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Discrete two-variable expansions of physical scattering amplitudes
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A model-independent method of performing energy-dependent scattering-amplitude analysis is presented. It
makes use of previously developed two-variable expansions of scattering amplitudes but involves only
summations and no integrals. The energy and angle dependence are displayed in known functions. The angle,
as usual, figures in Legendre polynomials; the energy is contained in Gegenbauer polynomials, if the data
analysis is performed over a finite energy region and in specifically constructed basis functions when the
analysis concerns the entire energy region. The purpose of the expansions is to make it possible to analyze all

data for a given two-body reaction simultaneously (for all energies and angles) and to store the obtained
information in the expansion coefficients. These then characterize the dynamics of a specific reaction, rather
than a certain kinematic situation.

I. INTRODUCTION

The aim of this paper is to propose and discuss
a new method for treating two-body scattering
processes. The method is a generalization of
ordinary phase-shift analysis and a modification
of relativistic two-variable expansions presented
earlier. ' ' The main point of the method is that
the scattering amplitudes are considered simul-
taneously as functions of two independent kine-
matic parameters, in the present case these be-
ing the center-of-mass-system energy and scat-
tering angle. The amplitudes are then expanded
into sums over known functions of the energy and
angle. These functions, having their origin in a
group-theoretical treatment of Lorentz invariance,
already possess some of the kinematical proper-
ties that follow from general principles of scat-
tering theory.

Generally speaking, the most complete physical
information that can be extracted from scattering
experiments is a reconstruction of the scattering
amplitudes as functions of energy and angle. Be-
low the threshold of inelastic processes this can
be done completely (with the exception of possible
discrete ambiguities due to the nonlinear charac-
ter ot the unitarity equations), since elastic uni-
tarity will supply the over-all phase that cannot be
directly observed experimentally. Above the in-
elastic threshold a "complete experiment" makes
it possible to reconstruct all amplitudes (except
for the over-all phase) directly from scattering
data, independently for each energy and angle'
(information on the over-all phase can be obtained
via unitarity only if all open inelastic channels
are studied simultaneously). For pion-nucleon
scattering the complete experiment involves

three measurements (say, the differential cross
section, recoil nucleon polarization, and one of
the Wolfenstein polarization rotation parameters).
For nucleon-nucleon scattering the complete ex-
periment involves nine measurements' ' (for each
energy and angle). Since some of the measure-
ments involved in the complete experiment are
difficult to perform, other methods of reconstruc-
ting the amplitudes are very useful. Conventional
phase-shift analysis is a classical example of such
a method. It has the advantage that it provides a
discrete parametrization of angular dependencies,
by introducing a discrete (and physically meaning-
ful) variable, namely the angular momentum.
Below the inelastic threshold it automatically
satisfies unitarity by taking the phase shifts to be
real; above this threshold the phase shifts are
complex. A problem with phase-shift analysis is
that it only parametrizes amplitudes for one fixed
energy. Data analyses must thus either be per-
formed separately for each given energy or an
energy dependence can be introduced using certain
models or assumptions. ' " For, e.g. , nucleon-
nucleon scattering, an additional problem is that
different physical quantities needed in the phase-
shift analysis are often measured at close, but
different, energies. The data must then be inter-
polated (or extrapolated) to a chosen energy, be-
fore they can be used in the analysis, thus intro-
ducing further errors.

Similar comments hold for other methods of
analysis, like Hegge-pole expansions, impact
parameter analyses, etc.

In this article we provide a model-independent
method for performing energy-dependent phase-
shift analysis. The starting point is provided by
the two-variable expansions, mentioned above. ' '
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The essence of the method, as reviewed in Bef. 1,
is that two-body scattering amplitudes were con-
sidered as functions over a Lorentz group. (or
Galilei group in the nonrelativistic case) manifold
and then expanded in terms of the basis functions
of irreducible representations of the corresponding
group. The dependence on both kinematic para-
meters (energy and angle, energy and momentum
transfer, transverse and longitudinal momentum,
etc.) is displayed explicitly in known functions,
whereas the dynamics of the process are carried
by the expansion coefficients, i.e. , the Lorentz
(or Galilei) amplitudes. The advantages of the
method are that a large degree of separation of
kinematics and dynamics is achieved, that many
general features of scattering theory are in..or-
porated automatically, that dynamical assump-
tions can be formulated in terms of the Lorentz
(Galilei) amplitudes, and that, in principle, all
data from kinematically accessible regions can be
treated simultaneously.

For three-body decays, when the kinematic re-
gion is finite (i.e. , the Mandelstam variables s,
t, and u vary over a finite region, namely the
Dalitz plot) the method is quite simple and leads
to a double sum expansion in terms of basis func-
tions of the rotation group O(4).' For scattering,
on the other hand, the physical region (say, of the
s channel) is infinite and expansions are perform-
ed in terms of basis functions of the noncompact
group O(3, 1) (in the relativistic case). This im-
plies that the expansions will involve at least one
integral, in addition to a sum, and possibly two
integrals (depending on the specific basis that we
choose). This feature is a definite drawback in
phenomenological fits to data. In the present
article we show how this drawback can be over-
come. More specifically, we present two princi-
pally different methods by means of which the
integrals in the expansions can be replaced by
sums. We consider expansions based on the
O(3, 1)& O(3) & O(2) reduction, where the compact
group O(3) provides the usual partial-wave expan-
sion into a sum over angular momenta whereas
the Lorentz group O(3, 1) provides an integral ex-
pansion of the partial-wave amplitude. The energy
dependence is then contained in specific Legendre
functions and the integration is over the "four-
dimensional angular momentum" cr associated with
the Lorentz group (see below).

The method of replacing the integral by a sum
(discretizing the expansions) depends on whether
the expansion is performed for a finite or infinite

energy region. If we only wish to treat scattering
over a finite energy region, say, from the elastic
threshold to the first inelastic one, we can project
the relevant section of the O(3, 1) manifold onto an
O(4) one and then expand in terms of O(4) basis
functions, thus immediately obtaining a sum (this
is like a transition from a Fourier integral to a
Fourier sum).

When treating scattering over an infinite energy
region (e.g. , from threshold energy to infinitely
large energies) we shall make use of specific
properties of the O(3, 1) basis functions. These
can be written as finite sums of hyperbolic func-
tions, thus making it possible to separate the de-
pendence on the energy variable from the integra-
tion variable cr and to actually symbolically per-
form the integration, introducing new expansion
coefficients and functions.

In the present article we restrict ourselves to
the scattering of spinless particles, but a general-
ization to reactions involving particles with spin
is immediate.

In Sec. II we present expansions for a finite
energy region and in Sec. III we consider expan-
sions valid for all energies. The conclusions and
future outlook are summarized in Sec. IV.

II. DISCRETE TWO VARIABLE EXPANSIONS FOR FINITE
ENERGY R.EGIONS

The usual partial-wave expansion of a spinless
scattering amplitude for the reaction 1+2-3+ 4
can be written as

f(E, 8) = g (2l+ 1)a,(E)P,(cos8),
L=O

where E and 6 are the center-of-mass-system
energy and scattering angle. The form of this
expansion is identical in the relativistic and non-
relativistic case and the rotation group O(3),
providing the Legendre polynomials P, (z) figures
as the "little group, " leaving the total energy-
momentum vector p, +p, invariant. The variables
E and 0 are treated asymmetrically, in that the
energy is contained in the unknown partial-wave
amplitude a, (E), whereas the dependence on 8 is
displayed explicitly. A more symmetric treat-
ment, as well as a greater separation of kine-
matics and dynamics, is provided by the Lorentz-
group expansion using the O(3, 1)& O(3) & O(2)
basis and supplementing expansion (1) as fol-
lows'

f(E, 8) = Q (2l+ 1)
l=o

dv(v+ 1)' A, (o) . ,&,P&, '„'(cosha)P, (cos8),I o —1+1 ' sinha "' (2)
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where

S+ m~ —Pl22 2

cosha =
2m~ Qs

S — tB~ + S22 S — BS~ —Pl 2

2'pR j s

s = (p, +P,)'= E'.

Here m, and m2 are the masses of particles 1 and
2 (they could be replaced by m, and m, ), P;(z) is
a Legendre function, I'(z) are I' functions (pro-
viding a normalization), and A, (o) are the expan-
sion coefficients, or Lorentz amplitudes. Expan-
sion (2) can be interpreted as being the partial-
wave expansion (1) supplemented by an integral
expansion of the partial-wave amplitude:

and the kinematic parameters of the reaction.
Indeed, 8 is the c.m. system scattering angle, we
have

sinha
sinP= . , 0& p &p/2

sinhamax '

and Q is an azimuthal angle on which the scatter-
ing amplitude does not depend. The scattering
amplitude can then be considered to be a function
of a point on this semisphere and expanded in
terms of O(4) basis functions, just as in the case
of three-body decays. ' The obtained expansion is

f(P, 8) = g (2I + 1)g a„,W„,sin'P
1=0 n=l

x C„'",(cosP)P, (cos8). (8)

6+i ~

a, (E)= do(o+ 1)' A, (o)
I'(o+ 1) In (8) C„'",(coso.) is a Gegenbauer polynomial, di-

rectly related to the Legendre functions in (1):

x, . h, &,P~,g'(cosha).
i.nha'j (4)

The parameter 5 determining the integration
path is related to the asymptotic behavior of a, (E)
[expansion (4) allows a, (E) to increase polynomi-
ally for E- ~ as E']. The elastic threshold
s =(m, +m, )' corresponds to a-0 in (4), and since
(sinha) ~'P~,g'(cosha) behaves as (sinha)' for
a-0, the partial-wave amplitudes have good
threshold behavior built in:

jsinnj'"

a„, are the expansion coefficients, and

;(,(, 2'"~'I'(I+1)

a, (E),~, (sinha)'.

u, =R(cosp, sinP sin8 cosQ,

sinP sin8 sing, sinP cos8) (6)

To facilitate phenomenological applications of the
expansion (2) we wish to replace the integral over
o in (4) [and (2)] by a sum. The representation
holds in the entire physical region 0 —a& ~,
0 & 8& m, but in this section (contrary to the fol-
lowing one), we consider the case when we wish
to apply the expansion in a finite energy region
only, for (m, + m, )' & s &s,„, i.e. , 0 & a & a,„.

The variables a and 8 [together with an addition-
al cyclic variable Q (0 & Q(2w)] parametrize a
"cup" on an O(3, 1) hyperboloid, rather than an
entire hyperboloid. ' The situation then becomes
very similar to that of three-body decays, treated
in Ref. 3. The finite section of the hyperboloid
can be parallely mapped onto an O(4) semisphere
of radius R = sinha ~ We then obtain a correspon-
dence between points on the semisphere

(n+ 1)I'(n —I + 1)
I'(n+ l+ 2)

(10)

is a normalization coefficient.
Thus, for energies satisfying

Eo-E-E-

a, (E) = Qa„,N„,sin'PC'„", (cosP).
n=l

(12)

Note that the factor (sinP)' assures the correct
threshold behavior for each partial-wave ampli-
tude. Note also that the energy variable used for
decays' was o. = 2P, rather than P, because then
0 ~ n ~ m, and a=0 and n =a correspond to a
threshold and pseudothreshold, both of which lie

where E, is the elastic threshold and E,„an arbi-
trary fixed energy, the partial-wave amplitude is
represented by a sum



DIS CRE TE TWO-VARIABLE EXPANSIONS 0 F PHYSICAL. .. 1279

on the boundary of the decay region. In the pres-
ent case P=m/2 corresponds to a=a,„and there
is no reason for a, (E) to vanish for l 40 at E = E,„.

Expansion (12) can now be directly used to fit
scattering data measured at all angles 0- 8 ~ m

and all energies E,- E - E,„ It would be of great
interest to investigate the stability of the coeffi-
cients a„, with respect to the choice of E ~ A
very natural choice would be E,„=E„where E, is
the first inelastic threshold (say, that of 1-pion
production in NN scattering}. The amplitude
f(E, 6) must then satisfy elastic unitarity, which
for the partial-wave amplitude implies

somewhat more complicated. Indeed, (12) and (13)
imply

e"'~ = 1+ 2ik ga„,N„,sin'PC'„", (cosP).
n=l

(14)

a„,e'"- a
n=l

= 2ik Q Q a„.,a„*;,y„., (P)!!„„,(P), (15)

Taking the square modulus of both sides of (14), we
obtain

a, (E}= (13) where

where the phase shift 5, (E) is real and k'= E'/4
2

Elastic unitarity for the O(4) amplitudes a„, is

X„,(P) =N„,sin'PC„"', (cosP). (18)

Making use of the O(4) Clebsch-Gordan coeffi-
cients"" we find

n n
2 2

n" n"
!!„,,(P)!t„„,(P)(1010

~

LO) =
2

[n'+ 1)(n" + I))'~'(21+ 1) g (N+ I)'~'
7r 2

(17)

N N I

where the curly-bracket object is an O(3) 9j symbol. " Substituting (17) back into (15) we obtain a set of
nonlinear constraints for the O(4) coefficients a„„ following from elastic unitarity,

(a„,e"'-a„*,)(l0l0~ LO) = 4& 2 ik g a„.,a„*„,(n'+ 1)'~'( n+ I)'~'
n', n" =L

)n'
l

2 2

&& P (N+ I)'~'
N 2 2 QQ

N I.
2 2

y„~(p)!!„*,(p) sin'p dp, (18)

valid for all L satisfying 0 & L & 2l. Both sides of (18) vanish if 2l+ L is odd. For even l (18) simplifies,
since we can choose I.=/. Then

(3l + 1)!(2l+ 1)(n+ 1) ' i' [(l/2)! ]'
(a„,e'"- a„*,) = — ik(- 1)'" l!(3l/2)!

n', n" =l

n'
2
)l

a„,,a„*„,[(n'+ l)(n"+ 1)]"
n
2

n'
l

2

l (19)

(l = even).
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To summarize, Eq. (8) can be directly applied to analyze scattering data for all angles and energies in
a finite region from the elastic threshold to any chosen E,„. If E,„ is chosen to be the first inelastic
threshold, then elastic unitarity provides certain constraints on the expansion coefficients a„„exhibited
in (18) and (19). The relations (18) and (19) are, of course, nonlinear. However, they involve only sums
and no integrals and are thus simpler than the unitarity relation for the total amplitude f(E, 8).

III. DISCRETE TWO-VARIABLE EXPANSIONS FOR ALL ENERGIES

If we wish to analyze data in the entire physical scattering region, the variable a in (4) varies in the
region 0- a(~ and no natural mapping onto a sphere is possible. Instead, we shall "discretize"expansion
(4) by making use of specific properties of the expansion functions. This will be performed in two different
manners.

A. Basis functions as elementary functions

The Lorentz-group basis functions (sinha) 'i'p;(i, '„i'(cosha) can be written as finite sums of elementary
functions. Indeed, using formula 8.777.1 of Ref. 13, representing the terminating hypergeometric series
by the corresponding sums and reorganizing terms, we find

,i, p, i2,', '(cosha) = — —, . „, (- 1)' sinh(o+ l+ 1 —2n)a.sin' 1 /2 1 2+6 2 sinha n=o n I' g+l -@+2 (20)

In particular, for l = 0 and l = 1 we have

1 , g, „ 2 'i' sinh(o + 1)a
(sinha)' ' ' '"

7( (o + 1)sinha 'p '', cosha =—

(
. „)«,p, i„',(cosha)=

( ),i, ( )( ) (
. „),[-(a+2)sinhoa+osinh(a+2)a].

We now wish to substitute (20) into (4) and formally integrate over o. To do this we expand
sinh(o+ l + 1 —2n)a into a power series and obtain

.,(.)= g g,.'„,H"—,', (- ) („')
m=0 n=O

I'(o' n+ 1) I'(a+ 1)— , , „a'""
) I'( +l — + 2) I'( —l+1) (o+1)'(o'+l+1 —2n)

We interpret (21) as a new expansion in terms of the functions

(21)

2m+1

( 'nh )'" (22)

with new expansion coefficients equal to

(m —l)! 2 1

(2m+1)! (( 2' „, ,„
I'(o+ 1) „ l I'(o+ 1 —n)

n=0 I

The coefficient (m —l)! in (23) was introduced for further convenience.
The sum in (23) is evaluated in the Appendix in terms of elementary symmetric functions. Using (AV) an

and (A8) we find

8, =0 for 0(e( l,

(m —l)!l! 2 'i' " "", I'(((+1)
+(m —

(2m+1)(
2 — ' ((y+1)'A, (o) I-(o I+1) P2(m-»(~)«i (24)
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where P,&„»(o) is defined in the Appendix.
Finally, we write the expansion of the partial-wave amplitude as

g»+~ ~ ] 2A' (25)

where B»,„are the new phenomenological amplitudes, related to the Lorentz amplitudes A, (o) by (24).
Comparing (25) with a Taylor expansion we can express the coefficients as

d2~ sinhg~+'
&.&+& (2y)t d ~ &&+&a a - a=0

(25)

Expansion (25) has the correct threshold behavior of the partial-wave amplitudes built in. Since the ex-
pansion should be used for all energies and since the coefficients B»,~ do not depend on energy, there is
no point in enforcing elastic unitarity. Notice that the sum in (25) will converge, e.g. , if all B, „~ are of
the same order of magnitude.

B. Basis functions as definite integrals

An alternative method of replacing the integration (4) by a sum is based on an integral representation
for the Legendre functions. Indeed, formula 8.715.1 of Ref. 13 gives

2 1/2
'"'/'&cosha& =-

(sinha)' ' ' '" ' ' ir) !!(sinha(" „ (cosha —cosht) 'cosh(o'+ 1)tdt. (27)

Substituting (27) into (4) and expanding cosh(a+ 1)t we obtain

~l(&)= +Dial (&)
m=o

where

(28)

1 -a
R,„(a)= . „„(cosha—cosht)'t~dt (29)

are the new expansion functions and

(30)

are the new coefficients.
The function R,„(a) can either be tabulated directly using integral (29), or it can be expressed in terms

of finite sums. To do this we expand (cosha —cosht) into a binomial series and use the relation

(cosht)~ = —
~ cosh(P —2q)t.

1 P
2

The integration then gives

R, (a)= . '„, (-1) ~(cosha)' ~—
x 1 —5& p —2q 'm', sinh p —2q g

—0"-0

m

cosh(p —2q)a
(2k —1)!

p g 2m+1

+5
p/2 (2m+ 1)! (31)
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a

a2l +2m+1

(-1)'(sinha)" 2' „h)2m+22+1'

The sum in (32) can be performed (see Appendix)
and we obtain

l! r(m+ 2)
(m( ) 2l+2 r( +[~3) (33)

A further relevant property of these functions
is that

cosha —1
i a2m+1

sinha ) (2m+1)sinha ' (34)

We should again note that the expansion functions
R, (a) have proper threshold behavior. To see
this, consider (29) for a-0. Expanding the hyper-
bolic functions in the integrand and keeping the
lowest nonvanishing terms, we have

the methods of this article have been generalized
to arbitrary spins. ' Work in this direction is in
progress; in particular, discrete two-variable
expansions of nucleon-nucleon scattering ampli-
tudes will be presented in the near future and
applied to analyze nucleon-nucleon scattering data.

The expansion functions are smooth functions of
the energy and are hence not particularly appro-
priate for a study of narrow resony, nces, bound
states, and similar phenomena. In data analysis
in the resonance region (e.g. , for 7)7) or mN scat-
tering) Breit-Wigner-type resonances should best
be considered separately.

Other two-variable expansions have been consid-
ered earlier, "' corresponding to the reductions
O(3, 1)& O(2, 1)& O(2), O(3, 1)& E(2) & O(2) [E(2) is
the Euclidean group of the plane] or to "nonsub-
group bases. "" The first of these physically cor-
responds to a generalization of Regge-pole theory
("momentum-transfer —dependent Regge-pole ex-
pansions"). These expansions, in general, in-
volve double integrals and we plan to discuss meth-
ods of "discretizing" these expansions in the near
future.

so that

limR, „(a)= 0. (35)

The expansion coefficients D, are independent of
energy (and angle) and the expansion (28) holds in
the entire energy region. There is thus no point
in enforcing elastic unitarity. Expansions (25)
and (28) should be used directly to fit scattering
data for all angles and energies simultaneously.

IV. CONCLUSIONS

The main result of this paper is a method by
means of which it is possible to perform energy-
dependent amplitude analysis in a model-indepen-
dent way. Fits to data can be performed over a
finite energy region [expansion (12)] or an infinite
one [expansions (25) or (28)]. The expansions
involve sums only and the expansion functions
demonstrate proper threshold behavior. All data
for a given process should be taken at the energy
and angle where the measurement was performed,
without any further interpolation (or extrapolation).

In this paper we concentrated on the scattering
of spinless particles only; however, the general-
ization to arbitrary spins should be straightfor-
ward. The O(3, 1) and O(4) expansions underlying
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APPENDIX. EVALUATION OF CERTAIN SUMS

1. We wish to evaluate the sum

!t(l,m)= g (-1)" „r 2
(o+I+1 —2n)'""r(o+ 1 —n)

1" v+I+ 2 —n

figuring in (23). To do this, consider the path
integral

z'""I'(z '(o+ l+ 1))—1—(z+ —'(o —I+ 1))
)I I'(z ——,'(o+ l+ 1)+ f+ 1)1(z+-,'(o —I+ 1)+ I+ 1)

(Al)
along a circle in the z plane containing all the l+ 1
poles of the ratio of the first two I' functions and
the l+ 1 poles of the ratio of the second two I'
functions. The integral is equal to 2mi times the
sum of the residues of all poles enclosed, i.e. ,

I= 2@i
(- 1)"I'(-n+ o+ 1) o+ l+ 1

„,n! (l —n)! I'(- n+ o'+ (2+ 2) 2
~

~

(- 1) (-sNl—n —1) —n+1 —1 )'
"

, N! (l -N)! r(-N —o'+ l)
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Transforming the second sum we show that it is
equal to the first one. Hence

Substituting (A5) into (A4) we find

. y(l, m)I = 4m (A2)

+2m 1 2l S

S=0

It is now necessary to evaluate the integral (Al)
directly. Using well-known properties of the I'
functions we find

= 2~zP,(„,&(n),

since the contour integral is nonzero only if
s = 2(m- I). Finally, we obtain

where

2m+X-2i-2
g2l+2 (1 & /&)

! (A4)
X(l&m) /t 2 Pg i)((x),

In particular, we have

X(l, m)=0 for m&l.

(A7)

(A8)

k 21+3-k
v —l —1+ 2k

2. The sum

The fraction in (A4) can be expressed as a product
of geometrical series in terms of elementary sym-
metric functions":

(A9)

in (32) can be calculated analogously. Indeed, the
integral

where

k P ~ g~S (A5) " 1 I'(-a+m+-,')I= t)—
z I'(-x+m+2+I+1) (A10)

P,(n)=0 for s&0,

Po(o. ) = 1,

P,(n)!= g a, ,
i=1

P,(n) = Q n, nq,
i~j

(A6) I'(m+ 2) (- 1)»
!'(m+ l+-;) =, !:!(!—0)!(I+k+-,'))'

(A11)Hence

calculated around a circle encompassing all poles
of the integrand is according to the above method
equal to zero. Using the Cauchy theorem we ob-
tain

P,(n) = o., o., " n,- for s&0.
i 4i Ce ~ ~ Ci '1 2 S

1 2 S

( )
I 1 /! I'(m+ ~)
k 2m+2k+1 2 I'(m+1+ —') '

(A12)
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