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We examine the photoproduction of the Q(3095) within the context of the assumption that the Q contains a
pair of new fundamental constituents. Using an inequality based on unitarity, we derive a lower limit on the
cross section o.(yp ~DD+ anything) ~ 300 nb where the D's are hadrons carrying the new constituent bound
to ordinary quarks. This suggests that it should be possible to detect D's from their leptonic decays in y
beams. Comparing the unitarity relations for yp imp and Qp imp, we predict corrections to the vector-
dominance hypothesis so that cr„t(fp) is about a factor of two larger than expected. We discuss briefly the
precision necessary for experiments on nuclear targets to test this prediction.

I. INTRODUCTION

Recent measurements of g photoproduction at
Cornell, ' SLAC, ' and Fermilab' have clarified and
sharpened our understanding of the properties of
the new particles. It is particularly significant
that experimental measurements of the pseudo-
elastic cross section

do/dt(yP - Pp)

are larger than the upper limit implied by non-
hadronic models for the g particles. ' This sup-
ports the idea that the g particles experience the
strong interactions, and in this paper we will
adopt the most popular of the strong-interactions
models for the new particles. We will assume that
the g and g' are bound states of a quark antiquark
pair carrying a new quantum number. For con-
venience, we will call this quantum number charm
but our results are more general than the usual
SU(4) model.

The fundamental prediction of the generalized
charm model for the $(3100) and $(3700) is the ex-
istence of new hadrons carrying a conserved quan-
tum number. As this is being written, there is as
yet no conclusive experimental evidence of these
charmed hadrons but there are a number of in-
direct indications they might exist. ' We intend to
explore the implications for g photoproduction of
the existence of these new particles. Our results
are insensitive to the symmetry group in which
the new particles are classified' and to their de-
cay modes. The properties we do assume for
these particles are as follows:

(1) They are massive. The meson masses be-
gin in the range of 2 GeV. This value is approxi-
mately determined by the narrow width of the
r/r(31 0)0and $(3'100) and the location of the "thresh-
old" rise in It = v(e'e - hadrons)/o(e"e"- p, 'p ) at

around vs =4 GeV.
(2) They interact strongly with both the g's and

with ordinary hadrons subject to the restrictions
of the Okubo-Zweig Iizuka' (OZI) selection rules.
These rules restrict the class of quark-line duality
diagrams which can contribute to strong-interac-
tion amplitudes. Basically, the constraint is that
a quark-antiquark pair in the same hadron cannot
annihilate each other.

(3) They carry an additive quantum number
which is conserved in the strong interactions.
They therefore decay either electromagnetically
or weakly and are formed in pairs through the
strong interactions.

Using these properties for charmed particles,
we construct a model based on a peripheral ap-
proximation to unitarity for the imaginary part of
the elastic PN amplitude. By looking at this mod-
el amplitude as a function of the mass of one of the
external P legs, we conclude that the usual vector
dominance- model assumption' which neglects the
off-mass-shell dependence of the scattering am-
plitude should be modified. Our best estimate of
the quantitative value of the modification gives the
result that the physical gN total cross section
should be about a factor of two larger than that
implied by the vector-dominance model. We point
out that it is possible to test our results by mea-
suring the A dependence of P photoproduction on
nuclear targets or by measuring the q' dependence
in electroproduction experiments. Our model for
the gN amplitude can be applied, with trivial mod-
ification, to the PN amplitude where we also find
a correction factor which modifies the usual vec-
tor-dominance expression. Interestingly, this
factor produces a value of v„„(QN) which agrees
with the simple additive quark model. '

We also present an analysis based on unitarity
which demonstrates the strong connection between



HADRONIC MODE LS FOR THE PHOTOPRODUCTION OF g's 1235

the photoproduction of the P and g' and the photo-
production of charmed particles. ' This relation-
ship can be conveniently expressed in terms of
lower bound on the product of the cross section for
the production of charmed particles in a photon
beam and the gN total cross section. Using our
best estimate for o'"(gN), we get

+rp»chmm & 300 nb

at Fermilab and in the upper range of energies
available at SLAC (EL„s ~ 18 GeV). From this
value and estimates for the semileptonic and lep-
tonic branching ratios of charmed particles" we
can see that the decay of charmed states should
provide a significant contribution to the inclusive
cross section Edo/d'p(yN - e + anything).

One implication of the vector-dominance assump-
tion which is not changed substantially by our
modifications is that the ratio o„(pN)/o'«t((N) must
be a very small number (approximately 0.02-0.04).
In this respect, the behavior of the g is anomalous
since for all other known hadrons the ratio &x„(kN)/

o„,(hN) is about —,'. We make some effort to un-
derstand the implications of this anomaly. We
find, for example, that the application of simple
ideas based on duality imply that the cross section
for the diffractive breakup of the P into a pair of
charmed particles should be small compared to
the elastic cross section. Since this is just the
opposite of what we would infer from the small
ratio o"(PN)/o«t(PN), it would seem that it is im-
possible to naively extend dual models to the g in
this manner.

The remainder of this paper is organized as
follows: In Sec. II we discuss the available data
on g photoproduction within the framework of the
vector-dominance model and define a factor which
measures the off-mass-shell behavior. We then
briefly discuss how this factor can be determined
experimentally from the A dependence of nuclear
photoproduction. In Sec. III we present our model
for the off-mass-shell behavior to calculate this
factor. Section IV develops the inequality for
0»,„and Sec. V contains a brief discussion of
dual models. Finally, in Sec. VI, we summarize
and present our conclusions.

II. DATA ON V PHOTOPRODUCTION AND THE

VECTOR-DOMINANCE ASSUMPTION

We would like to discuss the data on g photopro-
duction in a framework which is compatible with
the vector-dominance model' but which allows ex-
plicitly for the possibility that the coupling of a
photon and a P may be different at q' =0 than at
q'=m~'. We therefore write the equation

do/dt(yN PN) =
4

—,X'[do/dt(PN- PN)], (2.1)

where

y~'/4v =2.8 +0.3

is determined from the SPEAR results on
r(y-e.e-)."

The factor

(2.2)

A(pN-pN) = o""(( N)e s'~'(i+p)q~„V s, (2.4)

where p = Red/ImA, q„„ is the gN c.m. momen-
tum, and the optical theorem constraint at t = 0 is
built in, we can then write

—(gN gN) = (1+p')es'.
dt 16m

(2.5)

We can then use (2.1), (2.2), and (2.5) to infer the
value of

X(1+ p)'~' „o,(g N)

I4y„' „der i/2

4n dt
16ne ~'m~ —(yN- PN)~ . (2.6)&max

In Fig. 1, we have taken data from Cornell, '
SLAC, ' and Fermilab' and plotted this quantity.
We have used the SLAC value for the slope of the
differential cross section

B=2.6-2.8 GeV ' (2.'t)

at Fermilab energies. The experimental papers

y~(m„') A (g(q')N —PN) ~,2, (2.3)
y&(0)A(g(q')N- gN)~, , „~

measures the variation of the photon-g coupling,

y&, with q' and the off-mass-shell extrapolation of
the invariant amplitude. We are making the as-
sumption that this factor does not depend sensi-
tively on s and t. We do not here try to distin-
guish the two, possibly related, dynamical origins
for X but we will have some comments on this la-
ter. As it stands, Eq. (2.1) is not terribly useful
unless do/dt(yN- gN) and do/dt(gN- gN) can be
measured separately, or unless X can be esti-
mated in a particular model. The traditional ap-
plication of Eq. (2.1) comes from the vector-dom-
inance assumption X= 1 which allows us to infer
do/dt((N gN) from a measurement of the photo-
production cross section. This assumption has
been found to be valid in p and (u photoproduction'
but some hint of the necessity for corrections to
it may be inferred from the trouble that naive vec-
tor dominance has with data on electroproduction. "*"
In what follows, we will explicitly display the fac-
tor X in most of the formulas.

If we, for simplicity, parameterize the spin-
averaged amplitude for PN- gN in the form
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where we have averaged over the possible differ-
ences in the t dependence of the real and imaginary
parts of the amplitude. Inserting into Eq. (2.6),
we get

o"(gN) 1 (1+(p'))
o'"(iriÃ) BX (1+p ')' '

~max

0
IO 20 30

EZ (GeV)

l

50

4 ' ea'm~ dox —~ —(gN iliN)
47' 16m dt &max-

(2.11)
FIG. 1. The value of (1+p ) Ao;„gN} determined

from data on g photoproduction. The Cornell data are
from Ref. 1, the SLAC data from Ref. 2, and the Fermi-
lab data from Ref. 3.

should be consulted directly for details concerning
the measurements but we note here that there may
be some uncertainty in isolating the elastic com-
ponent in experiments which were designed pri-
marily as inclusive measurements.

In particular, the shallow slope inferred for the
differential cross section at SLAC and Cornell
may indicate a preferential contribution from in-
elastic channels to the measurements at large t.
We might infer that the slope of the elastic cross
section should be larger than that for a pointlike
particle scattering from a nucleon, i.e.,

B & —lnE'(t)
dt t &g&

(2.8)

where E(t) is the spin-averaged nucleon form fac-
tor and (t) is the average value of t which reflects
the range where the slope is measured. Inserting
the dipole approximation for the nucleon form fac-
tor, Eq. (2.8) reads

B a 5.6(1 —(t)/0. 71)-', (2.9)

and a measured value of B smaller than this is a
strong indication that some of the data are from
inelastic channels which have a shallower slope.
We note here that the SLAC estimate of a 20%
contamination from inelastic channels is made at
t =t~. The fraction of the data at more negative
values of t which is inelastic may be much greater.
We make no effort to correct for this possible
underestimate of the slope but one place where
the actual value of the slope is important is in
the estimate of integrated elastic cross section.

Within the context of the vector-dominance
framework, we can also infer the ratio of the
elastic to total cross sections for itiN scattering.
Using Eq. (2.4), we can write

If we assume that, at high energies, p-o, we find
that the data imply a small value for this ratio

(1.3 + 0.4 x 10-')
o'"(gN) A.

(2.12)

It is of interest that for all other known hadrons,
the ratio of elastic to total cross sections turns
out to be considerably higher

0..., (pp, ~p, &P, pp, ~p, Ap) = 01-o 2. -(2.13)

This means that if A, =—1, so that vector dominance
is approximately correct, inelastic channels must
play a significa. ntly different role in PN collisions
that in mN collisions. It is notable that analysis of
the experimental data on g photoproduction sug-
gests that it is not those inelastic channels con-
ta, ining g's which contribute the bulk of the total
cross section.

If we make the usual assumption that the ici is a.

bound state of a quark-antiquark pair where the
quark carries some new quantum number, appli-
cation of the OZI selection rules suggests that the
final states in r/iN collisions should usually contain
these new quarks. Since (2.11) and (2.12) suggest
the quarks are not bound to form a g, we can form
the estimate

a""(gatiÃ) —= o(PN -DD+ anything), (2.14)

—= A. 500 nb (E„~ 18 GeV).

(2.15)

We note that the identification of the gN total
cross section with the cross section for the pro-
duction of new particles is consistent with the fact

where D and D are used as generic names for
particles carrying the new quantum number. Ap-
plying vector-dominance ideas to the photoproduc-
tion of these new particles, we would estimate

otot (yN)o(yp-DD+ anything) =—, o(yp- gN)
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that the g photoproduction cross section appears
to exhibit some threshold behavior in the region
between v s =4.6 and V s =5.5. It is only above the
threshold for the OZI-rule-allowed inelastic chan-
nels that the elastic amplitude can develop its full
magnitude and diffractive character. The energy
dependence in Fig. 1 can be contrasted to the situ-
ation in Q photoproduction where the data show re-
markably little energy dependence from threshold
to high energy. " We will discuss the cross sec-
tion for the photoproduction of these hypothetical
charmed particles at more length in Sec. IV. We
will also return in Sec. V to the problem of de-
termining under what circumstances we can esti-
mate independently the ratio o'~/o't'~.

The A dependence of nuclear photoproduction

It is possible in principle through measurements
of photoproduction on nuclear targets to obtain in-
dependent information on the size of o'"(gN). It is
interesting to see how precise the experimental
measurements must be to detect the possible cor-
rections to vector dominance. Using the Glauber
scattering formalism" we can characterize the
effective number of nucleons per nucleus in a P-
photoproduction experiment

rectly and write

2w
A. gg toggN) g 2 y(2 KR )

where

(2.20)

z = Ao'"(gN)
2

3

.o'"(CN)3
2«o (2.21)

is the inverse mean free path of P's in nuclear
matter and y(a, x) is the incomplete y function.
Since o~"(gN) is assumed to be small, we can
approximate for small &R

A "~—=A(1 —8 KR)

(2.22)

dg '(PA-+) A"'
Ad (/oN - gN) A

For typical values of o(gN), we see the plot of
A,«/A in Fig. 2. . We see that measurements of
A,«/A formed by taking the ratio of the incoherent
nuclear cross section to the nucleon cross section,

A„,= „, (1 —exp[—o'"((N)T(b)] jd'b,

(2.16)

where

T(b) = A p(b, z)dz,
s' «OQ

(2.17)

p(b, z) is the nuclear density and A the nucleon
number. In the limit that o'~" (t/)N) is small, nucle-
ar matter is transparent to g's and A.,« =—A.

We note that an experiment on a nuclear target
which measures cross sections outside the co-
herent nuclear peak should measure cross sec-
tions I.O

I I I I I I I II I I I I I I I II
cr~" (mb)

0

can distinguish X = 2 from X =1 if these are accu-
rate to within 5%.

A more careful treatment of this ratio using
realistic %ood-Saxon nuclear densities and phe-
nomenological radii can be done but the calcula-
tion presented here gives a rough estimate of the
importance of rescattering effects and establishes
the feasibility of determing experimentally whether
or not corrections are needed to vector dominance.

ga 11LC cfo'
(yA gA) =A.„,—(yN gN), (2.18)

while within the coherent peak, the cross section
is proportional to (A,«)'.

We can estimate the effect of o"t((N)
= (I/X)o'"vector dominance = (I/X)1 mb on nuclear
targets by using a simple hard-sphere model for
the nuclear density:

0.9

0.8

7'(b) =A (R b~)~~2'
=0, b&R (2.19)

0.7
IO IOO

where R = r, A'~' (for r, = 1.12 fm) is the nuclear
radius. Using (2.19) we can integrate (2.16) di-

FIG. 2. The hard-sphere model for nuclear densities
and the estimate of A„,;, /t'A using Eq. (2.21) for different
values of ~„,(gN).
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III. A MODEL FOR THE CORRECTIONS TO VECTOR

DOMINANCE

We have indicated that, in view of the large
range of q2 involved in the vector-dominance ex-
trapolation, the factor X defined in Eg. (2.3) may
be substantially different from unity. We turn
here to the problem of estimating this factor. We
assume that the i/i couples strongly to particles
carrying a new quantum number and, in agree-
ment with the discussion in Sec. II, that channels
containing these particles dominate the unitarity
integral for the yP - i/i/i and i/i/i - i/iP cross sections.
We make a peripheral approximation to unitarity
in order to evaluate this integral. Since unitarity
is the operational principle in this calculation,
only physical particles are involved.

Charmed particles and the peripheral approximation
to unitarity

First we assume that we can approximately
factorize the amplitude for the process i/iÃ-Mir
+BIT+K in the form suggested by the diagram in
Fig. 3(a):

4ii «Ns«DB «N An''g «DD(sDt ~D)R(fl)

2
PAs Ill/

2
pB, rnN

ko

0
ko

ko
0

I

k2

k M

kN

(o)

I 2
PA, m~

2

( I

&2

I 2
PB, mN

(b)

so =(ko+ ko)

t~ = (P&-ko-k&}

tz=(Pp kp ko}
s'= (Pg+Ps-ko-k-)

AmN «Nw «N( ~j )~ (3.1)

where A~, „~~ is the amplitude for a Reggeized n

and a i/i to produce a DD pair, R(t,) is a Regge
propagator, and A,~.~, ,„is the amplitude for
mN- Mz+¹ This factorization is motivated by
the success of the Amati-Bertocchi-Fubini-
Stranghellini- Tonin type of multiper ipheral model.
We will discuss later the consequences of choos-
ing another type of exchange. As usual, we ne-
glect the dependence of the amplitudes on the

FIG. 3. Diagram (a) demonstrates the multiperipheral
configuration assumed for the process gN —DD +m 7)

+N. Diagram (b) labels the kinematic variables appro-
priate when we insert the diagram (a) into the unitarity
expression for g~N —$2N. We assume we can do this
both for yg~ =0 (photoproduction) and ~~ = @pe&i
(physical gN scattering) .

(mass)' of the Reggeized pion.
The next step is to assume that this peripheral

configuration of intermediate particles dominates
the unitarity integral for i/Ã i/iN, and write

DiscAs, „„,„= 1 . ( ), 6"(kii'-m~')(2 ), 6"(kp' —ma')A„„, ~p(s~, e~)A,*„~p(sD,OD)R(t, )R(t,)

2X(si„mw
& mN ) tot/ (3.2)

where

X(x, y, z) = [x'+y'+ z' 2(xy+xz +ye)]'i' (3.3)

and the other kinematic variables are defined in Fig. 3(b). This peripheral approximation to the unitarity
integral implements the constraints of the OZI selection rule and the assumption that those inelastic chan-
nels not directly involving a i/i dominate the total cross section. As before, we use D and D as generic
names for particles carrying the new type of quark bound to a u, d, or s quark. Our result will not depend
sensitively on the number of these new particles or the details of their spectroscopy. The only assump-
tion we make here about the new particles is that they are heavy,

mD=—2 GeV. (3.4)

We want to study the dependence of the discontinuity (3.4) as we continue one of the external i/i's off mass
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shell to the q2 of the photon. There are two separate types of dependence on m&
' in Eq. (3.2). The ampli-

tude 7),g, -DD can depend on the mass of the g and the region of integration can depend on m&,
2 through the

variation of the region of integration and

—(s~ - m2 )(s d -m„)
~1 s (3.5)

If we parametrize

tt() (d2) DB (q ) ttt(t D1J &
(3.6)

with Zm& =1, we can examine the second type of variation separately. Using the complete set of unitarity
relations, we might hope to solve for both X and Z but we will not attempt this here. After some mani-
pulation, we can write

discds s „z(ms, ') f dsdts s(sm, ', ,ms')c s„s(s )R(t,)R(t )

x X(s t, m, ', m„')o,"„'(s')8(lns —lns' —lns~ —c)

4 4 I
(3 '1)

The 8 function represents the constraint that the interval in rapidity space between the D and D plus the
interval spanned by the pions cannot be greater than the total rapidity available. At fixed s~, s the quan-
tity in square brackets is merely the two-body phase-space integration with SD and s playing the role of
masses. We can express this in terms of integrals over t, and I;2 and write

discA&, „& Z m&,
' dsDds'X SD, m, ', m&' a,&„~~ SD X s, m, ', mN' O, N

s' 8 lns —lns —lns~ —c

X dt,dt, R(t,)R(t2)/( &,)'~2, (3.8)

where &, is the symmetric Gram determinant defined by &, = &,(s, t, t„t„m2 2, m
&

', m„', sD, s '),

2s

2 2S + Ply —PlN1
2 2S + S2~ —SlN

2

S +S~ —SI

S + S2g —1ÃN
2 2

1

2&l
1'

Pl/ + BZg
2 2

rn~ +SD- t2

S + Pl~ —PtlN
2, 2

2

Ply + Vlg
2 2

1 2

2kB~

2
kg + SD ~22

S+SD —S'

2 + SD —t11

2
Bl~ + SD —g2

2SD

(3.9)

and the region of integration in t„t, is the interior of the ellipse defined by the equation (di, (t„t,) =0.
make the approximation that the Reggeon propagators in (3.8) are exponentials,

R(t )R(t ) =e"'""&

we can do the t integration in closed form (See, f.or example, the discussion of Qyckiing and Kajantie. )
In the limit of large s and t=t we can write

(3.10)

where t, ~2 are given by Eq. (3.5). In this limit, therefore, we have the expression

iim d'scds „s„Z(ms ') f ds ds'S(s, m, ', ms')s, „s(s )
$A 00

'='max

x g(s t m 2 m 2)+tot(s I} exp I)
~ D ()1 '$2 ~ ~ N )(2s ~ ' ~ 2)(s~ m'-

N AN AS s J

x 8(lns —lns' —In' —c). (3.11)
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We now make the approximation that o't}'}}t(s') is approximately constant over the entire region of integra-
tion so that

o'"(s')X(s's m, ', m ') =—(s' —m„')P"" (3.12)

By using the high-energy expansion throughout the region of integration, we have made the assumption
that this gives the average value of the integral. The s' integration runs from m„' to ds/sD, where d is a
parameter determined by the average transverse momenta in the multiperipheral chain. We can express
the s' integration in terms of an incomplete y function and write

S2
discAq, g &,N„Z(m„') dsDX(sD} m, }mg )(T,g Djj(SD)b, d2 2 2)25s 5 (2sa —Plg —Pl~1 2

(2sD —m, —m, )

Sg)

(3.13)

Since b determines the cutoff in f, and t, and d is related to the average transverse (mass)', we expect the
dimensionless product, db, to be a number -1 which is comparatively insensitive to our assumptions. If
we denote

r =r(s~) = (2s~ —m„,
' —m~ ')/s~,

we have

(3.14)

dissds „s s Z(ms *},J dssX(ssm, ', ms *}s,,s ss}ss}ss '}s 'y(.2, dbs}] (3.16)

Fixing m& '=m&'=9. 6 and varying s~ from 4m~'
= 16 to infinity, we see that x varies from

r(~) =2.
(3.16)

The quantity in curly brackets is therefore slowly
varying over the region of integration, while

It is interesting to note that a similar value for
the suppresion factor A, has been calculated by
Pumplin and Repko. " They treat the g as a non-
relativistic bound state of the new quarks and their
results depend on this detailed dynamical assump-
tion.

I.O

X(sg&s m~ }mg )o~}}}DQ(sD)sD sD (3.17)
0.9

where nD is the intercept of a typical charm-ex-
change trajectory which we take to be low,

nD &0. (3.18)

Using the mean-value theorem, we can therefore
approximate

DiscA~, „„,~~ Z(m„')vsIr, „'y(2, db~,„)]
(4m ')' ~ '

x
2 —2QD

and the ratio (2.3) can be given by

A(mq, ' = 0)
A(m~ '=m~')

(8mD' 2m~')' y(2, db(2 —m~'/4mD'))
(8m~'- mq')' y(2, db(2 —mq'/2m~')) '

(3.19)

(3.20)

where we have neglected any variation in Z(m&').
The value of the ratio as a function of the para-
meter db is plotted in Fig. 4. For reasonable
ranges of the values of d and b, the factor A. is

1al ound g ~

0.8
CLo 0.7
(3~ 0.6

o 0.5

w 04
CC

cL 0.5
(/)

0.2

O. I

0 I I I I ( I l I I I I I I I I I I

0 I 2 5 4 5 6 7 8 9
db

FIG. 4. The suppression factors for yN-gN, yN—QN, and yN —lI)' N calculated in the peripheral unitarity
model as described in the text. The parameter db is
expected to be near unity since d measures the average
p z2 and b gives the falloff in t of the propagator but
we display the dependence on this parameter to show
how sensitive our results are to variations in the
assumptions of the form of the matrix element.
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B. The continuation in F5 photoproduction

We can do an analogous calculation for the continuations involved in
hatt photoproduction. In that case, we

write the expression

dissa„, „„Ztm, '), J ds, t(ss, m, , ms')s„.sS(ss)ss'

S 2 2S PPg
2 Vl

(2' —m~ —m~ ) sr
(3.21)

The quantity in square brackets againvaries slowly
throughout the region of integration but the inte-
grand vanishes at sr = (m~,+m, )2 and attains its
maximum value near s~ = 3m~' = 3 GeV' and not at
threshold. Again, we can estimate the variation
with m&' by using the mean-value theorem to ap-
proximate the integral,

A (m~,
' = 0)

pendence in ttt photoproduction justifies its use in
tjt photoproduction even though the range in q' over
which the extrapolation is made is much larger.

The expression (3.20) can also be used to give
an estimate for the suppression in tjt'(3684) photo-
production if we again make the assumption that
the cross section for ng'-DD peaks very near
threshold. This factor also is plotted as a func-
tion of db in Fig. 4. Using SLAC data on g' photo-
production, we therefore estimate

(4m, ')' X(2, db(—', m~'))
(5m, ')' ~(2, db(—", m, ')) ' (3.22) oto~(g'N) —= 1.5 (mb) .

(3.24)

Using the measured value of the I"(tjt - e'e ) (Ref.
17), we have

2

= 3.1 +0.3
4m

(3.25)

or

y&2 =0.61 +0.12,

X =0.78+ 0.08. (3.26)

Data on a'"(tttN) from the nuclear A dependence
gives"

at'"(bN) = 12.0 + 3.9 mb, (3.27)

which provides some support for the quark-model
result but is also consistent with X~= 1. We be-
lieve that the fact that our unitarity model ap-
parently gives the right magnitude of the q' de-

The value of this suppression factor as a function
of the parameter db is plotted in Fig. 7. We note
that if we take db near its expected value of 1, we
obtain a suppression factor X~ —= 0.8. This value of
A, ~ helps resolve a long-standing conflict between
the quark model and vector dominance. Using the
quark- model estimate

&t.t, (AP) = &t,t(&'P) + &t.t(A"~) —ot,t(~'P)

(3.23)

we can use the analog of (2.1) and (2.6) to fit data
on Q photoproduction, and get'

We note that the suppression factor calculated
here has a similar physical origin to the factor
calculated by Aviv et a/. " in the context of a slight-
ly different model. One important difference is
that their suppression is much stronger for tjt

photoproduction than for P photoproduction, while
our approach is consistent with what is known
about both systems.

If we modify our z-exchange model so that in-
stead of (3.1) we let a Reggeon with intercept o.

be exchanged, the largest correction to (3.20) in-
volves the intercept in the form

(8m~' —2m~')' '~ y(2 —2o. , db(2 —m„'/4m~'))
(8mD'- m&')' '" y(2 —2n, db(2 —m&'/2m~'))

'

As the intercept, n, approaches 1, the factor X

becomes identically 1 and there is no dependence
on the mass of the external leg.

IV. THE SCHWARZ INEQUALITY AND

PHOTOPRODUCTION

There are some manipulations we can perform
on photoproduction amplitudes without invoking
directly the vector-dominance concept. One of
these, which we will discuss here, illustrates
the power of the OZI (Ref. 7) selection rules by
deriving a connection between P photoproduction,
the photoproduction of charmed particles, and
o tbt (qN )

Suppose we begin with the unitarity relation,
indicated in Fig. 5(a),
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iI&rPIA'I yP& —&OPIA IIP&]

= —(22))'g&rPIA'I m&&~IA I qp&6" (&; -&y).

(4.1)

In the forward direction, we can then use Her-
mitian analyticity and time reversal to write the
left-hand side of (4.1) as the imaginary part of
the nonf lip amplitude,

2 ImAy p ~p(s, i = t,„)

= (»)'g&rPIA'l~&& ~ IA I
eP&6"'(I'; —&g).

(4.2)

disc

mc
contains
charmed
qua rks

(a)

(b)

+ Z
rn'
no

charmed
qua rks

= g &rPIA'Im, &&m, IA-I(IP&
Ptc

(charfned)

+ g &rPIA'I ~'&& m'IA
I PP&,

(no charmed
quarks)

(4.2)

where m, denotes those states containing at least
one cc pair and m' are those intermediate states
without charmed quarks. We now use the fact
that the OZI (Ref. 7) selection rules suppress all
the diagrams in the second sum. We do not have
a perfect understanding of how big the suppression
will be, so for the time being we simply param-
eterize it in the form

g&rPIA'I ~&& ~IA-I qP&

-(I+e)g&rPIA'jm. &&~. IA I gp&, (4.4)

where e is some parameter which bounds the pos-
sible violations of the OZI rules. We will not

Now on the right-hand side of (4.1) and (4.2) we
want to divide the sum over intermediate states
into two parts reflecting our dynamical assump-
tion that the (I is a cc state, where c and c are
quarks carrying a new additive quantum number.
This separation is indicated in Fig. 5(b), where
we isolate those states containing charmed quarks,
either bound together in a (t&, (I)' or separated in the
associated production of a pair of charmed had-
rons

mc

P P

(c)

FIG. 5. Diagrams which indicate the steps leading
up to the inequality (4.11). Diagram (a) illustrates the
unitarity equation for pp —|I)p. Diagram (b) demon-
strates the breakup of the sum over intermediate states
in the unitarity equation into two parts. The first con-
sists of those states which contain charmed quarks and
are allowed by the OZI rules. The second set of inter-
mediate states is suppressed by the OZI selection rules.
Diagram (c) illustrates the application of the Schwarz
inequality to the first sum.

discuss in detail. the problem of estimating & but
we believe it to be small. We now note that the
right-hand side of (4.4) defines a scalar product
in the Hilbert space of all those states containing
charmed quarks. Since the photon is assumed
to couple to charmed quarks with a typical electro-
magnetic coupling, we can include the state lrp)
in the space. We can then use the Schwarz in-
equality to write

Q&rPIA" I m, && ~.IA I OP&-ll&rPIA'll, IIA I eP& II.,
mc

(4.5)

where we have used the subscript c to denote the
norm defined on the OZI-rule-allowed subspace.
Combining (4.4) and (4.5) and inserting into (4.2),
we have

2 lmA~, ~,(s, i = i,„)-(2~)'(I + ~) ll&rPI A'll. IIA I &P) II. 6'"(&,- &;).

Taking the s(luare of the absolute value of each side of (4.6), we have

2(tmA„, gp)'-(2w) ((+e)'(P& 2IA Im&&2)A )22& mP'&22IA'I &&m IA I 22m&)(2'(2', —2';)I'.
mc 78

(4.6)

(4.7)
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We can use the fact that momentum is conserved for each subset of particles to write

"'7(P/ —P;)6"7(P/ —P;) =6"7(P/ —P )g"7(P,- —P„)
so that we have

4[lmA» ~p(s, t-,„)]'~(1+c)'[4qy p s' 'gy p, „,„(s)][4qpps" 'g&p -,h„-(s)],

(4.8)

(4.9)

where q,
" is the c.m. momentum of the AB sys-

tem. With this normalization
the lower limits on the quantity

(1+~)(1+p ) gyp-h. (s) (4.15)
—(yP-gP) = y» [(ReA)'+(ImA)'] (4.10)

and so we write

shown in Fig. 6. Under the assumption that the
photoproduction amplitude is predominately im-
aginary and that e is small we can then estimate

1617 (s, l = l,„) gy p v,v„~A.500 bn(~y ~20 GeV). (4.16)

-(1+e)'(I+ p')t » gyp-, harm(S)g pp-, h«m(S),

grar(S) gpp-charm(S) (4.13)

since all other final states are forbidden by the
OZI rules. For the photon

gyp-charm( ) =gyp p+x( )+gyp-p'+x(s)

(4.11)

where p =ReA. (s, t-,„)/ImA(s, t-,„) and the ratio

(
qpp [s —(m, ™p)']'y'[s—(m, ™p)']'y'
qfP (s —mp')

(4.12)
The CrOSS SeetiOnS O'Z~ „.h„and 0&~,har inClude
all those final states with particles containing
charmed quarks. For the gP case we have reason
to believe that

This is an extremely large cross section when
compared with g photoproduction and the lower
range agrees with our previous estimate (2.16).
It is still, of course, true that if the vector-dom-
inance hypothesis underestimates g"r(gP) by a
factor ~ then we have overestimated o»,h„by
the same factor.

If we adopt the usual assumption that the new
particles have a substantial branching ratio into
leptons (in either purely leptonic or semileptonic
decay modes) we can see that there should be a
detectable contribution from these particles to
the direct photoproduction of leptons. Using the
lower limit (4.16) we can estimate at large-Pr
ratio of the e's from D decay to the 7I's. Letting
B(D-e) be the total leptonic branching ratio, we
can estimate

+gyp DD+x(S) + r (4.14) (4.17)

where the D's are charmed particles. We can
use Eq. (4.11) in two ways. The first, and most
straightforward application of the inequality, is
that a measurement of the photoproduction of the
hypothetical charmed particles can be made which
will give a lower bound on grPPI(s). This lower
bound depends only on unitarity and on the OZI
rules and is comPletely indePendent of the vector
dominance hypothesis. Measurement of charmed-
particle photoproduction can therefore provide
a significant bonus in that it can be combined with

g photoproduction data to give an independent test
of vector dominance.

In the absence of data on charmed-particle photo-
production we can apply (4.11) in the opposite
way. Given a model for the &P total cross section
we can see (4.11) to give a lower bound on the
cross section for the production of charmed par-
ticles. If we take the vector-dominance result
in Sec. II we can plug into the inequality and get

700

600

E
h 500

N 400
b

500
+

200—

100—

0
IO

I

20
Ey CGeV)

I I I

50

FIG. 6. The use of vector dominance and (4.11) to
deduce a lower bound on &ye charm'

where f(e'&P») and f(v'~P») are the fractions
of e's and n's with transverse momentum greater
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than P~,. Since the e's are assumed to come from
the decay of a massive D, f (e '&P») falls off
slowly until P»& mo/2 while for m's it falls off
rapidly. Putting in a reasonable falloff for the pion
spectrum we get

A, —=10 'xXB(D-e).
P z ~ j.ae&

(4.18)

This is large compared to similar estimates for
the contribution of charmed particles to this ratio
in PP collisions since photons provide a rich source
of the new quarks.

It is instructive to use the inequality (4.11) in
a situation where we have better understanding
of all facets of the result. Obviously we can go
through entirely analogous arguments in the case
of QP photoproduction to write the inequality

16m " ~'(s f )t

~(1+ ez) (1 +p ) o»~&&,~zgz( s) o$~stran eg( s)&

where we have used

(4.19)

(4.20)

~'Yb~ 4P (s, t ) =2.6+0.5 p,b/GeV' (4.22)

and a measurement of interference with Bethe-
Heitler pairs has yielded at

p, =ReA. /Imk-0. 2 at t =f,„
so that using the quark-model result

~ @p~strange =12 mb

from vector-dominance arguments we get

4.2s 0.8 (pb) &(1+e,)'gz~ „„„„(s).

(4.23)

(4.24)

(4.25)

The production of strange particles by photons
has been measured directly in a bubble-chamber
experiment which gives~'

o~~ „„„„(s)—=8.5 pb (s =6-18 GeV') (4.26)

so the inequality fail.s by roughly a factor of 2
of being an equality.

In this case we can look at specific two-body re-
actions invloving Q's in order to get an idea of
how big the parameter &, which measures the
violation of the OZI selection rules can be. For
example we can use crossing to write

do(Pp-K'A) do(K P-QA)
do(yp-v n) da(n P-gn)

= 52*16, (4.21)
where the experimental value for the latter ratio
is due to Ayres et al. ' From this we cen esti-
mate e, &-,. Data on Q photoproduction give'

The inequality near threshold

It is interesting to consider the inequality (4.11)
just above the gP threshold but below the tj'P
threshold. If we assume that the s wave dominates
so that

a» &~(s) =4m —' '(s, 8=0) (4.27)

and the real-to-imaginary ratio does not change
drasticall. y in the available kinematic region, we
can write the inequality (4.11) in the form

~) ( )
( + ) (7 )

where ImA. and ReA. are respectively the average
values of the imaginary and real parts of the
photoproduction cross section. We see that in
this kinematic region the inequality suggests that
the amplitude should be predominantly real. . Only
substantially above the availabl. e inelastic thresh-
olds can the imaginary part of the amplitude
dominate. In conjunction with typical. estimates
of the masses for charmed particles this should
serve to warn against the assumption p«1 below
& = 16 GeV. This means that the gN cross section
may be much lower than the values plotted in
Fig. 1 in the Cornell-SLAC regimes.

(4.28)

~. THE RATIO 0'(Pp)/o"'(Pp) IN THE FRAMEWORK

OF DUAL MODELS

The analysis of the available data on P photo-
production within the context of the vector-dom-
inance model has led to the conclusion

Note added in proof. Naturally, the inequality
can also be used in cases where the OZI rule is
inoperative, for example, in p photoproduction,
where the inequality res.ds as in (4.19) except that
P is replaced by p, "strange" is replaced by "all, "
and e, is set equal to zero. Using experimental
data' the inequality leads to op~(S —18 GeV') s19 mb
and o&(8= 9 GeV') s23 mb if we use the value of
-0.2 for p as estimated from Compton scattering.
These limits for o~~(s) are well satisfied by esti-
mates from nuclear photoproduction and vector
dominance which give oz~-26 mb. Notice, how-
ever, that this number is relatively close to our
bound, which can be understood as a vindication
of the idea that the photon behaves predominantly
like a p meson. This is because the equality is
reached in precisely the case when they are identi-
cal and simply reduces (up to the y~ coupling con-
stant) to the conventional optical theorem for
Compton scattering. Indeed, an equivalent way of
expressing this is to say that the conventional
method for determining o from do/dt via the vector-
dominance model always leads to a lower bound.
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(5 1)

If we, in addition, assume the validity of the
Okubo-Zweig-Iizuka (OZI) selection rules for re-
actions involving ('s, we observe that the dom-
inant inelastic channnels must contain the quark-
antiquark pair of the initial g. These quarks will
usually appear in separate particles so the in-
equality (5.1) can be strengthened to read

D

D

o' (gp)/o(gp -DD + anything) «1 . (5.2)

(5.3)
As indicated in Fig. 7 we assume that the in-
elastic channels in this process are dominated by
those containing a DD pair.

We want to consider the relative normalization
of the elastic and inelastic channels under the as-
sumption that the triple-Regge expansion (5.3)
gives a "semilocal" approximation to the elastic
cross section,

r
m 22 + 6/2 dgTR.dm', =—(qp- yp),

m 2'-a/2 dt dm'

where b, is some (mass)' parameter which de-
fines the size of the region which must be aver-
aged. In the triple-Regge formalism we can apply
finite-mass sum rules to the forward Reggeon g
discontinuity indicated in Fig. 5(b) and our as-
sumption (5.4) states that there is some value of
b, which averages the P pole in the direct channel.
In dual models with a universal slope for all Regge
trajectories we would have b —= 1/a' =—1 GeV', but
we are going to leave ~ an arbitrary parameter.
We therefore write

(5.4)

Since the result (5.2) has important implications
for charmed particle searches involving photon
beams, it is interesting to see whether we can
understand it from an independent line of reason-
ing. In this section we will examine the ratio
(5.2) from the standpoint of some simple ideas
based on duality.

There are many possible approaches to the
duality properties of amplitudes involving g's,
such as, for example, the discussion of Finkel-
stein ' and of Helzen Bnd Kaj3ntie. Since we
are interested in the relative normalization of
elastic and inelastic cross sections, one straight-
forward application of duality involves starting
with the triple-Regge expression for the reaction
PP —P + anything.

(b)
P P

semi local

PEG. 7. Diagram (a) represents the leading contri-
bution to ~ p +anything incorporating the OZI rule.
Diagram (b) gives the triple-Regge expression. Semi-
local duality normalizes the inclusive and exclusive cross
section as indicated in diagram (c).

(m 2
)

c~i(0) -z

p + 2a„'ln(s /m') (5 'I)

To get the contribution to the inelastic diffractive
cross section we must integrate in m' from 4m~'
and in t up to

At this point we make the additional assumption
that the coupling to the protons in triple-Regge ex-
pansion, Eq. (5.8), is dominated by the Pomeran-
chuk singularity. At large s, this makes sense
for the small-m' piece of the cross section but
we must keep in mind the fact that we might be
neglecting contributions to charm production.
For simplicity in comparing the elastic and the
inelastic contributions we parametrize

~Bt
Gnn~ (t) —= Gnas (5.6)
a„(t)=1+a„(t),

which allows us to integrate (5.5) over t and ex-
press

(5 8)

(5.5) We therefore write
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et ~max
ieel

( ) g d 2 df p BBt(m2)nt (0)-2( S/ m2)2 alit

4m D2

t S

~4mD2

2

(m2)"'t0~ 2 exp [B—+2 t2„1 n(s/m )]m2'
S

(g +2o.„'lns/m2)
(5.9)

(~ 2)nt (0) 1

ttattt (s) = Q Grrnt B(1 ~ (0))

Within the spirit of these types of crude approxi-
mations we can assume that (5.7) and (5.10) are
dominated by a single exchange. Making the ap-
proximation n„=0 in (5.7) we therefore have the
estimate

(5.10)

To get a rough estimate of the integral we can
make the approximation n„= 0 inside the integrand
and neglect the t „suppression in those regions of
m' where the integrand is large. We can then
write

v „,(ljiZ) and the duality estimates presented here.
For comparison, we may do an analogous cal-

culation to estimate the ratio of the elastic scat-
tering of the tP meson to its inelastic breakup
into KK mesons

Since m&'-—=4m~'=- 4 = 1 GeV' this depends roughly
on the intercept of the appropriate trajectory
which can couple to tP's. With

n;(0) =—nt (0) =—0 (5.15)

= -8.6 (5.12)

in order to explain the size of the p coupling of the
pomeron. We see therefore that our understanding
of the duality properties of amplitudes involving
ill's is far from complete.

Since we do not know exactly what precentage of
charmed particles should be produced in the con-
figuration of Fig. 7, the numerical estimates of
o ' (gP)/o((P- charm) do not serve to put a strin-
gent bound on the ratio (5.11). lt would seem that
values of typical charm -trajectory intercepts
used by Field and Quigg" or Barger and Phillips"

, t2(0h) —= —0.57 (5.13)

are probably sufficiently high to assure consisten-
cy between the vector-dominance estimates of

(5.11)

We are faced with something of a paradox in that
our analysis of the total cross section has sug-
gested that this ratio be small whereas the duality
arguments give the ratio to be large unless the
intercept of the exchange trajectory, ot; (0), is
comparatively high. Since the P should decouple
from the usual high-lying meson trajectories,
p, tel, A„ f, etc., this is a puzzle. Our analysis
suggests that we have a fairly high-lying trajec-
tory, which we will call "f,„,, " which couples sub-
stantially to charm. This is surprising. Recall
that Garison and Freund" within the context of
the dual Pomeron model have predicted that any
such trajectory must have a low intercept

o!,(0) =- a~,„„=1 -m 2'

we get the reasonable estimate of unity for this
ratio which is in agreement with what we know

about tttN scattering. This indicates that the argu-
ments leading to (5.12) have some possibility of
being correct.

Whatever values for the charm-production cross
sections are measured experimentally, it seems
clear that the study of the duality properties of
amplitudes involving charmed particles and l(i' s
will turn out to be very instructive. It may be,
for example, that the iIl and lIi' are substantially
different types of bound states than the p,
so that the usual duality ideas which are based
on the existence of harmonic-oscillator potentials
are invalid. Thispossibility is, in fact, suggested
by the charmonium approach" to the i(l and l(l' where
it is pointed out that the effective mass of the
charmed quarks must be quite large. This large
mass gives rise to a new distance scale in the
bound-state problem. Whether or not some gen-
eralization of the duality concepts retains its val-
idity in these models is uncertain.

VI. CONCLUSIONS

If the currently attractive interpretation of the
ill(3095) and $(3684) as bound states of quarks car-
rying a new additive quantum number is correct,
there must be new hadrons which are bound states
of the new quarks and ordinary constituents. We
have examined in some detail the consequences
for photoproduction data of the existence of these
new hadronic states. We find two results with
significant experimental impact which are com-
paratively insensitive to the details of the spectro
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scopy of the new states:
(I) The coupling of gP to new hadronic channels

allows us to estimate the corrections to the usual
vector-dominance formula for der/dt(yP- )P) in a
simple and direct way. Doing this, we calculate
that the total cross section for gP scattering should
be about twice the value estimated from naive
vector dominance. The validity of our calculation
can be established by doing measurements with 5%
accuracy on the photoproduction of g's from nu-
clear targets. An interesting fact emerges in that
we can apply our calculation in a straightforward
way to Q photoproduction where we predict a mod-
ification of the vector -dominance formula which
gives agreement with the quark-model value of
o'"'(QP). The same type of corrections to vector
dominance can be found in simple models for the
quark -antiquark bound state.

(2) Unitarity can be combined with the OZI selec-
tion rules to relate the "pseudoelastic" cross sec-

tion do/dt'(yP- gP) to o'(yP- DD+ anything) and

v„, (QP) where DD are used as generic names for
the new hadrons. Available data and our estimates
for the corrections to the vector-dominance ex-
pression can be combined to give a lower limit:

o(y p- DD + an ything) ~300 nb (E~,b a 20 GeV) .
A cross section of this magnitude can be shown

to contribute substantially to the rate of direct
leptons if the D's have a significant leptonic
branching ratio.

In addition, we discuss the fact that analysis of
photoproduction data leads to the conclusion that
the ratio o "(PN)/v"'(gN) is a very small number.
This observation is hard to understand within the
usual duality framework which has been found
useful in the description of hadronic dynamics.
This suggests the possibility that the g's will give
a new and perhaps incisive perspective to dynam-
ical problems.
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