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Starting from the basic results of axiomatic field theory a series of new asymptotic theorems for the symmetric

Fs(E) and the antisymmetric F„(E)forward scattering amplitudes are derived, E being the laboratory energy.
The spins are neglected in the present paper. Ass~~ing that the phase of Fs or F„ is asymptotically bounded
within a certain range of values the corresponding bounds on

) Fs) or
) F„), respectively, are obtained.

Further, we show that certain conditions on the ratio ReFs(E)/ImFs(E) and on the signs of ReFs(E) and

Im Fs(E) for large enough energies can be formulated as criteria for the asymptotic behavior of the syn~netric
total cross section crs(E). Analogous results are obtained for the antis~metric forward scattering amplitude.

Finally, useful necessary and suf6cient conditions for the asymptotic rise or boundedness of os(E) and tr&(E)
are derived. The results obtained are discussed in light of existing high-energy models and high~ergy
experiments.

I. INTRODUCTION

Remarkable progress has been made recently in
the experimental investigation of the forward scat-
tering amplitude at high energies. Let us mention
the discovery of the rise of the total proton-proton
cross section between 100 GeV (lab) and 2000 GeV
(lab) at CERN, ' the positivity of the real part in

pp- pp experiments at Fermilab, ' and the Ks -re-
generation experiments at Serpukhov giving the
phase and the modulus of the antisymmetric part
of the kaon-proton forward scattering amplitude up
to 50 GeV (lab). ' From the point of view of theory,
it is important that these experiments give inde-
pendent information on two physical quantities
which are correlated by analyticity [e.g. , the real
and imaginary part of the forward scattering amp-
litude F(E), its modulus and its phase, the total
cross section, and the ratio ReF(E)/ImF(E),
etc. ]. It is therefore worth revising and complet-
ing the existing high-energy theorems in order to
confront them with the new experimental results.

In the past, theoretical analyses of asymptotic
phenomena were performed many times and vari-
ous mathematical tools were employed. '~' Khuri
and Kinoshita applied Neiman's theorems" in
order to derive asymptotic constraints on the
modulus of the forward scattering amplitude pro-
vided that the ratio of the real to the imaginary
part is bounded. Later, a number of authors re-
derived or strengthened their results using differ-
ent methods. '-" An elegant approach based on
phase dispersion relations for the forward scatter-
ing amplitude was proposed and developed by
Vernov. "

In the present paper we use Vernov's approach

in order to investigate the asymptotic properties
of the forward scattering amplitude. Starting
from the basic results of axiomatic field theory as
usually adopted in the S-matrix framework, we
obtain correlations between the bounds on the mod-
ulus and those on the phase of the symmetric and
antisymmetric forward scattering amplitude in the
asymptotic region. Simultaneously, we examine
the method itself from the mathematical point of
view.

It is assumed throughout the paper that the in-
ternal symmetries of elementary particles related
to spin, isospin, hypercharge, etc. , maybe
neglected. Nevertheless, this does not exclude an
internal structure of particles like electric or
baryonic charge, retaining a distinction between a
particle and its antiparticle.

The contents of the paper can be characterized
as follows. Using the notion of forward scattering
amplitude Fs „(E) (S denoting the symmetric and
A the antisymmetric amplitude) we define a func-
tion f(E) possessing certain analyticity and sym-
metry properties. We prove in Theorem 1 that
the phase of f(E) is bounded in some complex
neighborhood of E= ~ (Sec. II, Appendix A). Then
we derive our main Theorem 2 (Sec. III, Appendix
8), which relates bounds on the modulus to those
on the phase of f(E) at asymptotic energies. This
is a generalization of a theorem obtained by Ver-
nov. " Finally, the results obtained for f(E) are
applied to the forward scattering amplitudes Fs(E)
and F„(E), thus generating a series of asymptotic
theorems for the amplitudes. As a by-product of
the basic constraints (Theorems 3 and 6), we ob-
tain criteria for different types of the asymptotic
behavior of the real and imaginary parts of
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Fz „(E); further, we derive correlations among
various asymptotic conditions, etc. (Theorems 4,
5, 7, and 8 and the subsequent discussions). In
particular, necessary and sufficient conditions for
the unbounded rise, for the boundedness, and for
the asymptotic vanishing of the symmetric and
antisymmetric total cross sections are derived
(Corollaries 1 and 2). In Sec. IV, the symmetric
amplitude is studied in detail, whereas Sec. V is
devoted to the antisymmetric amplitude.

We systematically remove the assumption of
analyticity in the cut energy plane and replace it
by the weaker assumption of analyticity around
E = in the upper half plane. Thus, our results
can be applied also to processes for which the
complex energy plane possesses a finite central
region of possible nonanalyticity. "

In general, some of the results obtained are
valid only for certain sequences of energies E»
tending to infinity; if, however, an extra assump-
tion [see assumption (F7}]is made forbidding cer-
tain violent oscillations of Ez „(E)at infinity, the
validity extends to whole continuous energy in-
tervals around E = ~.

We remind the reader that our results are asymp-
totic and can be applied to experimental data only
if the data are assumed to determine the asymptot-
ic behavior. Then, our constraints and criteria
constitute a basis for the analysis of the recent
high-energy data. They also serve as a classifica-
tion tool for hadron-hadron scattering models at
high energies. There are some recent examples'~-"
to illustrate this in Secs. IV and V.

The reader who is interested mainly in applica-
tions can dispense with Secs. II and IG and focus
on Theorems 4, 5, 7, and 8 and on the subsequent
discussion of consequences. We would like to
draw the reader's attention particularly to Corol-
laries 1 and 2. An example of applying Theorems
3 and 6 to physical data is given in Sec. VI.

for Ez(z) and for E„(z), we shall use simply the
symbol E(z). E(z) has the following properties:

(Fl) There exists r, ~ 0 such that E(z) is analy-
tic in the upper half of the z plane excluding the
semicircular disk of radius r, around the origin
(this region Imz &0, ~z

~
&r, will be denoted by

Q). This was proved by Bros, Epstein, and
Glaser. "

(F2) For every z c 8, we have

F,(z) =F',(-z*),
F„(z)=-F„*(-z*).

(F3) We assume throughout the paper that E(z)
has a mell-defined value at every large enough en-
ergy and is continuous on the closure of B [not in-
cluding z = ~; E(E+f0}will be denoted F(E)].
Strictly speaking, this assumption is not neces-
sarily satisfied because the scattering amplitude
on the boundary is a distribution in energy. We
assume therefore that F(E) can be obtained by a
regularization procedure of the scattering ampli-
tude and that such E(E) is continuous on the real
axis.

(F4) The scattering amplitude F(z) is polynom-
ially bounded in S for ~z ~- ~. The rigorous proof
is due to Epstein, Glaser, and Martin. "

(F5) For real values of E, F(E) satisfies the
Froissart-Martin bound: there exist r, & 0 and
C&0 such that

F(E)
E ln'E

for any E&r, . (See Ref. 21.)
(F6) The imaginary part ImFz(E} of Fz(E) is

non-negative on the real axis for every E&r„r,
being some positive number.

We define, in terms of the scattering amplitude,
the function f(z} by the formula

f(z) = q(-iz)'Ez(z) (z c I)) (2.1)

II. ASYMPTOTIC BOUNDEDNESS OF THE PHASE
OF FORWARD SCATTERING AMPLITUDE

in the case of the symmetric amplitude and

f(z) =i@( iz)'F„(z) -(z cu) (2.2)

We shall establish conditions under which the
forward scattering amplitude has no zeros and a
bounded phase in the asymptotic region.

Consider the forward scattering of a particle a
by another particle 5, a+b -a+b, together with
the corresponding crossing process, a+ b —a+ b,
where a is the antiparticle to particle a. Let Ez(E)
and F„(E)denote, respectively, the sum and the
difference of the scattering amplitudes for a+5
-a+5 and a+b -a+&, E being the laboratory en-
ergy of the incident particle a. If complex values
of E are considered, we shall use the symbol z.
In formulas and statements which are valid both

in the case of the antisymmetric amplitude, a
being real and q being +1 or -1. f(z) has the fol-
lowing properties:

(fl}f(z) is analytic in I).
(f2) f(-z~) =f~(z) in u. This property follows

from (F2).
(f3) The condition (f3) has the same form for f(z)

as (F3) has for E(z).
(f4) f(z) is polynomially bounded in I) for ~z ~

-~.
(f5} (F5) implies for f(E) that

IE- -~f(E)(I~) '1&C

for any E&r, .
First, we establish the following theorem.
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Theorem I. Let f(z) be a function of complex z
satisfying the conditions (fl) to (f4). Let further
the following conditions be satisfied:

(f5 ) Pm, =0.

(f6 ) There exists a positive number r, such that
Imf(E) & 0 for every E& r, and

r
" Imf(E

E"2

Then there exists some E„&0 such that Im[f(z)lz]
&0 for every z in 5), z

~
&E„

This theorem is a special case of Theorem A,
which is proved in Appendix A.

icity is assumed in the whole twice-cut plane, the
absence of zeros was proved by Jin and Martin. ")

Concerning possible zeros on the real axis, no
additional assumption has to be made. Indeed,
zeros on the real axis are allowed provided that
the assumptions of Theorem 1 hold (see Lemma,
Appendix B). These assumptions imply, neverthe-
less, that the Lebesgue measure of the setof zeros is
zero and that the set is nowhere dense.

We present now the following theorem.
Theorem 2. Let f(z) be a function of complex z

satisfying the conditions (f1), (f2), (f3), (f4), (f5 ),
and (f6 ). Let further Re f(E) not change sign above
some Ez, Ez&0. Denote if(E) and v(E) two func-
tions which are integrable on the interval (Ec, E)
for every E &Eo and fulfill the constraints

III. ASYMPTOTIC PHASE-MODULUS CORRELATION 0» ~(E) «v(E) « —,
' . (3.S)

We shall exploit now the analyticity of lnf(z) for
obtaining relations between the phase and the mod-
ulus of f(z) in the asymptotic region. Obviously, at
every zero of f(z) inside or on the integration con-
tour a singularity of lnf(z) arises producing an un-
known term in the Cauchy theorem. If, however,
f(z) satisfies the conditions of Theorem 1, no zeros
in 31, ~z &E„, occur. (We mention that if analyt-

If the inequalities

tan[my, (E)] ««tan[2fv(E)]imf(E)
Ref(E)

(3.2)

are satisfied for every E &E„ there exists an in-
finite sequence of points E, (k = 1, 2, 3, . . .) such that
E~- ~ as k- ~ and that the inequalities

"E u(E') "v(E')
C, exp 2 ', dE' -

~
f(E, )~ »C, exp 2, dE' (3 3)

and

D, exp 2 t, dE' «
~

f(E,)
~

«D, exp ~2, dE'
E 1 —v(E'}, ' E 1 —p(E') (3.4)

hold for every k =1,2, 3,. . . provided that Ref(E) «0 and Re f(E) & 0 for E &Eo, respectively. C„C„D„D,
are positive and independent of EE 2 Moreover, in every interval (E, aE), E &max (E„Ez,E„), n &1, there
exists a subinterval I such that (3.3) and (3.4) hold for every Ec I In this cas.e, C„C„D„and D, depend
on o. .

The proof of the theorem is given in Appendix B.
Under the assumptions made, the bounds obtained are the best possible ones in the sense that there are

functions which saturate them.
Remark l. If the condition on the sign of Ref (E) is suppressed, the upper bound in (3.2) cannot be used

and (3.3) and (3.4) reduce to

C, e p 2, dE' - ~f(E)~ -D, e p 2, dE'].E }f,(E'), E 1 —V. (E')

so E Eo
{3.5)

Remark Z. Analogous bounds can be easily ob-
tained if {3.2) is replaced by a more general con-
dition which is no longer symmetric under the
change of sign of Re f(E}; for instance,

—tan [z v. ,(E)]» tan[v «v,,(E)]
Im f (E)
Ref (E)

Remark 3. (This remark pertains also to the sub-

sequent Theorems 3 and 6.) One cannot extend the
validity of (3.3) and (3.4) to every E larger than
some positive number, unless an extra assumption
is made concerning oscillations of f(E). The form
of Theorem 2 suggests that it is convenient to have
the limitation on oscillations, for instance, in the
following form:

(f7) There exist three positive numbers P, &1,
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N, and E„,such that the inequality

f(PE)
,
f(E) (3 6)

IV. APPLICATIONS TO THE SYMMETRIC
FORWARD SCATTERING AMPLITUDE

Writing (2.1) separarately for the real part and
the imaginary part of f(E) we obtain, taking the
principal value of the power (-iE)',

Ref(E) eE ees( =Re't (E) e s'e —
) (ssE(E)

(4.1}

Imf(E) = riE' cos —ImFE(E) —sin —ReE~(E) .ma ~ ma

Choosing various values of (7 and a in (4.1), we
obtain a number of interesting asymptotic theo-

holds for all P (= (I, Pa) and for all E &E„,. As-
sumption (F7) has the same form for F(E).

If (3.6) is fulfilled, the constants C„C„D„and
D, occurring in (3.3) and (3.4) become dependent
on PE. Further, the validity of (3.3) and (3.4) can
be extended to a whole continuous interval E +E~,
E~ being positive, the constants being replaced by
C,N ', CEN, D,N ', D,N, respectively. The case
when N in (3.6) is multiplied by a known function of
energy can be treated analogously and the corre-
sponding generalization is straightforward.

Ref(E) = )7E'"(-1)"ReE(E),

Imf(E) = qE'"(-I}"1m'(E).
(4 2)

We take (7 = (-1)"because then condition (F6) is
satisfied also for Imf(E), Applying Theorem 2
to this case, we obtain the following result.

Tkeorem 3. Let Ez(z) satisfy (Fl), (F2), (F3),
(F4), (F6), and

limEz(E}E" =0
g~oo

Let further

(4 3)

ImFz(E)'" dE =+ ~ (4.4)

(in the following, we shall suppress the lower in-
tegration limit in such expressions). Let p (E)
= ReFz(E)/ImFz(E) satsify the constraints

tan [vp(E)] &
I p (E) I

~ tan [wv(E)]

for all E&E, [with p(E) and v(E) integrable and
obeying (3.1)] and let ReEz(E) not change sign
above E,. Then there exists an infinite sequence
of points E, (k = 1, 2, 3, . . . }such that lim, ~, = + ~
and that the inequalities

(4 6)

rems for the symmetric forward scattering ampli-
tude. In the present paper, we shall restrict our-
selves to the case of integral values of a.

Firstly, let us take a even, a =2n, n being an
integer. We get from (4.1)

and

CEE„' exp 2 E, dE' ~ IFE(EE}l~CUE "exp 2, dE'
$0 I- Eo

(4.6)

D,E, ~ "exp 2 ', dE' ~ IF~(EE)I ~DEEE ~"exp 2, dE'
Ep go

(4.7)

hold for every k=1, 2, 3, . . .provided that

ReF~(E) &0

and

ReFz(E) & 0

(4.8)

(4.9)

for»E~, respectively. C„Cg Dg &2 are positive constants independent of E, . Moreover, in any interval
(E, aE), o &1, E &max(EO, Ez, E„), there exists a subinterval I such that (4.6) and (4.7) hold for every
E~I with C„C» D»D» depending on u.

The theorem is a direct consequence of Theorem 2.
We remind the reader of Remark 3.
Remark 4. If the condition on the sign of ReFE(E) is suppressed, FE(E) is asymptotically bounded by the

left-hand side of (4.6) from below and by the right-hand side of (4.7) from above.
Remark 5. Assuming a special energy dependence of p(E) and v(E) we obtain a more lucid form of the

bounds (4.6) and (4.7). Taking, for instance, i(, (E) and v(E) constant in energy we get FE(E) to be bounded

by certain powers of energy. From the point of view of applications to high-energy models and experi-
mental data, the useful choice of p, (E), v(E) appears to be
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p(E) = p, +p./InE,

v(E) = v, + v,/lnE,
(4.10)

where p, „ Ij.2 vy and v, are constants. Omitting scale factors in logarithmic expressions, we obtain from
(4.6) and (4.7)

C E„'""'" (InE~) "
~Fz(E„)~ C2E~

"" (lnE )

11 E 2n+1+2))1(lnE )2v2 & P (E )~ 11+ 2n+1+2ul(lnE )2vz
1 k

(4.11)

(4.12)

for the case (4.8) and (4.9), respectively. Remark
4 refers to this case too.

Remark 6. The case of a odd can be treated
analogously. Putting a =2m +1 we get, instead of
(4.2),

Ref(E) = qE'""(-I)"ImFz(E),

Imf(E) = -qE'""(-I)"ReFz(E)
(4.2')

and obtain a theorem which has exactly the same
form as Theorem 3, the only change being that
conditions (4.3), (4.4}, (4.8), and (4.9) are replaced
by J

dE
tan 'pz(E)— (4.13)

(4.4) is quite plausible.
A closer discussion of Theorem 3 allows a num-

ber of general consequences to be drawn for the
asymptotic behavior of the forward scattering am-
plitude. It is remarkable that most of them follow
without assuming (4.4) and even independently of
(4.5). We shall mention some of them here.

Theorem 4. Assume that Fz(z } fulfills (Fl)-(F6).
If either (i) ReFz(E) ~0 for all E &Es, Es being
some positive number, or (ii)

limFz(E)E2" '= 0,

(-1)"qReFz(E} &0, E&Es

(4.3')

(4.4')

(4.8')

converges for some E„ then

lim inf az(E) &+ ~.
E~~

Proof. It is obvious that if

J v (EldE

converges, then

(4.14)

(4.15)

(4.9')

respectively, and max(E„E„, E„}changes into
max(E„r„E„). Further, n in formulas (4.7) and

(4.12) has to be replaced by n +1. Note, however,
that Remark 4 is not directly transferred to this
theorem because ImFz(E) is non-negative because
of (F6). Remark 5 can be easily extended to this
case.

Taking n negative, we see that the condition (4.4)
cannot be fulfilled by any scattering amplitude,
because it leads to an asymptotic behavior which
is in contradiction with (F5). On the other hand,
the positive values of s lead, because of (4.3), to
a very fast vanishing of the symmetric total cross
section az(E), which is (because of the optical the-
orem) asymptotically proportional to ImFz(E)/E
The choice n =0 is of particular physical interest.

We shall therefore discuss now the case n =0
in some detail. Notice that (4.4) represents by
itself a very weak restriction, permitting az(E)
to decrease asymptotically as

[ElnE(ln lnE) ~ ~ ~ (ln lnE) ] '.

Thus, although going beyond the properties which
have been proved from axiomatic field theory,

liminfaz(E) =0

and the theorem is valid. Thus, we may suppose
that (4.15) diverges and that, consequently, (4.4)
is satisfied with n = 0. Applying Theorem 3 we
obtain that if ReFz(E} a 0, then

lim inf az(E) & ~.

On the other hand, if the sign of ReFz(E) is not
asymptotically nonpositive we can use Remark 4.
Putting

v(E) = —tan 'p, (E),

we get

~D,exp — tan 'pz(E')
Ep

Since (4.13) converges we conclude that the integral
above is finite and the theorem follows.

Thus Theorem 4 allows us to establish conditions
under which az(E) cannot tend to infinity. Rever-
sing the statement and assuming that
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we find that

J , dE
tan 'pz(E} = + ~s E (4.16)

(4.17)

be satisfied and let pz(E) be bounded for all suf-
ficiently large E

0 &ps(E) &M, (4.18)

~ being some positive number. Further, let

and, further, ReFz(E) cannot stay nonpositive at
all energies. The latter part of this statement
represents the well-known result of Khuri and
Kinoshita, ' which has been obtained here by other
means.

The next theorem gives a useful condition under
which az(E) cannot tend to finite value.

Tkeorem 5. Assume that Fz(z) satisfies (Fl)-
(F6). Let the condition

sume further that (4.17) is satisfied and that the
limits (finite or infinite)

1im pz(E}, lim az(E)

exist. A necessary and sufficient condition for

limaz(E) =+~
E

is

tan 'p, (E) E
= + ~.

limaz(E)E' =+~ (4.23)

for every e &0, then one can distinguish between
the vanishing and the nonvanishing of az(E). A
necessary and sufficient condition for

This corollary is a consequence of Theorems 4
and 5.

Remark 7. If, instead of (4.17), a stronger con-
dition on az(E) is imposed, for instance,

J dE
tan 'pz(E) —=+~.

Then

lim sup az(E) =+~.

(4.19)
0 & lim az(E} &+~,

limaz(E) =0
E

is then

Proof. According to Theorem 3 there is a se-
quence E, , E„-~for k-~ such that

E& dE'
Pz(E„)~

~ &,E,exp — tan 'pz(E')
7l

S
0

(4.20)

where we have chosen

p(E) = tan 'p—z(E).
1

The theorem immediately follows from (4.18),
(4.19), and (4.20).

Theorems 4 and 5 suggest establishing a neces-
sary and sufficient condition for az(E) to be bounded.
First of all, we observe that if the limit

tan 'pz(E) —&~,

J
cK

tan 'pz(E) —= -~,

respectively. Indeed, (4.23} implies the violation
of the upper bound in (4.6) with n =0 for all posi-
tive (constant) values of p, and for all E above
some energy. Thus, reversing Theorem 3 we see
from (4.5) that pz(E) must tend to zero. Then,
replacing (Fz(E)~ by Eaz(E) in (4.6) and (4.7), the
remark follows immediately from Theorem 3.

Remark 8, One can replace the integral

r
e

tan 'pz(E)—

lim pz(E) (4.21)
by

exists, then the condition (4.19) can be replaced
by

dE
p (E)—=+" (4.22)

Indeed, (4.7) implies that (4.21) must be zero be-
cause of Froissart-Martin bound (F5). Then, evi-
dently, (4.19) and (4.22) are equivalent.

We are now in a position to obtain the following
corollary.

Corollary 1. Let Fz(E) satisfy (Fl)-(F6) and let
ReFz(E) not change sign above some energy. As-

J v.W')z
0

everywhere in Corollary 1 and Remark 7, pro-
vided that pz(E) is integrable over the interval
(E„E)for all E &E,

The remainder of the present section will be
devoted to some new results related to the real
part of the symmetric scattering amplitude.

In the first place, it is easy to prove the follow-
ing statement: If (Fl)-($%) are fulfilled and
ReFz(E) &0 for large enough energies, then the
integral
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dE
(4.24)

dE iK
J

ReF~(E) R, —ImFz(E)— (4.26)

converge or ReFz(E) cannot be asymptotically non-
ne gative.

Indeed, applying Theorem 3 we see that all con-
ditions except (4.4) [or (4.4')] are fulfilled, the
upper bound in (4.5) not being specified. Assume
that at least one of the integrals (4.26) diverges
and that ReFz(E) & 0 for large enough energies.
Then, using (4.7) we see that condition (4.25) con-
tradicts the bound (F5).

To give a better insight into the condition (4.25)
we remark that it is satisfied by functions such as

I pz(E)I= with )3&1,
nP

m 5
Ipe(E}l= E 1+ E with 5 &0

lnE ln lnE

converges. Indeed, because of ($5), (4.3) for
n = -1 is fulfilled. Writing down (4.6) for n = -1,
~(E) =o, ~(E)=-',

CA' - IFs(E») I
- CRE»'

we get a contradiction with (F5}. Thus, (4.4') must
be violated, i.e. , (4.24) converges.

Another interesting result can be formulated as
follows: Let (F1)-(F6}be fulfilled and let

1 1 ~ dE'
lim —tan 'Ip~(E')I-, , =+~. (4.25)

Ep

Then either both of the following integrals

ReFz(E) may grow, but considerably slower than

imFz(E}. In particular, the bound on ReFz(E) here
is a factor lnE lower than the Froissart-Martin
bound (F5).

V. APPLICATIONS TO THE ANTISYMMETRIC
FORWARD SCATTERING AMPLITUDE

In this section, we shall apply Theorem 2 to the
function f(z} as defined by (2.2). Choosing various
values of g and a, this will imply a number of as-
ymptotic theorems for the antisymmetric amplitude
F'„(E).

From (2.2) it follows that the real parts and the
imaginary parts of f(E) and F„(E)are connected
by the following linear relations:

We shall again restrict ourselves to the case of in-
tegral values of a.

Choosing a=2n, n being an integer, we obtain
from (5.1)

Ref(E) = (-1)"' 'rIE'" ImF„(E),
Im f(E}= (-1}")7E'"ReF„(E),

(5.2)

and have from Theorem 2 the following conse
quences.

Theorem 6. Assume that F„(z) satisfies (Fl)-
(F4) and

PQ WQ
Re f(E) =rIE' sin —ReF„(E)-cos —ImF„(E)

(5.1)
ma ma

Im f(E) = rjE' cos —ReF„(E)+ sin —ImF„(E)

and by most models giving oz(E) bounded. On the other
hand, models giving an unbounded rise of oz(E)
may satisfy (4.25) only if ReFz(E) changes sign
infinitely many times. Of course, this is not the
case of the existing models. " "

Concluding the present section, let us mention
an interesting result which follows from (4.12)
provided that

lim pz(E)1nEE~~

lim F„(E)ERR R =0,

and that

r)(-I)"ReF„(E)) 0 for all E &En,

»(-1)"f Red„(E)R'"'dE =+

Let p„(E}= ReF„(E)/ImF„(E) satisfy the con-
straints

tan[vs»(E)] —
I
p„(E) I-'~ tan[vp(E)]

(5.3)

(5.4)

(5 5)
exists. Then, confronting (4.12) with (F5) we find
that

0 & lim pz(E)lnE ( v

for ReFz(E) asymptotically non-negative. Hence

for all E &E, [with p, (E), v(E) integrable and sat-
isfying (3.1)] and let ImF„(E) not change sign above
some Ei. Then there exists an infinite sequence of
points E„(k=1,2, 3, . . .} such that lim»„„E»=+~
and that the following inequalities

E0 0
(5.6)
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D,E, '""exp 2, dE' « IF„(E,)l «DP„'""exp 2 ', dE'
0 E0

(5.7}

hold for all k =1,2, 3, . . . provided that

g(- I}"ImF „(E}~ 0 (5.8)

)7(-I)"ImF„(E) «0 (5.9)

Ref(E) = 7(-)I)"E'""ReF„(E),
Im f(E}= I(-)I)"E'""ImF „(E),

(5.2 )

and obtain a new theorem which differs from
Theorem 6 in that conditions (5.3), (5.4), (5.8),
and (5.9) are replaced by

for E&E» respectively. C„C»D„D, are positive
and independent of E». Moreover, in every inter-
val (E, aE), n&1, E&max(E„,E„E~,E„) there
exists a subinterval I such that (5.6) and (5.7) hold
for all E cI with C„C»D„D„depending on a.

We remind the reader of Remark 3.
Remark 9. If the condition on the sign of ImF„(E)

is suppressed, F„(E) is asymptotically bounded by
the left-hand side of (5.6) from below and the right-
hand side of (5.7) from above.

Remark 10.Assuming a special energy depend
ence of i(, (E), v(E) one can obtain a simplified form
of the bounds (5.6} and (5.7} in complete analogy
with Remark 5.

Remark ll. The case of a odd can be treated
analogously. Putting a = 2n+1 we get instead of
(5.2)

physical applications, the following cases appear
to be of particular interest: n=0 in Theorem 6
[both for (5.8) and for (5.9)], n =0 in Remark 11
[case (5.8 )], and n = -1 in Remark 11 [case (5.9 )].
We shall now discuss these cases in more detail.
First, let us mention that the following theorem
can easily be proved.

Theorem 7. Let F„(z) satisfy (Fl)-(F5) and let
ReF„(E) and ImF„(E) not change sign above some
energy. Assume that

~ReF (E)
~ E

=+J dE
(5.10)

slid sit)ter (i) Red (E) have the same sign as
tmd„(d)or (") ,tan '(p„(Z)( '(dd)d) oon-
verges. Then

FwE
lim infz-m E

In case (ii) we have, moreover,

F~E
lim sup &0.

z m E

(5.11)

(5.12)

Proof. Relation (5.11) follows from Theorem 6
in the same manner as (4.14) from Theorem 3.
The formula (5.12) follows from the lower bound in
(5.7}.

Remark 12. Theorem 7 remains valid if (5.10}is
replaced by

lim F„(E)E" ~=0
E ~ )(o

)7(-I)"ImF„(E)~ 0 for all E &E, ,

(5.3')
IrnE„E E 'dE =+. (5.13)

Note, however, that in this case condition (i} is,
because of (F5), satisfied by no physical ampli-
tude. Thus, we arrive at the follaowing conse-
quence.

Let F„(z) satisfy (Fl)-(F5) and let ReF„(E) and
ImF„(E) not change sign above some energy. If
(5.13) holds, then the signs of ReF„(E) must be
asymptotically different.

An appropriate illustration of this result is given
by the amplitude proposed by Qukaszuk and
Nicolescu, "in which o„(E) increases like lnE and,
consequently, (5.13) is satisfied. Then, necessari-
ly, ImF„(E) and ReF„(E) have opposite signs, as
seen in formulas (2) and (3) of their paper.

We consider now the analog of Theorem 5 to
give conditions under which o„(E) must tend, on an
infinite sequence of energies, to zero or to infin-

(5.4 }il(-i) J tmp (d)E'"dg=v

(5.8')

(5 9')

)7(-I)"ReF„(E}~ 0,
)7(-I}"ReF„(E)—0,

for E&Ez, respectively. Besides this, n in (5.7)
has to be replaced by n+1 and the condition "let
ImF„(E) not change sign above Ez" transforms into
"let ReF„(E) not change sign above E„." Remark
9 is valid with Im F„(E) replaced by ReF„(E).

A closer discussion of Theorem 6 allows us to
draw a number of general consequences for the
asymptotic behavior of the antisymmetric forward
scattering amplitude. In order not to contradict
the Froissart-Martin bound, we, have to choose
n & 0 in (5.4) and n & -1 in (5.4 ). With regard to
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ity.
Theorem 8. Assume that F„(E) satisfies (Fl)

-(F5) and that ReF„(E}and ImF„(E) do not change
signs for large enough energies. Let (5.10}be
satisfied and let the integral

t 'Ip. (E)l 'E (5.14)

be divergent. If ReF„(E}and Im F„(E)have equal
signs for large enough energies, then

lim inf ( -0
E~w (5.15)

If, however, ReF„(E) and Im F„(E)have different
signs, then

lim sup
E co E (5.16)

The proof is entirely analogous to the proof of
Theorem 5 given previously.

Remark 13. Remark 12 holds unchanged for
Theorem 8, too.

Remark 14. Theorems 7 and 8 can be convenient-
ly used as criteria for the asymptotic behavior of
the antisymmetric total cross section o„(E}. For
instance, (5.11) and (5.15} immediately imply that

lim inf
I o„(E) I

& ~ (5.17)

and

lim inf
I
o„(E)

I

= 0, (5.18)

lim suplo„(E)
I
&0 (5.19)

and

lim suplo„(E)
I
=~, (5.20)

respectively.
Let us discuss several implications of Theorem

6. Inserting n=0 into (5.7) we easily derive the
following statement: If ImF„(E) and ReF„(E) have
opposite signs and do not change them for large
enough energies and if, further,

ReE~ E (5.21)

diverges, then

Iim inflp„(E) I
'=o. (5.22)

If, in addition, the limit

respectively. If, moreover, [p„(E)] is bounded
from below by a positive constant, (5.12) and (5.16)
imply that

1nE

p (E)

exists, we find

lnE
lim«p(E) (5.23)

This result deserves a closer discussion in con-
nection with physical applications. Assuming that
ImF„(E} and ReF„(E}do not change signs beyond
some energy (but not assuming any correlation
between the signs) we conclude that if the inequal-
ity

(5.24)

holds for large enough energies, then either the
integral (5.21) converges or the signs of ImF„(E)
and ReF„(E) must be equal in the asymptotic re-
gion. We mention that condition (5.24) can be gen-
eralized in complete analogy with (4.25).

A typical illustration of this is made by the
phenomenological model in Ref. 16, in which p„(E)
is asymptotically constant so that (5.24) is satis-
fied; since, however, (5.21) diverges, the signs
of ImF„(E) and ReF„(E}must be equal. On the
other hand, if we violate (5.24} (this was done by
adding a term linear in energy in this model'~},
there is no correlation between the signs. Indeed,
the fit to kaon-proton scattering gives equal signs,
whereas the fit to pion-proton scattering leads to
opposite signs in this model. "

Another application of Theorem 6 yields a cri-
terion of convergence of the integral

(5.25)

which is frequently studied in the literature. '"'"
Assume that o„(E) does not change sign for large
enough energy and that at least one of the following
conditions is satisfied: (i) The signs of o„(E) and
ReF„(E) are equal; (ii} there exists y&1 such that
(5.24) holds for E sufficiently large. Then (5.25)
must converge.

Comparing this result with the analogous theo-
rems of Weinberg, ' Grunberg and Truong, ' and
others, we see that assumptions concerning the
asymptotic behavior of F„(E), which are usually
required for the convegence of (5.25), are re-
placed here by (i} or (ii).

To give an example of the application of Theorem
7, let us mention that it yields another criterion
indicating when the signs of ImF„(E) and ReF„(E)
must be different (cf. Remark 12). To show this,
let us assume that F„(E)/E tends to infinity. Then,
(5.11) is violated and we draw from Theorem 7 the
following consequence.
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+ —,
' In(1+ [p„(E)]'), (5.26)

If ImF„(E) and ReF„(E) do not change signs above
some energy and if lims „IF„(E)/EI

= ~, then
either (5.21}converges or the signs are asymptot-
ically different and (5.14) is divergent.

An appropriate illustration of this result is
given, again, by the amplitude proprosed by Quk-
aszuk and Nicolescu, "in which IF„(E)/E

I

in-
creases like (lnE)' and (5.21) diverges. Then
ImF„(E) and ReF„(E) must have opposite signs.
Also, (5.14) diverges. On the other hand, (5.24}
is not fulfilled since

I p„(E) I

' behaves like v/1nE.
Theorems 6, 7, and 8 suggest a way to establish

necessary and sufficient conditions for different
types of asymptotic behavior of o„(E). We shall
summarize them in the following corollary.

Corollary 2. Let F„(z) satisfy (Fl)-(FS) and let
ReF„(E) and ImFQE) not change signs beyond some
energy. If (5.10) is satisfied and the limits lims
o„(E), lims „r„(E)exist, r„(Z) being defined as

2 I dE
r~(Z} =- tan 'l.l/p~(Z')]

0

then a necessary and sufficient condition for

»m
I o„(E}

I

=+

0 & lim
I o„(E)I

& (5.27)

ls

lim o„(E}=0

(5.28)

lim v'„(Z}=+~,

respectively.
Proof. Since lims „„r„(E)exists and formulas

(5.28) exhaust all its possible values, it is enough
to prove that conditions (5.28) are sufficient for
(5.2V). According to Theorem 6, there exists a
sequence E„E,-~ for k- ~, so that the inequali-
ties

2 E I-
x,{(+[p„(E,)]'] '"exp ——f tan '[1/p„(z')]

0

EI I
—&.{(+[p (@,)I']'"~xu(--r '~an '[(/p„(~')], ().)9)

0

hold. Note that (5.29) is independent of the signs of
ReF„(Z}and ImF„(E). Taking the logarithm of
(5.29) we have

&l-&~(Za)-h lo~(Zdl -&2- ~( a)

Hence, we easily obtain the individual statements
of the corollary.

It is worth discussing several high-energy mod-
els in light of this corollary. In the model pro-
posed by Bourrely and Fischer both ReF„(E) and

ImF„(E) behave asymptotically like ~E. Thus,
lims o„(E)=0. As seen from (5.26), the first
term in r„(E) tends to plus infinity, whereas the
second one is bounded. Thus, lims „r„(E)=+~.
Further, in Ref. 17 we have ReF„(E}-E,ImF~(E)-M asymptotically and, again, lims „o„(E)=0.
However, the first term on the right-hand side
of (5.26) is finite, while the second one is rising
as lnE. Thus, again, lims „r„(E)=+~. Finally,
the model of I/ukaszuk and Nicolescu" gives o„(E}
behaving as lnE, whereas r„(E) consists of two
competing terms,

2 ~
~ m dE'tan» + ln lnE,

thus resulting in lims. „7„(E)=-~.
Remark 15. The corollary remains valid if (5.10)

is replaced by (5.13).

VI. CONCLUDING REMARKS

The consequences of the most general properties
of the S matrix for asymptotic energies have been
investigated. The method has been based on the
analyticity properties of the logarithm of the for-
ward scattering amplitude. The method has turned
out to be able to give a number of new, physically
interesting asymptotic theorems.

It is to be noticed that all results contained in
Sec. IV and V (Theorems 3-8, the two corollaries,
and other conse(luences) correlate measurable
quantities like total cross sections, the real and
the imaginary part of the forward scattering am-
plitude, their ratio, their signs, etc. , at asymptotic
energies. It is typical for the theorems obtained
that their assumptions may be widely changed
without changing the final statements. In particu-
lar, the role of the real and the imaginary part
can be interchanged as seen, for instance, from
Remarks 6 and 11.
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Taking into account only the most general fea-
tures of the forward scattering amplitude, the re-
sults are suited for various analyses and consis-
tency tests of high-energy data with analyticity.
The high-energy models are usually classified
according to the asymptotic behavior of oz(E),
o„(E) We. have shown that this is equivalent to a
classification according to J pz(E }d(lnE ), r„(E),
respectively. Indeed, the results allow us to
formulate, in terms of pz(E), p„(E), respectively,
necessary and sufficient conditions for every given
asymptotic behavior of the total cross sections
oz(E), o„(E). The basic classification has been
presented in Corollaries 1 and 2 and Remarks 7,
8, and 15, and the application of the procedure to a
specific asymptotic behavior is straightforward.

To show one of the possible applications of our
theorems to experimental data, let us discuss the
results of Sec. V in connection with the existing
data on K,' regeneration. ' Note that these mea-
surements give direct information on the anti-
symmetric K'p- K'P forward scattering ampli-
tude. Let us consider Theorem 6 and Remark 11.
Take p, (E), v(E} constant in energy and put n= 0.
The conditions

lim F„(E)E-'=0,
E~co

ImF„(E)dE = ~,

ReF„(E)~0

are fulfilled by any reasonable fit. Their violation
is possible only in very "unphysical" situations
like a very fast vanishing of cr„(E) or a very fast
increase of lF„(E)l. From Ref. 3 we get the input
for the phase of F„(E).

F (41', 57'}, F„(E)=Fro (E) -F 0 (E)

so that p(E) =0.23 and v(E) =0.32. Then, (5.6)
gives

c,E'" IF„(E) I c,E'" . -
The experimental fit from Ref. 3 is

F (E}=CEO ~7+ P'~3

Thus, we see that the experimental values of y~
and lF„(E) l

between 10 and 50 GeV exhibit the
correlation which is required by Theorem 6 for the

asymptotic region.
It is interesting to compare our results for the

symmetric amplitude with the classical paper of
Khuri and Kinoshita. ' Our assumptions differ
from those made by Khuri and Kinoshita only in
(F1) and in the fact that most of our results have
been derived under the additional condition (f6 ).
(Fl} is weaker than the corresponding assumption

in Ref. 4, whereas (f6 ) is more restrictive.
The requirement (f6 ) ensures the Herglotz

property of j(z)/z and, thus, excludes the zeros
off(z) in the asymptotic region of I). The absence
of zeros was proved by Jin and Martin" for f(z)
analytic in the twice-cut plane, but under condition
(f6 ) it follows even if the analyticity of f(z) in the
central part of the complex energy plane is not
assumed [assumption (fl)]. As shown in our Lem-
ma of Appendix B, one of the consequences of (f6 )
is that our results follow without additional assump-
tions about zeros on the cut, which are made, e.g. ,
in Neiman's theorems (see Refs. 4 and 5 and
Appendix A).

To sum up we can say that assumption (f6 ),
which is very plausible from the physical point of
view, enables us to make other assumptions weak-
er and, besides, to obtain results which are
stronger than those contained in Khuri and Kin-
oshita's Theorems 1 and 2. Theorem 3 is repro-
duced in our approach completely without additional
assumptions. Moreover, we obtain information on
the sign of ReFz(E). These results follow from
Theorem 3 of the present paper.

We would like to mention that relations (2.1) and
(2.2} do not exhaust all possibilities of construct-
ing the auxiliary function f(z) in terms of Fz(E),
F„(E). In particular, f(z) may be defined as a
weighted integral of F(z} in analogy with the ap-
proach of Khuri and Kinoshita' or Grunberg and
Truong. ' In this way, the use of Theorem 2 allows
a number of results of different approaches to be
obtained from a unified point of view.
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Imf(z) ~0 for Imz =0, Rez ~r, ,

Imf(z) (0 for Imz =0, Rez ~ -r, ,

f( )

let - & ~

(A1)

(A2)

APPENDIX A

This section will be devoted to the proof of
Theorem A, which is slightly more general than
Theorem 1. Assumptions (f2} and (f6 ) will be con-
siderably weakened. Comments on relations among
assumptions of the two theorems will be given in
remarks.

Theorem A. Let f(z) fulfill (f1) and (f3). If
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f dE+ dE & Ref(re' ")dy,
es 220 r 0

(A3)
r ~ max(rp, r,'),

then there exist such Ee&0 that Im[ f (z)/z] & 0 for
~
z

~

& E„, z cS. Here S is the region defined in
Sec. II.

Proof. Let $«be a region of the complex plane
which consists of the points z fulfilling Imz & 0 and
~z

~

&r. For our purposes it is convenient to de-
fine the function f also in the region B«. Put

f(z)=f«(z*) for z cS« . (A4)

f(z) 1 f(t)
z 2wi z t(t-z}

Hence,

The function f is now analytic in the union S U G«
and its real part is continuous on the boundary of
S US+.

Using (A4) we canwrite down the Cauchy theorem
for f(z)/z along the curve 2 depicted in Fig. 1

f(z) 1 z Imf(t) 1 ~-" Imf(t) 1 I f(t) 1 f(t)
z w „ t(t —z) w g z t(t- z) 2wt „)~( z t(t —z) 2wi ()( R t(t —z}

Consider only the imaginary part of this equation:

f(z} Imz z Imf(t)dt " Imf(t)dt
z w „ t[(t —Rez)'+ (Imz}'] t[(t —Rez)'+ (Imz)']

2wt i2i, z t(t —z) 2m i2i „ t(t —z) (A5)

The last integral on the right-hand side of (A5) has the form

f(t)dt 1 ',
~ „} (Imz —r siny)dyIm Ref(re "

„ t(t z) 2w— , r'+ Iz I' —2r(Rez cosy+ Imz siny)

(r cosy —Rez)dy
2w p r'+ lz I' —2r(Rez cosy+Imz siny}

'

In order to estimate this expression we mention that

Iz I Imz —r sin(I() + 2 2
y sing -1

Imz r'+ Iz I' —2r(Rez cosy+Imz siny) r'+ Iz I' —2r Rez cosy

+4
) ~

+
~ ~

1—,A6

Iz I2 r cosy- Rez r cosy —Rez t r r' r+, 1-r'+ Iz I' —zr(Rez coze+tom erne) r'+ Iz I' —2r Rez cos« Iz I Iz I* I* I) (A7)

and that [according to (A4)]
2-2 g

dp

r siny dyRef re ")' r + lz I'-2rRez cosy

t r cosy —RezImf re «) r '+ Iz I' —2r Rez cosy

Thus we have

Iz I' 1 f(t) 1 " M
Im . dt ~— Ref(re'")dy+ —y(z), z c uImz 2wi ]2 J

t(t z) 2w p 271
(As)

where M =max«, I f (re' ) ~ and y(z) is the sum of the right-hand sides of (A6) and (A7). Evidently y(z)-0 for

Due to (A2) and (A4), estimates analogous to (A6) and (A7) can be found showing that the expression
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2vi „,.z t(t z)-

on the right-hand side of (AS) converges to zero for E —~. (A5) and (A8) imply

Iz I f(z) I " Iz I lmf (t)dt
Imz
™

z 7r „ t[(t - Rez}'+ (imz)']

1 -" lz I'Imf(t}dt 1 " „M
t[(t R ) ( ) ]-2 Ref( e")dV-2„r( ),

Let ~z
~

-~; we obtain

.~ Iz I' f(z) 1 1mf(t)dt
Imz
™

z w i*i - - „ tgt/ Iz I
—(Rez/ lz I)]'+ [(Imz/ I z I)]')

Imf(t)dt fw

tel/I I
—(Rex/laIO'+Nims/lzl)I') 2 . )

With respect to (A1) we can use Fatou's lemma and since

we have

I z I' f(z) 1 "Imf(t) " Imf(t)dt 1
3mz z w, t „ t 2v o

If we use (A4) once more we see that

1
Ref(re' ')d/t/= — Ref(re' ")dy2' Q 1T Q

and the statement of Theorem A follows immediately from (A3).

Remark 2 6. If (f2) is assumed, then Imf(-E}=

=-Imf(E) and condition (A3) can be simplified to

dE & ,' Ref(re—'")dip . (B2)

Since f (z) is supposed to satisfy the conditions of
Theorem 1 there exists E„such that

Im &0 for [z~ &E„, Imz&0.z

Since f(z) is assumed to be continuous up to the
boundary, Ref(re"} is continuous and finite so
that f, Ref(re")dip is a finite number. It means
that (f2) and (f6 ) imply (A3).

Remark 17. Because of the Phragmdn-Lindelof
theorem (see, e.g. , Ref. 25), (f4) and (f5 ) imply
(A2}.

APPENDIX B

2.
In this Appendix we present the proof of Theorem

(Bl)

If f(z) fulfills (f2), then also f (z) fulfills (f2). —

In the following, we shall need In[-f(z)]. To
avoid ambiguity we shall use the principal value of
the logarithm: lnw=ln[w~+i argw with -w& argw
& s. In this case (Inw)~ = Inw* for any complex
number w. Condition (f2} for -f(z} implies

[ln[-f (z)])*=In[-f(-z*)J .

g~ Ug]

FIG. 1, Integration contour Z = Z&U g2 in the z plane
(see Appendix A) .
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This yields

—w&arg[-f(z)J&w (B3)

class H, of analytic functions. We remind the
reader that a function s(w} belongs to H, if it is
analytic on K and

I ( )- ln[ f(
g

z'

a ) 1, z, z' ~ g)„.

This function is also analytic in Q~. It follows
immediately from (B.1) that

t (z) = I*(-z+), z e 3?„. (B4)

so that In(- f (z)] is analytic in the intersection of
3? with lzl &E„Th. is region will be denoted 3?„ in
the following.

We define the function l (z) by

sup "lu(pe" }ld4
p& 1

is finite ' . Let us prove now the following
statement.

Statement 1. The function h, (w} belongs to H,
for every t~ [1,P] and

lh~(pe'")id@ -M., p&1

where M, depends neither on p nor on I;.
Proof. Since Imh, (w) = (1/t) arg[-f (g (w)t)] and

(B3) holds we see that

We shall prove now the following lemma.
lhnh, (w)l -w . (B7)

j,emnu Le.t a function f (z) fulfill the conditions
(fl} and (f3} and let there exist a number E„&r,
such that (B.2} holds. Then the function l (z) is
analytic in S~ and

I ( )
" I l.-f(t)] dt I (E)

s~B E t

Proof. It is clear that f(E}is different from zero
in any interval of the real axis. In the opposite
case we should obtain f (z) = 0, which contradicts
(B2). Thus we can choose numbers r, R, E„&r &R

such that f(r}o0, f(-r)o0, f(R)w 0, f(-R}t0.
Further, we choose a number P, 1& P &R/r such
that there is a positive integer n with the property
P" = u and that

Let y be a positive number. According to Theorem
6 of Ref. 28 there exists a number M, such that

"h, (pe")d9
2y

Since Re h, (w) = (1/t ) Inf(g(w)t} and (B6) holds we

have Jpz lReh, (pe'~) Id' & 2M, y.
This implies ),

'
lReh, (pe'~) Id' & 2M (w+y).

Inequality (B7) yields J, I Imh, (pe'~ ) I Ap & 2w'.

Statement 1 is proved.
A conclusion of the Nevanlinna theorem" states

that there existfinite values of limits lime, h, (pe' "}
for almost all y. They will be denoted by h, (e'").
Let F, be the set of y, -w& y & n, for which

ftg(e'~ }t)=0. Certainly,

for

f (E)e 0

EC [r, rP]U[R/P, R]U[-rP, -r]U[-R, -R/P].
(B5)

liml Reh, (pe'~)I= limI ln —
I
f(g(pe'v)t) I I

p ~ I, p

I
in[1'(g(e'~)t} I I

&0
t

Denote 3?, s -—[z: Imz 0, lz I'r, lzl&R) Being
continuous, f is bounded one?, , z, t.e., lf(z)l-M,
for z~ S„„.In the following we shall use the

function j (z) f (z)/M, . Obviously,

for ygE, and

lim I Reh, (pe'~}
I
=—lim

I lnl f(g(pe'~ )t ) I I
= ~

p~y I, p~

lj'(z)I - 1 for zc@„„. (B6)

Let further g(w} be a conformal mapping of the unit
circle K, Z=(w: lwl & lj onto S„„~w. Denote

ln[-f (g(w)t )J
t

for lwl & 1 and every tH [1,P]. Because of (B3),
h, (w) is an analytic function of w in K for every
t~ [.I, Pl.

In the following, we shall need the well-known

p(E, ) =0 for every tE [1,p], (B8)

where p, is the Lebesgue measure. The continuity
of f, g, and lnz (at the nonzero points} yields

h, (e'" ) =—ln[- f(g(e'~) t )] for (w ~ F~.
t

(B9)

for y +F,. The existence of finite values of h, (e'v)
almost everywhere means that
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Using Fatou's lemma and Statement 1 we obtain

hs e" dy &M, . (B10)

, h, e'~ t= ln — (ge'~t (B11)

Considering (B9) and applying Fubini's theorem we
conclude that

E~(r, R/P). Bearing in mind that P &1 we deduce
that this integral is convergent for all g,
(E(r, R/P). Now the well-known theorem can be
used stating that any integral is a continuous
function of the upper limit. Statement 2 follows
now from the fact that g is a continuous function of
(I(). ff g(e'~)&(-R/p, -r) the proof is the same.

Now, using Fichtenholz's theorem" we obtain

for almost all 9). Analogously, considering (B10)
and applying Fubini's theorem once more we see
that

h, (e'~)dt

0 &p(1

Owing to (B10), we can integrate this relation over

converges for almost all y.

Statement 2. The function

(lit) in[-f(g(o)t) ]«

(B12)

From (Bll) and (B12) we see that
f~8 (1/t )ln[- f(g(e'")t)] dt is convergent for almost
all y. Let Q' be the set of such y. We have

is a continuous function of o on the circle (o
~

=1.
The Proof will be divided into three parts.

(i}Let g(e'~) not be real; then, because of (B2},
j(g(e'~ )t ) e 0 for all t H [1,P]. Since it is a con-
tinuous function the statement is proved.

(ii) Let g(e'~) =r. Since g(e'~}tE [r, rp] for all
t E [1,p] and since f is nonzero there [see (B5)) and
continuous the statement is proved, too. The cases
g(e~~) = -r, g(e'~) =Rg(e, '~) = -R can be treated
in the same manner.

(iii) Assume, finally, g(e'~)H (r, R/P). Denote

Q=(W: g(e")&(r R/8)) .

1;g 1-p'
1-2P o (p-0)+p'

(B13 }

where h(w) = J~h, (w)dt. Because of (Bl1) we can
substitute f, (1/t )ln[- f(g(e'")t )]dt instead of
j~zh, (e'~}dt on the right-hand side of (B13}. Using
Statement 2 and (B13)we obtain that h(w) is con-
tinuous up to the boundary of X. With respect to
the definition of h we conclude that
le(z) = j8(1/t )ln[-f (t z)] dt is continuous up to the
boundary a)„,at() and that l8(E) = f, (1/E) ln[-f (tE)]dt.
As the number ~ can be chosen arbitrarily close
to E~ and the number R arbitrarily large we ob-
tain that te(z) is continuous up to the boundary of

Since
a

t (z)= l8(P z)
=0

the lemma is proved.
We apply now the Cauchy theorem to the function

z 'l (z). Applying the lemma, we can shift the
integration contour up to the real axis. We have

((/()»I-f(z(8'")&))«=J ((/ )»I-f( ))«, (B14}

where ( stands for g(e'~). The function g(e ~) for
y&Q maps an analytic part of the boundary onto
an analytic part of the boundary. This yields"
that g(w) has nonvanishing and continuous deriva-
tives with respect to y on Q. This means that the
set

The contour 8 is depicted in Fig. 2, E„satisfying

r=g: g=g(e"), 9~Q']

has the full Lebesgue measure, i.e. , g(F}=R/P
Thus, we have proved that

(1/r}in[-f (r)] d7 converges for almost all (, FIG. 2. Integration contour 5 in the z plane [see Ap-
pendix B, formula (B14)).
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the inequality E„)max(E„, E„Ez}. Making use of
(83), (814) can be rewritten as

J Rs) (Ee")dd ~2f~™,{~) dE
0 E~

+ Rel E„e'~ dy =0 B15

with some positive E)E„. The mean-value theorem
allows us to express the first integral in the form

v Rel„(EO"),

g 4E pt E
y pi

-Rel (E)

/El ~ps p II2, „&E"+X E, y E B23
JEg E E

for Ref(E) &0 and

y being a number between 0 and m depending on E.
We shall, further, define the function A.„(E,q&} by
formula

&„(E,((() ) = Rel (Ee'~ ) -Rel (E) .

Then, using (815) and (816) we find

(816)

Substituting the imaginary part of l (z) into (817)
we obtain

Rel (E)

2 dE, ' Im In(-f(E")l +~a E) 0
Eg g~

(819)

We recall that, according to (3.2),

tan[van(E)]- I Imf (E)/Ref (E) I
- tanvv(E),

Rel (E)= ——z, dE' +& (E, (7)),
2 z Iml (E')

Eg
(817)

where

~.(d, d)=-~.(E, d)- —j R~).(d ~")dd .
(816)

&Rel (E)

(2, „dE"+X E q E

(824)

for Ref (E) ) 0 above some energy
Further, we show that the function f(.„(E,y (E))

is uniformly bounded as a function of E and y. We
have

Hence

(27k.

iX (E, y}(&2v'

for every y in (0, v). Using the Cauchy-Riemann
conditions for l (z) we find

aRel (Ee'")
8'

= (Im In[ f(aEe' )] —-Imln[ f(Ee' )] (-

E)E
(820) uniformly for E&E„, 0(y (m. Thus, there ex-

ists a constant K such that

where p (E) and v(E) are integrable over the in-
terval (E„E)for all E&E, and that (3.1) holds for
E)E0. Hence, we obtain the following restrictions
on the phase arg[- f(E)]:

—vv(E) & erg[-f(E)] & —vp(E), forRef &0 (821)

—v+wV(E) &arg[-f(E)] & —v+vv(E), forRef) 0

(822)

(i. (E, y)[-E. (825}

(826)

To prove Theorem 2 we suppose that the conclusion
is false and obtain a contradiction. Suppose that
(3.3}is not true; then there is a number a,) 1 such
that for any pair of positive numbers C,' and C,' one
can find energy E, so that at least one of the in-
equalities

and -v+ wp(E) arg[-f(E)] & vV, (E) if the sjg-n of
Ref(E) is not specified. (821), (822), and (819)
imply

~(dN)( )nc; ~ dJ', , dd (827)
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p% dE' s' p, (E")dE"
gt Ett

N

(B29}

Since (B23) holds, we obtain that at least one of
the relations

s dE' pps' p, (E" )
Et ~t Etl

& Ref,(E,)

I EN

~ (E")
d „

Ett
a & dE'

2 0 I
2 0 E El

~u

& Ref„,(E,)

&K+2
dE' pps' v(E" ) d (B31}

holds for every value of E in the interval (E„up E,).
Note that we suppose Ref (E) & 0 asymptotically.

Keeping a, fixed, we choose the numbers C', and
C,' so that

C,' & exp(- (K+2A)/innp],
(B28)

C,' & exp(K/ina p),
where

is satisfied, E, depending on C,' and C2. Further,
we have

psdE' s p(E" }„
gt Ett

dE"+ A (B32)Et Ett
k'g El

for all E~E„. To prove this, we observe that the
derivatives of the integrals are identical in the
interval (E„,~). Obviously, an analogous result
holds for v(E), too.

Combining (B30) and (B31)with (B28) we easily
obtain a contradiction. By this, we have proved
that, in every interval (E, aE), E&E„, a&1,
there exists a subinterval I such that (3.3) holds
for all EEI. Hence, (3.3) holds for a sequence E, .

Relation (3.4) can be proved in a completely
analogous way.

Note added in proof. Corollary 1 admits inter-
esting gener~»~ations. For instance, Remarks V

and 8 remain valid if (4.23) is replaced by the less
restrictive condition (4.1V}. Details will be pub-
lished later.
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