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We discuss the prediction of fK/f that follows from chiral symmetry in the (3,3)+(3,3) model from a general
point of view. We present the results of the one-loop corrections in the renormalizable SU, cr model. These
results are compared with a number of other approaches, including chiral perturbation theory. All approaches
discussed here have uncertainties in f~/f at least as large as, often much larger than, the experimental error in

fx/f . This is traced to the appearance of the mass difference m„' —mx 'which is uncertain to + 4% owing to
isospin splitting.

I, INTRODUCTION

By now it is widely accepted that the hadronic
Hamiltonian is nearly invariant under a Goldstone-
realized symmetry, i.e., SU, &&SU, . Because the
states have large spontaneous breaking of this
symmetry the sorts of predictions are quite dif-
ferent from SU„ for example, which has a nor-
mal limit. Another symmetry of this type is
SU3 ~ SU„which is on less firm footing since it
surely has larger explicit breaking than either
of the above two. Nevertheless, the view of it
as an approximate Goldstone symmetry with the
pseudoscalar octet as the Goldstone bosons and
breaking belonging dominantly to the (3, S)+ (3, 3)
representation gives a good account of low-energy
dynamics. '

The (3,F)+(3,3) picture of symmetry breaking
treated by Gell-Mann, Oakes, and Renner' is
limited to the case in which the pseudoscalar
masses satisfy the Gell-Mann-Okubo formula
and the ratio of decay constants ftr/f, =1. This
paper is concerned with the relation between

f~/f, and the pseudoscalar masses when both the
above restrictions are relaxed. Through the use
of the Ward identities and smoothness assumptions,
it is possible to relate the above quantities as"

the (3, 3)+ (3, 3) model involving well-determined
quantities. Further, the corrections to these quan-
tities can be calculated in the SU, model reliably
in the one-loop order of ordinary perturbation
theory.

The purpose of this paper is to clarify some
confusion in the literature of predictions based
on Eq. (1.1) (Sec. II), present corrections to Eq.
(1.1) calculated in the renormalizable SU, tr model
(Sec. III), and make a comparison of these and
other predictions with chiral perturbation theory' '
(Sec. IV). The goals of this work and chiral per-
turbation theory overlap. They both start from
similar postulates but have quite different operat-
ing assumptions and approximations. For small
symmetry breaking they should agree, but for
physical values of parameters there is a fairly
large disagreement which we discuss. Section
IIA outlines a derivation of Eq. (1.1).

II. ZEROTH-ORDER RELATION BETWEEN f~/f
AND PSEUDOSCALAR MASSES

A. Derivation

To derive Eq. (1.1) we start with the assumption
that the Hamiltonian consists of a piece that is
invariant under SU, ~ SU» denoted K,„,and a
piece that breaks this symmetry in a simple way:

—'-2A, ~-2W' + ——' =O,
K K gym + EpQp + E8Q8 ~ (2.1)

where

2 2VE„-m~
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(1.2)

It is this relation we wish to discuss and offer
corrections to. Equation (1.1) has appeared either
explicitly or implicitly in many formulations of
this model. It appears in papers by Schechter and
Ueda and by Cicogna, Strocchi, and Caffarelli. '
It is implicit in a paper by Kenney' and in SU3 0-
model determinations of fn/f„ in tree order. '
Equation (1.1) is a reasonably clear prediction of

The nonet of scalar densities, u, , is taken to be
a member of the (3, 3)+ (3, 3) representation of
SU3 xSU3 along with a nonet of pseudoscalar den-
sities v, There are certain operator relations
and the Ward identities that follow from these
assumptions which are in no sense new. %e do
not wish to give a derivation but rather will state
the needed results and guide the reader through a
published derivation, Ref. 5, Sec. III. We first
weaken our assumption, Eq. (2.1), to identify u,.
and v,. as the nonets of scalar and pseudoscalar
fields tr,. and P, , and we employ the Lagrangian
machinery
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+Z,b,

~sb ~o+o ~8+8

(2.1')

fsama = —g dua&~Za
j,k

f,,m, '= —Q d, ,„Z,, 't'(ogD," (0),
j~k~b

where

(2.2a)

(2.2b)

If one sticks to the u's and v's as unspecified den-
sities it is necessary at some point along the way
to assume that matrix elements of the v's are
dominated by the quantities one would get if they
were in fact pseudoscalar fields. Under these
weaker assumptions, Eq. (2.1'), the following
relations are exact consequences:

and (o,}.
In order to get predictions from Eq. (2.2) as-

sumptions must be made, and arguments ensue.
We take the following point of view: Let us make
the zveakest assumption that svill give us the rela-
tion between fz/f, and the pseudoscalar masses
which one would obtain in tree solutions of the
most general SUq (nonrenormalizable) o model,
Eq (1.1). , and give no a Priori justification for it.
The assumptions are simple and not dependent on
detailed dynamics. The justification lies in the
comparison with experiment together with a dem-
onstration that corrections to this relation are in-
deed small when calculated in the most general
version of the renormalizable SU, a model.

Our approximations are

a=m, K, g, g', i=1, . . . , 8,

j, k = 0, . . . , 8, d, ,k are standard. '

The f,, are decay constants defined by

(2.3)

Z &/~ Z~/2R
ja jal

Z '/'=Z '/'R
ja ja 9

where

(2.6a)

(2.6b)

(2.6c)

where A'- are the axial currents —normalized as
in Ref. 5—and @,

" are the renormalized pseudo-
scalar fields. The relation between renormalized
and unrenormalized propagators is

D =+8 '/D. Zab ~ ja jk kb
j~k

(2.4)

A;=-Zd a~~(Za (2.5)

The indices a, j, k run over the same values as
noted above, with b the same as a. The Zj, '/'
are defined such that D„has poles of unit residue
in the 11 component at the q mass and the 22 com-
ponent at the q' mass, and no pole in the off-dia-
gonal elements. The symbol Zj,

' ' is defined by
Z,Z,, t Z,, t'=5„..' The vacuum expectation
values of the scalar fields, (o,), are nonzero only
for k=0, 8.

Equation (2.2a) follows from an operator rela-
tion. To see this, multiply Eq. (2.2a) by &g and
sum over a. Invoking the definition of f,, via
Eq. (2.3) we get

8 cos0 sino

Rj =

0 (-sin8 cos8/I

f„m„2 (1 —a) cos8 —W2a sin8
1+a

(2.7a)

f,„,rn„, ' (1 —a) sin8 + v 2a cos8
1+a

=5j„j=a=1, . . . , V.

Equation (2.6a) states that we allow only one
mixing angle —a mass mixing —and the normal-
izations of all the pseudoscalars are the same-
but need not be equal to unity. Equation (2.6b)
clarifies our notation. '

Using these approximations —Eq. (2.6)—Eqs.
(2.2) can be written

fxmr' 1 —a/2

fr ™r'

j, k

The quantity in curly brackets is the unrenormal-
ized P field and this equation is just the operator
relation [Ref. 5, Eq. (3.4)]

f, 1- b/2

f, 1+b

f,„(1—b) cos8 —v 2b sin8
1+b

(2.7b)

Equation (2.2b) is a Ward identity that follows
from taking a zero-momentum limit of
S, (T(A;. (x), P,"(0))) as in Ref. 5, Eq. (3.12). In the
tree approximation, Eq. (2.2b) gives the well-
known relations between decay constants and (o,}

f,„, (1 —b) sin8+ v 2b cos8
f 1+b

where a = e, /v 2e„b = (o,)/v 2(o',). Eliminating

f,„,f,„,, a, b, and 8 gives the desired relations-
Eq. (1.1).
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B. Discussion

Let us suppose we wish to use Eq. (1.1) to pre-
dict f»/f, . It turns out that f»/f, is extremely sen-
sitive to the values of masses. We wish to plot
this in a way that shows this clearly and hence we
pick as the variables f/f» and m»'. Equation (1.1)
is a conic section in these variables (hence the
choice of f,/f» rather than the inverse). For phy-
sical values of m, ', m„', and m„, ' the conic sec-
tion is an ellipse as shown in Fig. 1, curve I.
The first thing to note is that a vertical tangent
to this curve lies between the charged K and neu-
tral K masses. Since we neglect isospin splitting,
the central K mass has an uncertainty of the order
of the isospin splitting. For horizontal shifts of

this curve of the order of 1 or 2%%ug (for whatever
reason) f»/f, can easily vary from 125 to 2.5.
However, given the physical f»/f„one gets a re
spectable K mass.

The point with error bars in Fig. 1 gives the
physical parameters. The "error" bars on the
K mass value are simply from the isospin split-
ting. We take

f(0)
=1.27+0.03

from Chounet et a/. ' We take f(0) =0.98+0.01.
According to the Ademollo-Gatto theorem" this
should be close to unity. This value is supported
by two calculations. "" Thus f»/f, =1.25+ 0.04.

We concur with Cicogna et al.' that m»' and f»/f,

M„(GMO) M„+ M„oi"
0.9I

09

0.7 I.43

0.6 I .67

05
0.2I 0.22 0.23 0.24

IVI (GeV ).
K

0.25 0.26
2.0

0.27

FIG. 1. Plot of f~/fz as a function of m& in units of GeV for various schemes. Note the expanded scale for m& .
The charged and neutral K masses are indicated at the top. ~z (GMO) is the value for octet breaking assuming a pure
octet g. The error bars on the experimental point are discussed in the text. The various curves are as follows: I is
the conic section, Eq. (1.1); II is a zero-mixing prediction, Eq. (2.9a); III is obtained from curve II by l.inearizing in the
SU3 breaking; IV is tree+ loop corrections in the SU3 0 model for the case in which we renormalize at ~z,. V is the
same as IV except that we renormalized at fz in lieu of mz, curve IV is the prediction from "nonanalytic" terms in
chiral, perturbation theory. The numerical values of the fixed masses were taken as m~ =138.1 MeV, . Iz = 548.8 MeV,
m~~ =958.1 MeV.
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are consistent with Eq. (1.1) to a few percent.
Kenney' rejects Eq. (1.1) on the basis of a large
discrepancy with experiment which can be traced
to his determination of fz/f, from the K mass. In
a paper of ours —Ref. 12—we recognized this
sensitivity but did not recognize that the result
was independent of the detailed form of 8,„.We
still got a bad value of fz/f, (= 1.45), but that can
be traced to our inadequate treatment of scalar
mesons. This is discussed in a later paper,
Ref. 5, where the problem is resolved; the values
taken are marked with a dot on curve I in Fig. 1.
Other papers on related work include those of
Schechter and Ueda, and Geddes and Graham"
and references therein.

The mixing angle can be found from Eq. (2.V)

1 f,/f» —4A

2&2 f,/f» —A

2 2 f.If'
f,/f» —4A' '

(2.8a)

(2.8b)

The equality of these two forms follows from Eq.
(1.1), i.e., it is understood that Eq. (1.1) must
be satisfied by the values inserted in Eq. (2.8).
This angle is marked on curve I, Fig. 1. Elim-
inating f /f» gives a formula for tan0 that differs
from the standard form based on pure octet mass
splitting since higher powers of E, generate 27
mass splittings. For 8 =0, Eq. (2.8) reduces to

f» 1 1 m„' —m,'
f, 4A 4 m„' —m»''

f» 1 m„, —m~

(2.9a)

(2.9b)

This corresponds to the point marked 8 =0 on
curve I, Fig. 1. If we evaluate Eqs. (2.9a) and

(2.9b) with physical masses, fz/f, is overdeter-
mined —Eq. (2.9a)—giving a good value: 1.28,
Eq. (2.9b); a fair value: 1.34. Alternatively Ken-
ney' uses Eq. (2.9b) to calculate m„, giving 1030
MeV compared to physical 960.

Auvil and Deshpande" arrived at Eq. (2.9a) from
a different and interesting route. They consider
spectral function sum rules and arrive at essen-
tially the same equations as our Eq. (2.2). (They
also have corresponding equations for the v, but
those separate completely from the determination
of fz/f, in their final analysis and we can ignore
them. When we go to second order in the o model,
the w becomes a wide resonance and Z„ is ill de-
fined. ) The new aspect in their paper is a deriva-
tion of relations among the Z's from considera-
tion of the Wilson operator-product expansion. "
Their result replaces our Eq. (2.6) with less re-
strictive conditions that allow for symmetry
breaking in the Z's. However, in fitting their re-

+m —4m
2 2

mn —mg
(2.10a)

2 2
E

2 2
NL~g

Expanding f/f»- I in (& ——,') and (A'- 1) gives the
leading correction to the Gell-Mann-Okubo form-
ula for finite m„, and fz/f, 4 1

(2.10b)

1 (m»' —m.')(m„' —m, ')+~ —4~E ) ———

(2.11)

This is linear in the variables f /f», and m»' and
is the straight line plotted in Fig. 1, denoted curve

suits to experiment they are led back to zero mix-
ing and Z, =Z =Z„4 Z„,, which is now only slightly
weaker than our assumptions, Eq. (2.6), when

mixing is zero. They then obtain Eq. (2.9a) and
a modified Eq. (2.9b) with the replacement of
m„,'-m„,'(Z, /Z„,)." Hence they do not overdeter-
mine fz/f, in terms of experimentally known quan-
tities but rather obtain a value for Z„,. Ne plotted
their prediction of f /fz, Eq. (2.9a), in Fig. 1, curve
II. We note that their prediction for fz/f„Eq.
(2.6a), is also sensitive to the K mass; taking
charged and neutral masses gives

f~/f, = 1.28 a 0.04,

and so these "errors" are of the order of the ex-
perimental error in f»/f, . In the next section we
will compare their operator-product prediction of
the Z's with our loop calculation.

It would be misleading to consider the close fit
of curve I to experiment as a strong support of
the operator-product expansion. Auvil and Desh-
pande" showed the f~/f, is determined from a
set of 11 coupled equations in 11 unknown which
would determine a curve on our plot, Fig. 1, and
it is that curve that would provide a meaningful
comparison. Through a numerical calculation
they conclude that their mixing angles were small
so they set them equal to zero. This had the effect
of decoupling the equations rather than overcon-
straining them (as would be true in general). It
is not clear that their 11 coupled equations would

produce a curve close to curve II in Fig. 1.
Returning now to our discussion of Eq. (1.1),

since SU, is a good symmetry, we should check
to see that if we linearize Eq. (1.1) in SU, break-
ing, the prediction will not change drastically.
To linearize, we note that the quantities A-&
and A'-1 are of the order &,:
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III. This line is tangent to the ellipse at the point
0 =0. In the neighborhood of the physical point the
curves are indeed close.

III. LOOP CALCULATION

Up to now we have described model-independent
results, i.e., those that do not depend on the de-
tails of the dynamical model. For example, Eq.
(1.1) will hold, given the approximations Eq. (2.8),
in any SU, 0 model, independent of the specific
form of „. In addition, we have noted that Eq.
(1.1) is in fact the tree approximation which is
the first term in the loop expansion of perturba-
tion theory. We have calculated the one loop term
in Ref. 5. This is possible to do only for renor-
malizable forms of 2,„.(Of course one can use
an unrenormalizable theory if one is content to
introduce new parameters at each order —which
we are not. ) In this section we restrict kl„ to
contain at most the fourth power of fields and in
this sense the loop calculation is model-depen-
dent.

The loop calculation in Ref. 5 is lengthy and in-
volved. We attempted a global fit and determined
parameters accordingly. We wish to draw on that
calculation to present the loop correction to f,/f»
as a function of ~~'. The essential features are
spelled out in Secs. II and VA of Ref. 5. For the
most part this is a straightforward application of
Feynman rules. However, there are conventions
that must be made in determining the finite part
of counterterms and we will restate them here.

The Lagrangian contains six parameters. In
second order we can introduce six counterterms
corresponding to these parameters (four of which
are divergent). We chose the counterterms such
that m„m», m„, m„„and f, contain no second-
order corrections. There is a sixth counterterm
that must be fixed to fully define the loop calcula-
tion. However, all the results in this paper are
independent of its choice and since there are a
number of technical problems associated with its
determination we will skip the discussion here. "

In Fig. 1 we have marked with a dot on curves
I (tree), and 1V (tree+loop) the parameters re-
ported in Ref. 5 determined from a global fit. The
input parameters are summarized in Ref. 5, Ta-
ble II. f, enters simply as a factor 1/f, ' multiply-
ing the loop part. The dots lie at the same rn~'
because m~ was chosen to have no loop correc-
tion. Moving away from the dot requires one of
two procedures: Either attempt a global fit at
each value of m~, or place a reasonable condition
on one free parameter. The former requires pro-
hibitive labor of little value. The free parameter
is m, (tree) —the tree value of the o mass. If we
hold it fixed m, , (tree) —the upper v mass —can go

to ~ as we vary m~2 causing divergences in the
perturbation expansion. Hence we hold m, , (tree)
=1.25 GeV fixed, and let m, (tree) vary T. his
gives curve IV. Note that it follows the tree curve
closely and then abruptly approaches a vertical
asymptote. The beautiful agreement with experi-
ment is fortuitous and due to a pathology in our
renormalization procedure. The vertical asymp-
tote arises because perturbation theory is diverg-
ing at the turning point of curve I since it is un-
able to produce the double-valued nature of the
function there.

To verify that the double-valued nature is the
culprit we changed the renormalization procedure
by dropping m» as a constant parameter (no loop
corrections) and instead replaced it by f». In this
sense curve I is single-valued in the region of in-
terest. Since f, has no loop correction, f»/f, will
have none and the corrections will be along hori-
zontal lines. This procedure is less pathological
in this neighborhood and gives a smaller correc-
tion. That these two procedures cross the tree
curve at the same point is necessary; that they
cross at 0= 0 is accidental. Our conclusion from
all this is that if one eliminates known pathologies
from the loop calculation then the corrections to
curve I are small but not necessarily better than
the tree predictions.

Finally we report the value of wave-function re-
normalization constants to compare with the Auvil
and Deshpande'4 result. The following two rela-
tions" were derived by them as approximate re-
lations from the Wilson operator-product expan-
sion:

T,.~ =—R,,Z~0 N (3.1)

4(Z /Z, —1)=3(T, /Z, —1)

(0.048) = (0.054),

z /z, 1= T„/z,3

2

(0.012) = (-0.049).

(3.2a)

(3.2b)

The values calculated from our Ref. 5, Table IV,
are shown below in parentheses. Equation (3.2a)
is the Gell-Mann-Okubo octet-breaking relation
for the Z's and is well satisfied. We see this
agreement as accidental in our calculation since
small changes in the parameters destroy this
agreement. Equation (3.2b) depends in detail on
the mixing and is not satisfied. These equations,
Eqs. (3.2a) and (3.2b), are derived by pole-dom-
inating spectral-function sum rules. '4'" The sum
rules themselves are exactly satisfied in our mod-
el since we specify that the (3, 3)+(3,3) objects
are in fact canonical fields. Hence, Eqs. (3.2a)
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FIG. 2. Plot of f „/f z as a function of mi2 in units
of GeV . The curves marked tree and mo =1.57 are
the same as curves I and V in Fig. 1. The curves
marked mo~ =8 is obtained by simply increasing moi .
The shaded area represents the range of predictions for
this range in m~. 2.

and (3.2b) are tests of pole dominance of exact
sum rules in our model.

We have emphasized above that the loop calcula-
tion of the relation between f„/f„and the pseudo-
scalar masses depends on two new parameters
compared to the tree calculation. One is f, which
is known experimentally (95 MeV) and enters
only as a factor 1/f, ' multiplying the loop. The
second parameter is m, ' or m, , ' and is a free
parameter in the sense that there is no unique
way to fix it in the absence of a global fit.' This
is a reflection of the model dependence of the loop
calculation. That m, or m, , reflects model depen-
dence is well known in the tree-order determina-
tion of scattering amplitudes. For example, in mm

scattering the tree graphs in the SU, o model de-
pend on m, . If one takes m, to ~, the amplitudes
are finite and approach the model-independent
Weinberg" amplitude. In a future paper we will
discuss the significance of taking a large m, , in
an attempt to get model-independent results. For
the moment though we wish only to present the re-
sults of taking rn, , large. This is shown in Fig. 2.
The shaded area is bounded by two curves. One,
marked m, , '=1.57, is curve V in Fig. 1. The
other is obtained by increasing m~' to m, , '= 8.
This shows the sensitivity to m, , over a fairly
large range.

IV. COMPARISON KITH CHIRAL PERTURBATION THEORY

We wou1d now like to compare these loop cor-
rected results with the results of chiral perturba, —

tion theory which is based on the evaluation of
"nonanalytic" terms in expansions about Goldstone
realized symmetries. A good review of this work
is given by Pagels. ' There are a. number of sim-
ilarities and differences between this approach
and ours which are worth pointing out.

Li and Pagels" pointed out that the approach to
symmetry limits in general is not analytic in the
symmetry-breaking parameters but gives terms
such as e inc and E' '. This nonanalyticity can be
traced to the vanishing of the Goldstone boson
masses as the symmetry limit is approached.
For quantities in which the leading term is non-
analytic it is possible to calculate the coefficient
of such a term.

Let us first look at the prediction of f»/f„Ref.
1, Eg. (7.11),

(4.1)

(m» —m ) A
4m„+ 4m„—m~ = „„2„2 ln —2.

48m I, p,

This formula gives the right magnitude of the

(4.2)

A is an arbitrary cutoff, p.
' is the mean pseudo-

scalar mass'=0. 17 GeV'. For A. equal to the nu-
cleon mass, this gives a reasonable value f»/f, —1
= 0.2. What about our calculation? Our value of

(f»/f, —1) comes from two sources First t.here
is a large tree contribution, 0.29, plus a small
loop correction, 0.02 to f»/f, . We know that the
tree solution does not have a logarithmically non-

analytic piece. We also know that the loop contribu-
tion does. Very close to the SU, &SU, limit our loop
part should agree with Eq. (4.1) since the mechanism
for generating the nonanalytic behavior is present
in the one-loop graphs. In addition the cutoff will
be determined in a chiral-invariant way. Now,
does all this mean that we are in violent disagree-
ment with chiral perturbation theory? Should we
compare our loop piece 0.02 with their "nonanalyt-
ic" piece 0.2? The answer to both questions is
no; these are the wrong things to compare. The
point is that the loop contribution contains analy'-
ic pieces as well as nonanalytic pieces and we are
only reporting the sum. Since our result is nu-
merical it is hard to separate them and we have
not attempted to separate them analytically.

We can make a more meaningful comparison if
we bring in another prediction of chiral perturba-
tion theory, i.e., the Gell-Mann-Okubo mass dif-
ference, Ref. 1, Eq. (7.10),
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mass splitting if A/p' takes the same value as
above but gives the wrong sign as noted in Ref. 1.
If we combine the two predictions, Eqs. (4.1) and

(4.2), we get the point marked on curve IV in Fig.
1. Curve IV itself is obtained by eliminating the
undetermined cutoff from Eqs. (4.1) and (4.2) giv-
ing

It is this equation we should compare with the re-
sults of the o model. The discrepancy between
curve V and curves III or IV represents the effect
of contributions to these quantities from terms
other than the leading nonanalytic pieces, albeit
a model-dependent determination. It is gratifying
that this gives an improved fit.

~For a review, see H. Pagels, Phys. Rep. 16C, 219
(1975).

M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev.
175, 2195 (1968),
emote added in proof. In the limit fz/f ~

= 1, this equa-
tion reduces to Schwinger's mass formula [J.Schwing-
er, Phys. Rev. 135, B816 (1964)]. This formula was
recently rederived by S. Caser and M. Testa [Caltech
Report No. CALT-68-536 (unpublished)].

3J. Schechter and Y. Ueda, Phys. Rev. D 3, 168 (1971);
G. Cicogna, F. Strocchi, and R. Vergara Caffarelli,
Phys. Rev. D 6, 301 (1972).

4B. Kenney, Phys. Rev. D 8, 2172 (1973).
5L.-H. Chan and R. W. Haymaker, Phys. Rev. D 10,

4143 (1974). This contains numerous references to
other work on the SUS o model.

6P. Langacker and H. Pagels, Phys. Rev. D 8, 4595
{1973).

78. Gasiorowicz and D. Geffen, Rev. Mod. Phys. 41,
531 (1969).

8This js admjttedly perverse jf one regards Qv2 and g -v2

as matrices but welcome when one tries to remember
which index has which range. It also agrees with
Ref. 5.

9L. M. Chounet, J.-M. Gaillard, and M. K. Gaillard,
Phys. Rep. 4C, 199 (1972).

~ M. Ademollo and R. Gatto, Phys. Rev. Lett. 13, 264
{1964).

'S. Wada, Phys. Lett. 49B, 175 (1974).
L.-H. Chan and R. W. Haymaker, Phys. Rev. D 7, 402
(1973).

~3J. Schechter and Y. Ueda, Phys. Rev. D 3, 2874
(1971);H. B. Geddes and R. H. Graham, ibid. 12, 855
(1975).

~4P. R. Auvil and N. G. Deshpande, Phys. Lett. 49B, 73
(1974). For ease in comparison we point out that their
Eqs. (4), (5), and (6) correspond to (but are not identi-
cal to) our Eqs. (2.2a), (2.2b), (2.6a), and (2.6b). (We
deleted the ~ relations. )

~5K. G. Wilson, Phys. Rev. 179, 1499 (1969).
There is a typographical error which gives 2v 2 in this
replacement which is inconsistent with their numerical
values.
This counterterm is denoted Z& in Hef. 5, Sec. V.A.

~ We have translated their mixing angles into our nota-
tion. Eq. (3.2a), (3.2b) correspond to their first and
second Eq. (6}.

~~S. Weinberg, Phys. Rev. Lett. 13, 264 (1964).
See Ref. 1, Sec. VI, VIII.
~L-F. Li and H. Pagels, Phys. Rev. Lett. 27, 1089
(1971); Phys. Rev. D 5, 1509 (1972).


