of F(x,y,) the
momentum spectrum of particles of mass m takes
the form

WR(p)dp = j FO)LROy )F (b, €)d dx,
-1
2.7)

where f,(p’,€) is the isotropic momentum distribu-
tion of particles m produced in a local A frame at
local energy density ¢, and L¥(x,v,) the Lorentz
boost which transforms the spectrum from the A
frame to the arbitrary frame R.

In this approach, too, the assumption is made
that there is instantaneous local thermodynamic
equilibrium, leading to f,,(p’,€) at a temperature
T. The new element of this theory is the bootstrap
equation for the mass distribution of hadrons which
limits the temperature to values 7'< T,, where T,
is a universal maximum temperature T ~my. It
is clear that in this way the cutoff in p , is obtained.
On the other hand, the statement 7'< T, is a very
strong one with far-reaching implications in ther-
modynamics, astrophysics, and, of course, el-
ementary-particle physics. Taken at face value,
this prediction would imply that the p , cutoff would
be a permanent characteristic of strong interac-
tions at any value of center-of-mass energy. How-
ever, it is known® that for laboratory momenta
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p™ =s/2my> 100 GeV/c, where m is the nucleon
mass, deviations from this cutoff are observed
which become very striking with the increase of s
andp, (see Fig. I). They are very similar to those
observed in nuclear pre-equilibrium decay (cf. Fig.
2) and the natural question arises whether they are
not due to the same physical mechanism. This pos-
sibility is intimately linked with the problem of in-
stantaneous local equilibrium, as will be shown
below.

B. Problem of local instantaneous equilibrium;
pre-equilibrium in h.m.

Local instantaneous equilibrium is a macroscopic

concept, but in some sense it does contradict our
macroscopic experience. In order to have local
equilibrium it is necessary to assume that no heat
(energy) is transferred from the local volume to
the rest of the system. This means that the heat
conductivity of the system x=0. On the other hand,
to have instantaneous equilibrium it is necessary
that the relaxation time

To~ 1%/ (2.8)
be zero, where
K
X= (2.9)
pC,
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FIG. 1. A typical transverse momentum distribution
in particle physics. It is seen that at small p, the slope
corresponds to T ~m,, while at large p, the slope in-
creases, The reaction is p +p inclusive, p, is mea-
sured at 6,,=90°. [From S. D. Ellis and R. Thun, in
Proceedings of the IX Rencontre de Movriond, edited by
J. Tran Thanh Van (Université de Paris-Sud, Orsay,
1974), Vol. I, p. 37.]
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[C, is the specific heat (at fixed pressure), p the
density, and / the dimension of the system]. This
condition can thus be fulfilled only if either [=~0,
which is in contradiction with the uncertainty prin-
ciple AlAg > 1, where g is the momentum (transfer)
involved or if y =, which is in contradiction with
the local equilibrium condition (k=0). In some
sense one would have to assume that at first to
have an instantaneous equilibrium one must have

k =, and then to keep it localized x must drop to
0.

Such a change in k can occur only during a finite
time interval in which the system cannot be in
equilibrium, in contradiction with the starting as-
sumption. We must conclude, therefore, that be-
fore thermodynamic equilibrium is reached there
exists a stage of pre-equilibrium,

C. Purpose and content of this paper

In this paper we would like to suggest a way of
getting some direct information about the pre-equi-
librium phase in a “yes-no” experiment through
which effects of x could be detected.’® The essen-
tial idea of our approach is to consider a local ex_
citation in a target, induced by the transfer of mo-
mentum § and energy g, from a fast-moving pro-
jectile and to follow the “diffusion” of this excita-
tion through the target. We shall treat the problem
via the diffusion equation, which will be solved with
suitable initial and boundary conditions.

It is remarkable that this equation can be solved
in our case exactly. The diffusion process depends
on a diffusion constant, and this dependence is re-
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FIG. 2. A typical momentum distribution (excitation
function) in nuclear physics. Points represent experi-
mental yields. EQ and PE are the theoretical equilibrium

and pre-equilibrium contribution, respectively [from
M. Blann, Annu. Rev. Nucl. Sci. 25, 123 (1975)].
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flected in the solution of the corresponding equa-
tion. Under certain circumstances the local ex-
citation can be assimilated with a “hot” spot, and
then our problem is synonymous with the problem
of propagation of heat in hadronic matter, and the
diffusion constant corresponds to the heat conduc-
tivity of h.m. For reasons which will be clarified
below it is more convenient to consider peripheral
collisions.

The remainder of this paper will thus be organ-
ized as follows. In Sec. III we shall discuss the
problem of local excitation and of peripheral col-
lisions. In Sec. IV we shall solve the diffusion
equation. Section V is devoted to some numerical
applications and to a discussion of the physical im-
plications of our approach., It will become evident
that a new effect can be predicted which consists
in an asymmetry along the direction of g, of sec-
ondaries emitted in high-energy collisions. The
size of this effect is a well-defined function of «,
and, thus, by looking into this effect, direct infor-
mation about heat conductivity of h.m. can be ob-
tained. Furthermore, it is to be expected that
large-p , events originate through this “hot-spot”
mechanism, and the experimental investigation of
the asymmetry effect might lead to new insight into
this problem. The conclusions of the paper are
contained in Sec. VI. Appendix A contains mathe-
matical details concerning the solution of the dif-
fusion equation.

III. LOCAL EXCITATION AND PERIPHERAL COLLISIONS

By local excitation we understand the concentra-
tion of a certain energy g, and momentum q in a
certain volume in configuration space at a certain
time A¢f. Quantum mechanics imposes a necessary
condition on this localization through Heisenberg’s
uncertainty relations, Let Az be the uncertainty of
the linear coordinate z. Then the uncertainty Aq,
of ¢, must satisfy the inequality

Ag,Az =1, (3.1)

An analogous relation holds between energy and
time,

Ag,At=1. (3.2)
Obviously, we must have ¢ > Ag, q,> Ag,. Since the
radius of a hadron R~m ™', it follows that a local-
ization within the volume of this hadron is possible
if

g>>m,. (3.3)

For nuclei the corresponding condition is
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g>>m A", (3.4)

Conditions (3.3), (3.4) are independent of the na-
ture of the projectile which transfers the momen-
tum §. From this it follows that hadrons are, in
principle, as efficient in localizing excitations
as leptons. A difference between these two classes
of probes is yet expected because hadrons are
known to induce also peripheral reactions, while
leptons, for which the absorption within hadronic
matter is negligible, scatter in the whole volume
of the target. This is of importance for the effect
to be discussed in this paper since we would like
to consider excitations localized on the surface of
a hadron. We assume that this can be accomplished
in a peripheral collision, i.e., a collision with im-
pact parameter b ~R, when the momentum trans-
fer satisfies condition (3.3).

A necessary condition'! for peripheral reactions
is

pi >>g,

where p; is the incoming momentum. Combined
with (3.3) this yields as a necessary condition for
localization on the surface

pi>>q>>m.. (3.5)
Let us consider now a reaction
a+b-c+X

N

which is assumed to be peripheral. (If peripheral-
ism means indeed exchange of quantum num-

dre+---, (3.8)

bers,'!''? examples of reactions of this type could
be

p+p—-1+X,

p+p—-K+X,

p+p—-n+X, etc.) 3.7

Let § be the momentum transfer between « and c.
If condition (3.3) is fulfilled, a localization along
the § axis is possible. Since the reaction is as-
sumed to be peripheral, it is to be expected that
the excitation (g,,d) will be localized on one of the
poles of the sphere by which we represent our tar-
get (cf. Fig. 3).

As long as the direction of § is not measured,
there is apparently no way of distinguishing be-
tween the half-space above the tangent plane at N
in Fig. 3 and the half-space below. Once, however,
§ is measured, there exists a preferential direc-
tion which is taken as the z axis of our problem,
and one can talk about an up and a down. If (g,,q)
is now localized at the N pole, the following sit-
uation might occur: The energy will be concentra-
ted in a “hot” spot at N from which it will propa-
gate in the upper and lower half-spaces. Since in
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the upper half-space there is vacuum, while in the
lower one there is matter, the propagation will be
asymmetric with respect to the plane separating
the two spaces, and this asymmetry will manifest
itself in the emission products of the excited target.

It is to be expected that emission will not start
immediately from the hot spot, but after a certain
time delay 7. This can be seen either by applying
Pomeranchuk’s argument that the number of par-
ticles becomes defined only after the initial fire-
ball has expanded to a volume of the order of the
range of interaction forces R, or by applying the
uncertainty relation (3.2) which can be interpreted
in the sense that the energy g, cannot be measured
before a certain time 7~¢,”" has elapsed. Of
course, the exact value of 7 cannot be determined
by these qualitative arguments, and it will enter in
some way as a free parameter in the estimates to
be given below. It is convenient to express this
propagation of excitation in terms of propagation
of “heat,” and then in the initial moment the north
pole is hot, while in the rest of the target the tem-
perature T is zero as it is in vacuum. There is
hence an initial temperature gradient between N and
S. Depending on the constants of the problem a
situation might occur when emission starts before
this temperature gradient has vanished, i.e.,

T<Tp,

(3.8)

where 7, is the relaxation time after which the
temperature is essentially uniform in the whole
body of the excited target.'® In this case an asym-
metry effect in the emission spectrum is to be ex-
pected. A first quantitative estimate of this effect
will be given in the subsequent paragraphs.

IV. DIFFUSION EQUATION AND ITS SOLUTION

One of the main postulates of the hydrodynamical
model* %1% ig the fact that in a first approximation
the longitudinal motion is hydrodynamical while the
transverse motion is of thermal nature.

The direction in which diffusion takes place is
thus given by ¢, rather than by §. Independent

FIG. 3. Local excitation of a spherical target in a
peripheral collision.

IN HADRONIC MATTER 1367
evidence for a diffusion process in the transverse
direction comes from the multiperipheral parton
model, where it can be shown [see J. Kogut and

L. Susskind, Phys. Rep. C8, 75 (1975)] that in the
infinite-momentum frame partons walk randomly
in the transverse plane away from the excitation.
Accordingly we shall assume that once a hot spot
on the surface of the target is created the propaga-
tion of this excitation in the body of the target will
be controlled essentially by a thermal diffusion
process.’ If the velocity of the diffusion process
v is small in comparison with the velocity of light

c,

(4.1)

the problem can be treated by the nonrelativistic
diffusion equation

v<<e,

(4.2)

where 7 is the temperature density related to the
temperature T by T=fAV 7dV, where AV is the
volume in which 7 is measured, f the time vari-
able, and y the thermal conductivity defined in Eq.
(2.9). The velocity v is determined by y and the
characteristic length I:

v~ (x/DV2.

As stressed before, as long as we do not care
about the creation of the initial fireball, x is as-
sumed both in the hydrodynamical and statistical
models to be very small, so that condition (4.1) can
be considered as a not-too-bad first approximation.
An improvement of this treatment can be obtained
by taking into account explicitly in Eq. (4.2) the
finite velocity with which heat propagates. Usu-
ally'” this is done by adding a term (1/¢,%)(8°T/8%)
on the left-hand side of the equation (4.2)

1 8% _,87
e — -l = T
cZ ol X A

(4.3)

(4.4)

In order to solve Eq. (4.4) one needs a boundary
condition and two initial conditions. For Eq. (4.2)
one initial condition is sufficient. There are two
types of boundary conditions used in heat propaga-
tion problems depending on whether one considers
radiation or not. In the last case one specifies in
general the value of T on a certain surface, in the
first case the value of the gradient of 7.

In our problem the first case applies. Before
specifying the concrete form of boundary and in-
itial conditions we have to choose a reference sys-
tem. This is done in Fig. 4, where it is seen that
the positive direction of the z axis points towards
the hot spot N. Since the problem has ¢ symmetry
(cf. Fig. 3) only two space coordinates » and 6 are
needed.
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FIG. 4. Coordinate system for the problem of propaga-
tion of heat in a sphere.

Our boundary condition now reads

aT
8—7=A'(78—T") at ¥=R, (4.5)
where )’ is a so-called radiation constant, 7 the
temperature density outside the target (in our case
7,=0), 7 the temperature density in the sphere
and n a constant which enters the equation of state:

exT", (4.6)

Fermi and Landau used a blackbody-type equation
of state (z=4), and this choice is still very fash-
ionable. In the statistical bootstrap model on the
other hand n=0 (for 7= T,,,). Essentially the
equation of state of hadronic matter, i.e., # is not
known at present. Furthermore, if one would con-
sider the case n>1, our problem would become
nonlinear, and no exact analytic solution could be
found., This difficulty is known in heat-propagation
problems’® and is handled in general by linearizing
Eq. (4.5), i.e., by defining a new effective radia-
tion constant A so that Eq. (4.5) reads for 7,=0

2o _\T, »=R. (4.7)

A similar difficulty arises because of the 7T de-
pendence of the thermal-conductivity coefficient
Xx=k/C,. Inthe limit

T>>m, (4.8)

where m is the highest mass appearing in the prob-
lem, dimensional arguments as well as a scalar
field theory"® in which many-particle interactions
are replaced by random external forces suggest that

Koo TS, (4.9)

With the energies available so far and which we are
interested in, condition (4.8) cannot yet be
achieved. For T <m nothing about «(7) in h.m. is
known, and, therefore, we shall assume

- 2
T 0lnze X on tJn*' 1/2(‘11&’)
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X =k/C,=constant. This introduces an important
mathematical simplification into our problem since
in this case Eqs; (4.2), (4.4) are linear and can be
solved exactly.

The initial condition for Eq. (4.2) is connected
with the localization of the hot spot at the initial
moment ¢{=0. It is convenient to write it in the
form?*

T=T,6(F -3), t=0 (4.10)

where T; is the initial temperature and g the co-
ordinate of the hot spot. The 6-function-like lo-
calization is obviously an idealization, but as long
as g >>m, this approximation is justified. For Eq.
(4.4) the supplementary initial condition might
specify, e.g., 87/0¢ at £=0.

Mathematical solution of Eqs. (4.2), (4.4)

We look for a solution of Egs. (4.2), (4.4) of the
form

T:e"“f(r, ), (4.11)

where A is a constant, With this ansatz Eq. (4.4)
can be separated leading to

A%/cf-A/x=Af/f=—-a,®=const,

where the constant «, will be determined below
from the boundary condition. From (4.12) we get
two equations:

A= %[Coz/xi (004/)(2 - 401,,2(}02)1/2]

(4.12)

(4.13)
and

Af+a,f=0, (4.14)

Equation (4.13) has two solutions A,, so that even-
tually (4.11) becomes

T=(Cre~ 4+t + C_e™4-)f, (4.15)

where C, have to be determined from the two in-
itial conditions. We are interested in the physical
case ¢?7,/x>>1 (x small), and then from (4.13)
follows

Ac~c/x, A_=a,x. (4.16)

This shows that the + solution in (4.15) vanishes
rapidly in time and only the — solution survives.
Since the very small £ range is anyway not expec-
ted to be described correctly by our approach, we
shall neglect the + solution® in (4.15). This is
equivalent to dealing from the beginning with Eq.
(4.2) rather than (4.4). The solution of Eq. (4.2)
with boundary condition (4.7) and initial condition
(4.10) under the assumption that the hot spot is at
the north pole, is (cf. Appendix A and Ref. 18)

7(7,9, t)=Wz 2n+1)P, (W) (R - %)2+an2R2— (7’!+%)2]J"+ 1/2(0‘rrR)’

n,On

with p=coso. (4.17)
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V. EXPERIMENTAL IMPLICATIONS

A. “Up-down” asymmetry of particle production as a
consequence of temperature field anisotropy

The characteristic feature of (4.17) is the 4 de-
pendence of T, which means that the temperature
field at a certain time ¢ induced by a hot spot at
t=0 is anisotropic (isotropy is reached essentially
only after a relaxation time 7,> R?/y, which for
small y is expected to be rather large in compari-
son with characteristic emission times 7 ~m,,“).
This effect is exemplified in Table I where the
temperature field is calculated as a function of 6
for various values D=y7/R%and x =1. This an-
istropy of T leads to an asymmetry (0 dependence)
in production processes when an experimental dis-
tinction is made between the upper (¢,< 0)and lower
(g, > 0) hemispheres (cf. Fig. 3). The asymmetry is
referred to a frame in which +P e =0. The
asymmetry will manifest itself among others
through the following:

(i) There is an asymmetry in the average mo-
ments of emitted particles (secondaries). Particles
produced in the lower hemisphere (cosé<0) will
have, on the average, smaller momenta than those
in the upper hemisphere (0 < cosf). This is easy to
understand since the upper hemisphere is hotter
and (p) is an increasing function of 7. In order to
estimate quantitatively this effect, one has to make
an assumption about the emission process. For
this purpose we shall adhere to the conventional
assumption used in statistical models, namely,
that emission takes place from a local equilibrium
state, characterized by the local temperature 7.
For meson emission this equilibrium state is de-
scribed by a Bose-Einstein distribution

1
“exp[(mZ+p3) 7/ T]-1"

We shall make the further simplifying assumption
that emission takes place only from the surface of
the excited target (projectile). This is equivalent

to the hypothesis that the particles which are cre-

n (5.1)

TABLE I. Temperature field 7(9) for T;AV =1, A=1,
and 0.2 =D =1; (D=x7/R?. We use units such that
mp=1.

D=0.2 D=0.4 D=0.6 D=0.8 D=1
cos@ T T T T
-1 0.030 0.128 0.123 0.086 0.0551
-0.5 0.103 0.18 0.137 0.089 0.0558
0 0.279 0.242 0.151 0.092 0.0565
0.5 0.652 0.314 0.167 0.095 0.0573
1 13.7 0.397 0.182 0.099 0.0580
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ated within the interior of the target do not escape
because of absorption. This means that in Eq. (5.1)
the following expression for the temperature den-
sity 7 has to be used [cf. Eq. (4.17) with »=R]

T;2n+1
2r R®

Z,’ exp(—xZ,’t/R?)
(Bx=3)+Z2=(m+3)*

T(R,0,1)= P (1)

where Z,=a,R. (5.2)

In order to get from (5.2) a temperature 7 one has
to integrate over the volume from which emission
takes place

T= TdV~TAV.
Ay

The value of AV might be expected to be limited
from below by p°®, where p is the momentum of the
emitted particle. On the other hand, it is T;AV
which enters eventually (5.1). 7, depends on the
energy transfer, i.e., on the kinematics of the re-
action.

The average momentum of emitted particles {p)
[it coincides approximately with (p,) since we re-
fer to the target (projectile) fragmentation regions
and subtract for leading particle effects] is

(pyJrdtSvdu[np dp,

[Zat [*au [nap
where the integrals on ¢ and p=cosé take into ac-
count the # and 6 dependence of T as given by Eq.
(5.2). 7 is the minimum time introduced in Sec.
III, after which emission starts. The integrals in
(5.3) cannot be evaluated in a closed form and have
to be estimated numerically. A rough estimate can
be made by remembering that for a distribution
like (5.1), for p >>m, T one has in a first approxi-
mation

(py=~T.

The error in this estimate can be decreased if one
is interested in normalized differences of (p), i.e.,
if one defines an asymmetry parameter

_<p>UP - <P> down

(5.3)

(5.4)

%= BYap + ) town’ (5.5)
where

Ppex [t [ au fup (5.6)
and

Prawance [ at [ du [ npap. (5.7)

The introduction of this asymmetry parameter also
has the advantage that the result becomes indepen-
dent of the parameter T;AV if one simplifies fur-
ther by using (5.4), i.e.,
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_T(D, §=0)- T(D, 6=7)

%=0r="T(p, 6=0)+ 7D, 6=1) °

(5.8)

Typical values of 6, for various D=x7/R? and A
are given in Tables II and III. It is seen that

(a) 6, decreases rapidly with D. This is easy to
understand since the smaller y is the more time it
takes to reach equilibrium. Also the smaller 7 is
at a given y, the faster emission takes place from
the target (projectile) which has not yet reached an
equilibrium state. Finally, the larger R, the larg-
er the asymmetry because this effect is essentially
a finite-size effect. As a consequence of this last
feature, the asymmetry is enhanced when nuclei
are used as targets (projectiles).

(b) 6, is a decreasing function of . However,
this decrease is much slower than the decrease
with Dand, therefore, in a first approximation the
asymmetry depends only on one parameter D.

(ii) Heavier particles (e.g., kaons, nucleons,
and antinucleons) will preferably be produced in the
upper hemisphere since the larger the mass the
higher the temperature necessary for its produc-
tion [cf. Eq. (5.1)].

(iii) There might be an asymmetry with respect
to multiplicities. It is conceivable e.g. that more
particles will be emitted in the upper ¢, <0 hemi-
sphere compared with the number of particles
emitted into the lower ¢, >0 hemisphere. This
follows if one assumes, e.g., that emission takes
place through an “evaporation” process from the
surface of the excited target, an assumption famil-
iar to nuclear physicists.

If emission takes place from a region of local
equilibrium described by a blackbody equation of
state, we have

s T3« N, (5.9)

where s is the entropy density, 7 the local tem-
perature, and N the number of produced particles.

TABLE II. Asymmetry parameter 6p [cf. Eq. (6.8)] as
a function of D at A =1.

D op
0.1 1.00
0.2 0.956
0.3 0.761
0.4 0.513
0.5 0.321
0.6 0.195
0.7 0.118
0.8 0.071
0.9 0.043
1.0 0.026

TABLE III. Asymmetry parameter 05 as a function of
A at D=0.5.

A op
0.1 0.404
0.2 0.394
0.3 0.385
0.4 0.374
0.5 0.365
0.6 0.356
0.7 0.347
0.8 0.338
0.9 0.329
1.0 0.321

Since we have always T\, > Tyoun 5 it follows® that
Nup > Ndown .
The multiplicity N as a function of p=cosf is

N = Jnp;T(, 0))dpat (5.10)
(b T, H))dpdtdy
We have estimated the ratio
s v (5.11)

NT ’
Nup+Ndown

where

1 o 1
o 3,
Nup L d[_LJ; dtfdp eXp[(MZ'FPZ)l/Z/T]'—l
(5.12)

and

0 © 1
3
Ngown & f_lduﬁ dtfdp exp[(M2+p2)1/2/T]—1

(5.13)

represent the total number of particles emitted in
the upper and lower hemispheres, respectively.
The results are represented in Table IV, It is seen
that (a) 6, decreases with D= y7/R? and (b) 6 de-
creases with 7;AV. The first effect has been dis-
cussed above. The last effect can be understood in
terms of (ii) since a decrease of 7, is equivalent
to a corresponding increase in s, and the larger
m the larger the asymmetry effect. This effect
should disappear if T;>wm. On the other hand, we
have ignored so far the possible T; dependence of
D and A. This last effect might influence the over-
all 7; dependence of 5. (For a blackbody equation
of state e.g., X is expected to increase with T;.)
At this stage only an experimental investigation of
this feature can answer this question.
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TABLE 1IV. Asymmetry parameter 6y [cf. Eq. (6.10)]
as a function of D and T;AV (in units m,=1), for A=0.2.

D T,AV oy
0.1 1 0.919
0.1 2 0.818
0.1 3 0.733
0.1 4 0.667
0.1 5 0.618
0.5 1 0.382
0.5 2 0.320
0.5 3 0.277
0.5 4 0.242
0.5 5 0.216

(iv) Particles emitted before equilibrium is
reached in the whole target (projectile) will show
a momentum distribution which does not corre-
spond to a single temperature but to a temperature
distribution as represented, e.g., by Eq. (4.30).
This implies that if one assumes a local equilib-
rium emission process, as in the thermodynami-
cal bootstrap model, the p, distribution will not be
a pure exponential, but will show deviations from
the exponential behavior. In particular, if we al-
low for local temperatures at the hot spot higher
than T,~wm ., the large p , tail will be enhanced,
as is indeed observed.®

Whether this is ke explanation for the observed
deviation from the T, =const=m , exponential be-
havior is, however, yet an open question since we
do not know at present the percentage of peripheral
reactions which contributes to the observed in-
clusive cross section represented in Fig. 1. This
question is related to the problem of determination
of the impact parameter for a given reaction and
will be discussed below. On the other hand, the
fact that a pre-equilibrium mechanism is indeed
responsible for a similar effect in nuclear physics??
(cf. also Sec. I1A) is very suggestive.

B. How and what to measure

It is obvious from the foregoing that the asymme-
try could be looked for either in the projectile or
target fragmentation regions once the leading par-
ticle has been eliminated. It will be very interest-
ing to compare, e.g., propagation of heat in me-
sons and nucleons. This will tell us something
about heat conductivity k in mesonic matter as
compared with « in nucleonic matter. An impor-
tant element in the experimental analysis might be
the reference frame to be chosen. A possible
frame would be the excited target frame. The ad-
vantage of this frame versus the target frame lies

1371

in the fact that trivial correlations due to momen-
tum conservation are in this way easier to take into
account. It is obvious that only an event-by-event
analysis is useful in the search for the asymmetry.
At a first look one would be tempted to believe
that in this analysis both the measurement of §,
and the detection of a secondary particle (from the
fragmentation region) are necessary. This is, of
course, the ideal situation. However, in a first
approximation this requirement could be dropped
and one could limit the measurement only to sec-
ondaries. Indeed in an event-by-event analysis
one could define an “up-down” direction just by
looking for a privileged direction in a plane normal
to the incoming momentum P; along which there
exists as asymmetry (in multiplicities e.g.). Sup-
pose we define by “up” in the first event the sense
on this direction into which the multiplicity is larg-
er and by “down” the opposite sense. Let N(*) and
N§{") be the corresponding multiplicities (N >N,
by definition). In the second event we proceed like-
wise and obtain N*) and N{*) and so forth. Even-
tually we compute 2 N{i) and compare with 27N ).
If there is a statistically significant difference, it
proves the existence of the asymmetry effect.?*

C. Impact-parameter analysis and the size
of the asymmetry effect

The asymmetry effect exists of course also in
reactions which are not peripheral since practically
no reaction is totally central. By measuring an
asymmetry parameter one substracts automatically
the central-collisions events and what is left is due
to noncentral collisions. It is clear, however, that
the more peripheral a reaction, the higher the
asymmetry effect. It would be very desirable to
know the weight of different impact parameters for
a given reaction in order to relate the measured
asymmetry parameters to the theoretical ones as
defined in Sec. V. One possibility would be to in-
troduce an empirical distribution as done in Ref. 2
[cf. Eq. (2.5)]. In this way one could get a covari-
ant description using an approach similar to Ec.
(2.7). As long as the impact-parameter distribu-
tion is not known, one must rely on the informa-
tion about peripheral reactions quoted in Sec. IIL
In this order of ideas it should be mentioned that
an asymmetry effect is expected to exist also in
e-p inelastic scattering, but the size of this asym-
metry can hardly be estimated at present as long
as the impact-parameter distribution is not deter-
mined. Furthermore, a quantitative estimate with-
in the present model can be obtained only if the
main parameter of the model D=y7/R? is known.?®
(For some physical quantities the knowledge of
T;AV is also necessary.)
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V1. CONCLUSIONS AND OUTLOOK

The experimental investigation of the asymmetry
effect might provide the possibility of following
the space-time evolution of an excitation in had-
ronic matter. This could bring new insight into the
theory of strong interactions especially from the
viewpoint of statistical and hydrodynamical mod-
els. The knowledge of heat conductivity of had-
ronic and nuclear matter is important also in
astrophysics and cosmology. It is known that the
existence of a maximum temperature, e.g., is
intimately connected with the understanding of the
early stages of the universe. So is obviously also
the problem of thermodynamical equilibrium.

One of the most challenging questions in this
connection is the possibility of obtaining locally
much higher temperatures than T,~m .

By studying the asymmetry effect we might also
hope to learn new things about peripheral and
central collisions, about exchange reactions and
last, but not least, about the origin of the large-
p, events. There are two main theoretical di-
rections into which further investigation seems
necessary:

(i) a theoretical determination of the parame-
ters A, x7/R2, and T;AV as a function of kine-
matical variables,

(ii) an investigation of the asymmetry effect by
a different theoretical approach than the present
one. One such possibility (relativistic hydro-
dynamics) was mentioned in Ref. 16. Another ap-
proach could be perhaps the covariant “Boltzmann
distribution function” method suggested recently
by Carruthers and Zachariasen®® or the multipe-
ripheral parton model.

I benefitted from useful discussions with A. B.
Clegg, G. Cocconi, J. Goldberg, R. Hagedorn,
N. A. McCubbin, N. Masuda, U. Partheil, and
M. Westrdm. The help of H. Hahn and F. Kitzka
with the programing is gratefully acknowledged.

APPENDIX A

A. Integration of the diffusion equation

In Ref. 18 the derivation of the solution of Eq.
(4.2) is left as an exercise for the reader. Since
we believe that high-energy physicists are not
familiar with this type of problem this derivation
is sketched in this appendix.

Let us consider Eq. (4.14) in polar variables
(we remind the reader that there is no azimuthal
dependence)

0% 2 0f 18[ zaf] 2 -
8‘7’_2-‘—;5’;’—4-172_51 (1—}1)5“‘“ +a,’f =0, (A1)

where p =cosf. With the ansatz
f=f.lr,0)=R,(r)P,(0), (A2)

the variables » and 6 can again be separated, and
Eq. (Al) yields

d o AP } (A3)
= - —n 1)P, =
and
d’R, 2 dR, . nh +1)} B
ar: 7 dr +[a" T 2 R, =0, (A4)

where P, are Legendre polynomials of index n
(n integer). We want solutions of Eq. (A4) which
are finite at » =0. Then

R, =(an) V2T, 5(a), (A5)

where J,, ,,, is the Bessel function of the first
kind of index n +3. The general solution of Eq.
(4.2) for A #0 will be

7= Z Cne—xa"Zt(any)—l/sz 1/2(‘1"7’)?"(}-1) ’

n,Qy,

(A8)

where the constants C, are to be determined from
the initial condition (4.10).

B. Determination of o,

The expansion (A6) is known in the mathematical
literature®” under the name of Dini series. A
remarkable phenomenon characteristic for these
series and which does not occur for Fourier-
Bessel expansions is the fact that in the case A =0
the uniqueness of the Dini expansion can be en-
sured only by adding to the sum (A6) a constant
term which in our case is 3T;/47R3. This effect
can be easily understood on physical grounds
since for A =0, i.e., if there is no radiation, the
quantity of heat @ of the system has to be con-
served, and, thus @ =C,T(¢=<)=C,T(¢=0). The
case A =0 is interesting for applications in nu-
clear physics. By substituting(A6) into (4.7) we
get

(R)\ "é)Jm 1/2(Ra,,) +RanJy:+ 1/2(R0!,,):0, (A7)
where

7= g0) (A8)

and @, are the roots of Eq. (A7).

C. Determination of C,

We start from the initial condition (4.10) as-
suming that 2= (', 0, 0), i.e., that the hot spot is
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located on the Z axis of Fig. 4. Substitution of
(A6) into (4.10) gives

T 6(r —7v')5(6)5(y)
1,-2

= E Cn(an,r)-l/z‘]rﬂ- 1/2(an1’)Pn(lJ‘) .
" (49)

By multiplying with »¥2J,, ,,,(a,7)P, (1) and in-
tegrating succesively this equation over ¢, u,
and » within the limits (0, 2r), (-1,1), and (0,R),
respectively, we get

2n +1 a, \V? N -
C":Tﬂ Ti(—;7> Jn+1/2(an7’ )J . (AlO)

where

R
3= f P12y N (A11)
0

The value of the integral (A11) is (cf. Ref. 18
Sec. 7.5)

2

5= @R H@R)=0 (A1)
and
1 1\ 2 2 1y2
3= gz (R (- 3m) e -
Xy R) (117
if

(RX =3 . ys(RQ,) +R a4y y)p(R,)=0. (A12)

Jn+ x/2(an7’,)
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TABLE V. The first four roots of Eq. (4.23) for A=1
and 0 =n =23.

n Zn.1 Zn.z Zn,3 Zn,4
0 1.570 4.712 7.853 10.99
1 2.743 6.116 9.316 12.48
2 3.869 7.443 10.71 13.92
3 4.973 8.721 12.06 15.31
4 6.061 9.967 13.38 16.67
5 7.139 11.18 14.67 18.00
6 8.210 12.39 15.93 19.32
7 9.275 13.57 17.18 20.61
8 10.33 14.75 18.42 21.89
9 11.39 15.91 19.64 23.15
10 12.44 17.07 20.86 24 .41
11 13.49 18.21 22.06 25.65
12 14.53 19.35 23.25 26.88
13 15.58 20.49 24.44 28.10
14 16.62 21.62 25.61 29.32
15 17.66 22.74 26.79 30.53
16 18.70 23.86 27.95 31.73
17 19.74 24.97 29.11 32.92
18 20.78 26.08 30.27 34.11
19 21.81 27.19 31.42 35.30
20 22.85 28.30 32.57 36.48
21 23.88 29.40 33.71 37.65
22 24.91 30.50 34.85 38.82
23 25.94 31.59 35.99 39.99

We see thus that here the boundary condition
enters the problem since (A12) coincides with
(AT). [Eq. (A11’) corresponds to the other type
of boundary condition, i.e., T(r =R)=0]. In-
troducing (A11”) into (A10) we get

12
C"=2n+] T|<1",'> az
47 v

and the solution (A6) becomes eventually:

T; 1

" Jaya2(@,R)IR2(A —1/2R)? +R2,? - (n +3)2]’

anze-x a"z"]m- 1/ 2((2"’}’)Jn+ 1/2(01"7.’) (A13)

Tzﬁ;w Z (22 +1)P, (1)

n, Op

[(R)\ —%)2 +an2R2 - (n +%)2]Jn+ l/zz(anR) '

In the particular case that ' =R, i.e., if the hot spot is at the north pole, we get for the temperature

field at a point P(r, 6) at time ¢

oo T 1

- 2
ale™xon?ty () (A14)

—EEW E (2n +1)P, (1)

,0,

[RX -1)?+0,2R? — (0 +1)2] .y 5(@,R)

If the hot spot is not on the Z axis, but at an arbitrary point P’(»’, 6’, ¥’), the form of solution (A13) is
unchanged, but the significance of u in P, is now changed into

i =cosy, (A15)
where y is the angle P’OP and
— ’ — (n _m)' m m(, . ’ 1
P,(cosy) =P, ()P, (") +2 3 )T En WPT() cosm @y’ -y), (A16)

m=1
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with 4 =cos6é, pn’=cosb’.

We see that the temperature density 7 in our
problem depends essentially on two dynamical
parameters A and x. Although X enters both ex-
plicitly and implicitly (via a,), it turns out that
the dependence of T on A is weak compared with
the dependence on .

In order to estimate the double sum in (4.14) we
have to determine Z, ;=a,R as a function of A
from the transcendental equation (A7). This can
be done by numerical computation. As far as we
could gather Z, ; are known in the literature
only for A =0 [in this particular case Eq. (A7) re-
duces to ji(Z,) =0, where j,=(1/2Z)"%],.1/,(Z)
are the spherical Bessel functions]. We have
solved Eq. (A7) on a computer for 0<a<1 in
steps of 0.1 and for 2< A< 10 in steps of 1, for
0<n<23. There is, of course, an infinity of
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solutions Z, ; (i is the index which at a fixed n
characterizes the ascending order of Z,), so that
both the sums over » and ¢ are infinite. The
covergence of these sums is controlled by the
exponent in (A6). Z, ; are increasing functions
of n and ¢, but the increase of Z with » is slower
than that with ;. That is why the sum over a,
(i.e., i) in (A6) converges rapidly, while the sum
over n converges very slowly, and that is why in
some cases (for x small) one has to consider in
(A6) rather large values of n (» =20) so that the
use of a computer for the calculation of the double
sum (A6) even after Z, ; are determined becomes
advisable. In Table V we give as an example the
values of Z, ; for A =1 and in Table I we list the
values of T for various values of cosf at A =1

for 0.2s D <1,
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