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Recently a family of particles (to be denoted x) has been discovered between 3400 and ~ 3550 MeV. A
formalism is presented for analysis of the decays s’ (3684) —yx—yyy or yO~0~. This formalism is sufficiently
general to allow for transitions of several multipolarities. Previous treatments have been restricted to the
assumption that the above transitions are purely E1 if JP(x) = 0%, 1, and 2*. Here (with some model-
dependent motivation) this restriction is removed. The predictions of specific heavy-quark models for the x
states are then discussed. On the basis of the single-quark-transition picture (the Melosh transformation), it is
anticipated that the state x(3410) will be identified as a 3P, g level, and will be found to have J*¢ = 0+ It is
also anticipated that the *P, level should be fairly prominent.

I. INTRODUCTION

In addition to the narrow resonances (3095) *
and ¥’(3684),2 there is good evidence for states of
intermediate mass between 3400 and ~3550 MeV.?
These will be denoted collectively as x. Electro-
magnetic (cascade) decays of the type:

Y =X, (1)
X"‘)/Zp, (2)

have been identified. In addition, the states y de-
cay to an even number of pions. The identification
of the spins and parities of the x levels from such
decays as (1) and (2) is a well-known problem en-
countered and solved in nuclear physics.* Here
we present a simplified analysis for the case
where )’ is produced in e¢ annihilation and y de-
cays into a lepton pair. We address ourselves
primarily to three questions: (i)determination of
the spins (and parities) of y, (ii) determination of
the helicity couplings (or equivalently photon mul -
tipolarities) in the processes (1) and (2), and (iii)
classification of the observed x states according
to various models.

Some work has been done already on these prob-
lems. In particular, the expected angular correla-
tions between the two successive photons in (1)
and (2) and the angular distributions of the pho-
tons with respect to initial or final leptons have
been stated under the assumption that the ampli-
tudes in both (1) and (2) are dominated by E1 tran-
sitions [if J¥(x)=0%* 1*, 2*] or M1 transitions [if
JP(x)=0",1-,2°].>% The full distributions in all
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relevant angles have also recently been derived
under the assumption of E1 or M1 dominance.”

Such (nonintegrated) distributions are useful in
cases of limited experimental acceptance.

In this paper we wish to go beyond the assump-
tion of E1 or M1 dominance, This is useful on
general grounds, since one can then make model -
independent statements about spins based on an-
gular distributions in reactions (1) and (2). More-
over, our experience with radiative transitions
of lower -lying hadrons®° suggests that such tran-
sitions are usually governed by several multi-
poles of comparable strength. This is expected
to be true for the decays (1) and (2) as well if sim-
ple vector -dominance arguments hold.!!

For example, if JP(x)=0" 1%, 2*, we shall argue
that there may be reason to expect M2 (as well
as E1) transitions in the decays (1) and (2). Cer-
tain models' specify the exact mixture of these
two multipolarities. If the x levels are qg, L=1
states, one can conclude on very general grounds®
that the 2* level will not be excited in Eq. (1) or
decay in Eq. (2) via E3 transitions. All of these
ideas lead to testable relations among helicity
amplitudes.

The paper is organized as follows. The general
angular distribution for the sequential processes
(1) and (2) is given in Sec. II as a function of de-
cay helicity amplitudes, which are also expressed
in terms of multipoles. By integrating over var-
ious angles, one then obtains particularly simple
expressions for partial distributions which can be
used by themselves to extract spins and helicity
amplitudes. Some of these may be useful in ex-
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periments in which only a single photon of known
energy is observed. This may be either of the
two photons in (1) or (2). Using the cascade (1)—
(2) it is well known'® that one cannot determine
the parity of y without measuring photon polariza -
tion. However, the hadronic decay modes of the
x can be used for this purpose: For example, if
J(x)=0 or 2 and x - 77~ or K*K~, the parity of x
is clearly positive. Consequently, we present in
Sec. III angular distributions for the cascade pro-
cess

P! —=yx =y nm or yKK. 3)

The discovery of the decays (1) and (2) has given
some support to the view that the ¥/, ¥, and y
states are all composites of one'*'* or more*®
heavy quarks and their corresponding antiquarks.
In most quark models the 3 and §’ are naturally
assigned to 35, states of the ¢q7 system and thus
one expects accompanying 'S, (/¥ =0") states.
Furthermore, one expects orbitally excited qg,

L =1 and higher states. We shall consider in Sec.
IV the possibilities that the x particles are 'S,
states, *P, , , states, or a combination of the two
[The 'P, states do not couple to ¥y or yy’; they
have the wrong charge-conjugation parity. They
could be formed, however, by ¢’ - 27+ (*P,) if
sufficiently light, or by ('S,)’ —v+ (*P,).] The
transitions (1) and (2) are then amenable to a dis-
cussion within the single-quark -transition frame-
work of the Melosh transformation.®”*® Such tran-
sitions are governed by several reduced matrix
elements in general; however, under certain cir-
cumstances these can be estimated using sym-
metry arguments from the lighter-quark exam-
ples.

Based on the (model-dependent) considerations
of Sec. IV, and on the scanty present data, one
can attempt to classify the x(3400-3550) levels.
The results of this attempt are presented in Sec.
V.

Section VI summarizes our conclusions. The
Appendix deals with an alternative formulation
more suitable than that of Sec. II for discussing
certain angular correlations.

II. ANGULAR DISTRIBUTIONS

To a good approximation, in the decay ¥’ —vy’x
-v'yy), the rest frames of the §’, x, and ¥ coin-
cide.!'” We shall consider this to be the case.
Then in this frame we define the following.

z axis: direction of y’.

x axis: defined by y’-y plane.

6,,: angle between y’ and y (Fig. 1).

0’, ¢’: polar and azimuthal angles of initial lep-

ton (e* for definiteness). (Note that both initial

and final lepton pairs will be collinear.) These
angles are referred to the frame of Fig. 1.

0, ¢: polar and azimuthal angles of final lepton
relative to a rotated frame in which y defines the
z axis and y’, y define the x-z plane. In this frame
the azimuthal angle of the photon y’ is ¢ =7.

The joint angular distributions depend in a sim-
ple way on the helicity amplitudes characterizing
the decays

P )=y () +x(v') “)
and

x(®) =y (1) + (), 5
with the relations

M=p - (6)
and

VTR Y (M)

holding among the helicities. The (real) helicity
amplitudes for processes (4) and (5) may be de-
noted, respectively, by B,.,. (“before” the x) and
A,, (“after” the x). (The order of the labels is
somewhat unconventional.)

The helicity amplitudes for photon polarization
u (or u’)=+1 may be related to ones with u (or
w’)= -1 by parity.'® Consequently, one may define

B,=B,. =P, (-1)™B_, |, (8)
A=A, =P,(-1)7 %A _, . 9)

Note that in Egs. (8) and (9) angular momentum
conservation [see Egs. (6) and (7)] implies that
v'20, v=0. For example, if J(x)=2, the decays
Y’ -y +x are characterized by the three indepen-
dent amplitudes B,, B,, and B;, while the decays
X =7+ are described by A,, A;, and A,.
The initial and final lepton directions act to ana-

lyze the polarizations of the ¥’ and ¥, with the ¥’
density matrix for unpolarized leptons'® equal to

poui')(g,’ @)= 6?(1’)6;'5«')141':'(9,’ ¢'): (10)
Li.i(g/’ ¢/)E 5” _ninj’ (11)
7= (sin®’ cos¢’, sinf’ sing’, cos6’). (12)

Here €?” is the usual polarization vector: ¢®’
=(=1/V2, -i/V2,0); €9=(0,0,1); V= _e"%,
The explicit values of p®*")(6’, ¢’) are shown in
Table I. Equations (10)—(12) are just the general -

y
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FIG. 1. Coordinate system for describing the decays
V=y'x=y'n.



TABLE 1. Density-matrix elements p“X)(e, ®),
defined with Trp=2.

+eos?
p(11)(9,¢)=l_°_35_9’ (0 (9, &) = sin%,

, -
(10) _Sinfcosf _i4 (1-1) _8in%0  _sg
P (8, @) €% P 6, ¢) PR
p TN Zp K% A+ K pen,=K)

X 1 _ 1k -
POV = 37 Dt (9,6,-9) DL (9,0,-9)

K=#1

ization to arbitrary lepton direction (8’, ¢’) of the
fact that when the leptons are along the z axis,

the tensor L¥ is of the form %% + 99, corresponding
to an incoherent sum of A’=1 and x’= -1 ¢’ polar-
izations. It is convenient to choose the frame in

i

W', ¢, 6y, 6,0)

V't pt=
vy =<1

The helicity amplitudes B),., and A, are those
defined in Eqgs. (8) and (9). Note that all referen-
ces to the parity of x has vanished at this point.
Only by measuring the polarization of one of the
photons can one determine the parity of the inter-
mediate state in a y-y cascade.®* We shall not dis-
cuss such difficult measurements here, though
they would certainly be of use if they actually could
be performed.

The expression (16) is quite suitable for a com-
putational analysis. The d’ functions for J=2 are
quoted, for example, in Ref. 20, while the density
matrices p are noted in Table I. A maximum-
likelihood fit can be performed by letting the am-
plitudes A,,, and B,,,, 0= |v|, |[v’| =J, be real
free parameters. These parameters obey certain
constraints if, for example, the transitions are
pure E1 or are governed by higher symmetries.
Some of these constraints will be mentioned below
or in Sec. III. The full angular distributions (16)
(rather than partially integrated versions) may be
needed since most of the detection apparatus in
e*e” experiments has limited acceptance.

For J(x) =0 the only nonvanishing amplitudes are
A, and B,, leading to an angular distribution®"

w(e’, ¢', 6,,, 0, p) < (1+cos?0’)(1+cos®d). (17)

The 6’ and 6 dependences correspond to the re-
quirement that v’ and y be emitted with transverse
polarizations. The spin-0 intermediate state leads
to an absence of yy correlation. When J ()= 0*
(07) the transitions in Egs. (1) and (2) must be pure
E1 (pure M1). Equation (17) does not distinguish
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Eq. (12) such that the first photon ¥’ lies along the
z axis and the second photon vy in the x-z plane
with positive x component (Fig. 1).

Similarly, for the final lepton pair, one can
write

P26, )= f VML, (6, 9), (13)
LU(0, )= 6 —mimd, (14)
M= (sind cos¢, sinf sing, cosh). (15)

In Eq. (15) the frame chosen is that with the sec-
ond photon y along the z axis and the first photon
v’ with negative x component in the x-z plane.

One may now sum over unobserved photon polar-
izations and y helicities to write a general joint
angular distribution:

P =TT g2 1Bl yr| Blr|dLyry (8y 5 )d 505 (6,4 AL Al | 0*7H P16, ). (16)

r

between these two possibilities.

The helicity amplitudes A, (and B,,.,) are in
definite ratios to one another for transitions of
definite multipolarity. For general J=J(x) we
write?*

A= Tasp( ) b b vi-1]s, 1)),
(18)

2J, + 1>1/2(J' 1,1, [v/[-1 |J [v'])

) _ () &y T2 ys Ly Ly 5

Blv'l—EbJ.;.<2J+1 ’
(19)

where a‘j: ) and bi.‘;’ are (arbitrarily normalized)

multipole amplitudes for the transitions (2) and

(1), respectively. Specific J =2 cases are listed

in Table II. For pure J,=1 (E1 or M1) transi-
tions, for example,

A{J=l)=AéJ=l) , (20)
AFR) = VTA T = JGAT ), (21)

with similar expressions for the B’s. The normal -
izations in (18) and (19) are chosen so that the
transformation between helicity amplitudes and
multipoles is orthogonal. Then

2
T =v+ =577 ZolAulz
vz

_ 2 (J)|2
=571 JZ,,‘aJ’ . (22)

If P(x)=+, a!’’ corresponds to E1, a{’’ to M2,
a{’) to E3, and so on.
Equation (16) may be discussed in principle when
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TABLE II. Decomposition of helicity amplitudes for
X —7Y+¥ in terms of multipoles [Eq. (18)]. A similar
decomposition holds for Eq. (19).

J=0
1J=( J=0

J=1
J=1) =1/2,(J=1 ~-1/2,(J=1
AT = (2)V2a{T=D _ (2)71/2( =D

AgJ:t) =(2)-1/2a§J=1) +(2)'1/2a§":1).

J=2
Aghz) :("35)1/2a(1J:2) _(3)-1/2ag.l=2) +(15)-1/2ag‘r=2)’
A§J=2) =(%)1/2a§"=2) +(6)'1/2ag"=2) _ (%)1/2‘1(3#2)’

ALT=D =(1%)1/2a$J=2) +(2)-1/2ag-r=2) +(1_65)1/2a§-f=2).

integrated over some of its angles (though, as
mentioned, this may not be possible in practice
because of limited acceptance).

A. Integration over ¢ and ¢’

This leads, respectively, to diagonal p® and
p**? and hence to a loss of information about the
phase of the helicity amplitudes with respect to

one another. Let us define

Bu'(e')E E <p(p'—u',p'—17’)(0/, ¢,)>¢IB[VI,B|’,7:|

w=+1
=) p V= (67)(B) ), (23)
u’
@, (0= 3 p0 B (0)(A ). (29
p=+1

These quantities give the populations of various x
helicity states as a function of the angle 6’ or 6:
Hence, the initial or final dilepton pair can analyze
these populations. Then

<I,V(9’! ¢I9 677; 9, ¢)>¢'¢
< 3 By (61)[d2yr(8y,)Fa,(0), (25)

an expression which involves only squares of he-
licity amplitudes.

B. Integration over all angles except 0.,
Since (o) (8, ) NN h
o y ®No,4<0\%, one has

W(ny) E<W(6’, ‘;b’: 0‘}')’7 o, ¢»e’¢'e¢

= 2

v=o,v'=0

[BI,,/|]2[d_f,,r,,(977)]2[A|,,|]2

+(Oyy=T=6yy). (26)

[Use is made of identities quoted in Ref. 20 and of
the identity

a2, (0)=(=1)7"""al, _ (n-6) @7

in deriving this rule.| Specific cases are listed

in Table III.

Expressions (27), (20), and (21) may be used to
derive the yy correlations quoted in Ref. 6 for pure
E1 transitions.

For spin J the yy correlation is in general a
polynomial in cos6,, of degree 2J. Suppose, how-
ever, for J=2, either transition is pure E1. Then,
by virtue of Eq. (21), the cos®,, term vanishes.
This result is understood on general grounds.? If
(say) the first transition is pure E1, then

WO =2 (6, )0 B(A,)*(1+cos?6) + $(4,)*(3 - cos?6)
+(A0)%(5 - 3 cos?6) (28)

WU =2(6, Jc1+acos’0, -g<rsl. (29)

Note that the cos‘*G},y term vanishes in other cases
as well as the pure-E1 case; these other cases all
involve combinations of all three multipoles E1,
M2, and E3.

For data of sufficiently high accuracy, the ob-
servation of a yy correlation that required terms
up to cos?¢,, thus would have two implications:
the existence of a y state withJ > 2 and [if J7(x)
=2"] the presence of non-E1 transitions both in
' =yx and in y -y

TABLE III. Angular correlations in terms of helicity amplitudes A, |, B|,s|.

J=1

W(By) < (AB)) 2+ 2(AB() 2 +2(4:By)* + cos?6,  (24)" — A?) (2B,>~ B,?)

J=2

W (0yy) < (AyBy)2+4(Ay By) 2+ 4(A1By) 2+ 6(Ay By)? + 6(ABy) % +4(A,By) 2+ 4(4,By)
+608%0,, [( A" —24.%)(B,? - 2B?) — 2(4,2~ 24,))(B2 - 2B,%)]

+cost0, ,(4y? — 44,2+ 6A.) (B2~ 4B, +6B))
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C. Integration over all angles except 6 (or 0')

The d7,,(6) have the property that

2 2

T2J+1° (30)

m
J siné de[dd,,(6)]

[
Applying this to Eq. (24), one finds

W(6)5<W(9,, @', 97}'7 9}¢)6',¢',077,¢

(% (B|V,|)2> 3 a,(0), (31)

vt

i.e.,

(7 =0) W(fx<1+cos?s, (32)
J=1) W(9)06—1+—(2:9-§2—9(A0)2+ sin®6 (A,)?, (33)
T=2) W) 1SS (4 )24 ()] 4 sin® (4,)%

2
(34)

Similar expressions hold with 6 -6’ and A, -~ B,,.

D. Tests for spin J

We have already mentioned tests for spin J based
on the highest power of coszew; under certain
circumstances this power can be less thenJ. An-
other test involves the azimuthal dependences in
Eq. (16). Let us integrate over #’. Then the only
¢'-dependent terms that survive come from
p®=Y(07,¢") and pCY (07, 4’). These terms can
arise only when v’=0 and =2 or »'=2 and 9’ =0,
i.e., when J=> 2, One will then obtain a distribu-
tion of the form 1+ cos(2¢’). The B, and B, am-
plitudes are required to interfere to give this ef-
fect. A similar test is possible using the ¢ dis-
tribution integrated over 6.

Another test for spin J relies on the distribution

J

W(Q', (P’;G-/P)OC . Z

v 0 i el

in angle 6, of the second y with respect to the in-
itial e¢ beam direction, irrespective of the direc-
tion of the first y. This distribution may be easier
to measure than the yy correlation mentioned
above. It will be a polynomial of maximum order
J in cos®d,. The formulation of Eq. (16) is not di-
rectly suited to determining this distribution; an
alternative method is presented in the Appendix A.
One simple conclusion can be reached using the
Cartesian-tensor formulation of Ref. 7. This is
that for pure E1 tvansitions,

WY =9(8,) c 5+ cos?6,. (35)
W =2 (6,) 73 + 21 cos?d,. (36)

These are the same distributions as in the angle
6, for the pure E1 case. It will be seen in the
Appendix, however, that the §,, and 6, distribu-
tions do not coincide in general (i.e., for mixed
multipolarities).

In practice, limitations of statistics and accep-
tance probably will require fits to the full Eq. (16)
to determine the spins of the x particles. The
tests we have suggested above are more suitable
for determining the minimum spins.

III. DECAYS ¢'>yx>v070"

It appears that at least one of the x levels,
x(3410), decays to nm and/or KK . This means
that it has natural spin-parity, J°=0%1-,2* 3", ....
The odd-J states, with J¥¢=1"* 3, ..., are for-
bidden by C invariance to decay to two pseudo-
scalar particles,?® so we shall concentrate on the
sequence J¥°(x(3410))=0*,2*, ... In such cases
the final pair of mesons analyzes the polarization
of the X. Let us replace the second photon (y) in
Fig. 1 by the outgoing 7* or K*; the 7~ or K~ will
be going in the opposite direction. The angle 6,,
is replaced by 0, p, the angle between the photon
and the 7*. Then Eq. (16) is replaced by

p(u'- V‘,u’-,‘;')(e A’ (i)‘)B'V'[BIfJ'ld-{U'D(QYP)dfﬂ‘O(e'YP) . (37)

If one integrates over 6,p, one obtains the same information as in the yy cascade case described above
from the distribution in 6 “and ¢°. If one integrates (37) instead over 6”and ¢°, one obtains

W(e-yP) = (W(6‘7 ¢‘? 97P)>9'¢'OC Z [Bh)‘l]2 [d.‘.’y'o(e‘yP)]z .

(38)

This expression may be used to determine both the spin of x and the population of the various helicity

amplitudes. For example, for J=2,

W20, p) o< 5(B,) sin*0, p + 3(B,)* sin’0, » 050, p+ 1(B,)*[3 cos®0, » — 1. (39)

If the transition §’ —yy is pure E1, for example,®° this expression becomes

W79, ,, pure E1) < 5-3 cos®0, p.

(40)
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Note that for J=0 the distribution (38) is
WI=9(g? ¢’ 0,p) < 1+ cos?0’, (41)
in analogy with Eq. (17).

IV. MODELS

Up to now what has been said follows primarily
from angular momentum and parity conservation.
For the remainder of this paper we examine the
implications of various models and suggest tenta-
tive identifications for the x states.

Let us review the properties® of the x(3400-3550)
states that we use as input to the models.

The study of the reaction

e*e”—’ -y +x —~vy+hadrons (42)

was carried out at SPEAR.® In the hadronic final
states, a narrow peak is seen in the 77 and/or
KK, 4rm, 67, and KEnm mass spectra around 3410
MeV. In addition, the above final states, other
than 77 and KK , show a broad (~100-MeV wide)
peak centered around 3530 MeV, which may actual-
ly consist of two unresolved peaks at slightly lower
and higher masses.® At any rate the spectra ap-
pear to have few events above 3550 MeV that can
be separated from direct §’ ~ (hadronrs) decays.

The reaction

etem =P =y HX =Y Y Y (43)

has been studied as well.> Two groups of mono-
chromatic photons are seen, one with E, ~160 MeV
and one with E, ~ 420 MeV. It is impossible to tell
a priovi which photon was emitted first. However,
if the state x in reaction (43) corresponds to any
of those seen in (42) it must be x(~3530), and
hence the first photon in (43) would have had the
lower energy. (In principle, the second photon
would be expected to be slightly Doppler broad-
ened in comparison with the first.)

In view of the above data, we speak of the states

x(3400-3550)

without committing ourselves to their exact num-
ber.

From the above properties one can first make
some statements which are either totally model-
independent or nearly so.

(@) The x states have G=+. They decay to an
even number of pions.

(b) The x states have charge-conjugation parity
C=+. They are formed by '~y +%X; both the
¥’ and the y have C=—.

(¢c) The x(3410) has I=0. It decays to KK so
I=1; it decays to 77 and C(n7)=(-1)’=+, hence
I=0.2 The other x states also probably have
I=0 too, since they have even G and C and hence
even I, and since the photon in y’ -y +X probably
carries ]AI | =1 as in all other electromagnetic

processes.

(d) The x(3410) has JFC=0* 2* 4* ,,,. It has
natural spin-parity since it decays to two pseudo-
scalar mesons; since it decays to 77~ and K*K~,
and has even C, it cannot have odd J since C(m*r~)
=C(K*K")=(~1)" 28

The types of models we shall consider here are
based on the hypotheses of one 3¢ or more'®
species of heavy quarks. The ¢ and ¥’ are as-
sumed to be neutral %S, ¢g, L =0 pairs in such
models. Since the x levels have C=(-1)%*S= 4+
where L is the assumed ¢g relative angular mo-
mentum and S is the total spin, there are two
low-lying possibilities for such states: either
L=1and S=1 (P, levels, J¥¢=0*, 1**, and 2*)
or L=0and S=0 ('S, levels, J¥€=0"*). At least
the x(3410) must then be a qq, L=1 level since
it has natural spin-parity; its J¥¢ could be 0**
or 2**, (In fact, we shall argue that 0** is more
likely.) The x(3530) level or levels could be
either 'S,, 3B, or a mixture of the two. At most
one 'S, level around this mass is expected in
models with one heavy quark®'* this level would
be the hyperfine partner of the %S, ¢’.

[Another 'S, level would be expected below the
' and could be the X(2800) seen at DESY.

(See Wiik, Ref. 3.)] In models with several
heavy quarks,'® it would be possible to have a
pair of 'S, levels close together in mass; however,
this does not seem to be the case with the ob-
served °S, levels. If the X(3530) is, in fact, com-
posed of at least two levels, we suspect that at
least one of these levels must be another ‘?I-?, qq,
L =1 state. This suspicion is also supported by
the relatively small mass splitting between the
x(3530) and the x(3410): In general, L-$ split-
tings both in the mesons and baryons seem to be
relatively small.

The qq, L=1 levels also include a 'P state with
J¥C=1*, This state can be formed by ¢’ ~ (27)
+Xx(*P,) if it lies low enough in mass (below ~ 3400
MeV), and by (*S,) -y +x(P) if a (1S,) level (the
hyperfine partner of y’) lies above it. Similarly,
a 'P, level can decay to mm) or toy + (1S;).

In what follows we shall make use of the single-
quark-transition picture based on the Melosh
transformation'® and developed by Gilman and
Karliner® and Hey and Weyers.?* There is one
simple test of the single-quark-—transition pic-
ture that does not depend on whether the y levels
are composed of a single ¢gg pair or mixtures of
pairs of various quarks. If the x is a ®P, state,
i.e., if JP(x)=2%, and if 3’ and ¢ are indeed 35,
levels, one predicts® that the transitions P’ ~yx
and X ~v} contain no E3 contribution. Indeed,
since in such transitions |AL| =1, and since
single-quark transitions involve |AS|<1, the
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photon can carry off at most two units of angular
momentum. The absence of E3 transitions entails
the relations®

A V3
A = 2\/27 = A,, (44)
B, = ii +£23'B0, (45)
2v2

among the helicity amplitudes describing, respec-
tively, the decays X(°B,) =y and ¢’ - vx(B).

Most previous treatments of the decays ¥’ —yy
and x -y have assumed J,=1.>" This corres-
ponds to M1 transitions (the only ones possible)
for J2(x)=0" and E1 transitions for J%(x)
=0",1*,2*, There is no inconsistency per se with
the Melosh transformation in such an assumption.
Indeed, if heavy-quark magnetic moments are
small, naive nonrelativistic quark models® argue
that E1 transitions with no quark spin-flip will
be the only important ones in ¥’ =yx(®P;)—=vvi.
This point of view is supported by the absence in
current data of large M1 transitions: ¢-!S;+7v,
W =(1S,) +v, ¥ ~('S,)+7, etc. indicating that such
magnetic terms may in fact be small. However,
they are possible in the single-quark-transition
approach, and we shall argue that it may be pre-
mature to neglect them. Consequently, we pre-
sent for comparison both the usual E1-dominance
case and a special case in which M2 transitions
play an important role.

The single-quark-transition theory® !¢:2* de-
scribes all transitions of the form

(q69 L=1)"7+(¢I‘7, L=O) (46)

or

(qq, L=0)~y+(qq, L=1) (47)

in terms of three reduced matrix elements. One
of these changes L, by a unit and has AW=0
(W=W spin®®); it is a pure electric dipole transi-
tion (E1’) and corresponds to convective motion
of the quarks. In the language of Refs. 9 and 16,
it transforms as (8,1)+ (1, 8) under chiral

SU(8) XSU(3). This term is the only one present
in the models of Refs. 5 and 6. It is the only
term present in the absence of the Melosh trans-
formation.

In the single-quark—transition picture there
are also two AW=1 contributions to the process-
es (46) and (47). One of these has AL,=0 and
transforms as (3, 3) or (3, 3); the other has
|AL,|=1 and transforms as (8,1) - (1,8). These
combine to give another electric dipole contri-
bution E1 and a magnetic quadrupole contribution
M2.° We shall argue that both of these additional
contributions are important and must be included

in describing the radiative decays (2) [and pos-
sibly also (1)]. Analyzing the decays (2) we shall
find that these three reduced matrix elements
are in a definite ratio to one another. In certain
cases this will be true of the decays (1) as well.,

There is one experimental situation in which
L=1-L=0 radiative transitions can check the
dominance of E1’, and this is in the decays of the
70, L=1 baryons. It is found ®° in this case
that M2 contributions are quite significant as
well, Similarly, the phototransitions (56, L =2
(56, L=2)—y+ (56, L=0) involve substantial M3
contributions in addition to E2’.

The transitions (46) and (47) have already been
decomposed in terms of reduced matrix elements
labeled by (AW, AW,) in the specific case where
all the P, states have the same quark content,!!
This quark content need not even be the same as
that of the ¥; only the over-all coefficient of pro-
portionality will change. An equivalent decom-
position for (46) in terms of multipole amplitudes
is given in Table IV; a similar decomposition
holds for (47).

Let us briefly review the theoretical arguments™!
for the presence of contributions in addition to
El’ in 3P;-y+y. First, let the amplitude for
8p, -7 +7 be dominated by the ¥ pole in one of
the y’s corresponding to *P, -y +§. By Yang’s
theorem,?® a spin-1 particle cannot couple to two
photons, so that the »=0 amplitude in 3P, -y +
must vanish, Then, by Table IV,

2E1'+E1 -M2=0, (48)

TABLE IV. Matrix elements of the dipole operator
D™ for (°Py) —~7Yy=1+¥ in terms of multipole reduced
matrix elements.? [A similar decomposition holds for
¥ —~v+(CP;).] The over-all scale is arbitrary.

State v E1’ E1l M2
Sp, 2 V& @ —V6/2 V6/2
1 V3 -V3/2 —V3/2

0 1 -1/2 -3/2
Sy, 1 V3 v3/2 v3/2
0 V3 v3/2  —V3/2

Sy 0 VZ V2 0

2 Relation to reduced matrix elements D (AW,AW,)
of Ref. 11:

E1’ =D(0,0),
E1 zD(l,l)-%ﬁD(l,O),
M2 aD(l,1)+_§J§D(1,o).

In the notation of Gilman and Karliner in Table III of
the second of Refs. 9, D(0, 0) < (b), D(1,1) = (c), D(1,0)
«<(d).
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A similar argument can be made at the level of
D(JP¢=1*)~y+p and extrapolated using U(4) or
a higher symmetry to the heavy-quark sector.
In either case the extrapolation is an extreme
one, If it is at all valid, however, E1’ cannot
be the only significant reduced matrix element.
One might also expect M2 transitions to be im-
portant in analogy with the baryonic case men-
tioned above.

A second relation in Ref. 11 comes from the
identification of the AL, in electromagnetic tran-
sitions with that in pionic transitions via vector
dominance. It has been shown that in pionic
transitions of 35, L =1 mesons to the ground state,
AL,=1 transitions dominate.” If vector domin-
ance holds, one can show a similar result for
electromagnetic transitions of 35, L =1 mesons
to y+m. If the appropriate higher symmetry is
valid, this also holds for x(*P;)—y + ¢, and cor-
responds to the vanishing of D(1,1) in Table IV,
or

E1+M2=0, (49)

Taken together, Egs. (48) and (49) imply that the
decay amplitudes A, for *P; -y +x are in the
ratios

J=2, v=2: 2V6,

v=1: V3,
=0:
v 0, (50)
J=1, v=1: V3,
v=0: 0,
J=0, v=0: 0.

The predictions of Eq. (50) are compared with
those of strict E1’ dominance in Table V. If the
Y’ is a radial excitation of the ¢, the only reduced
matrix elements whose relative values can be
predicted [i.e., to which Eqgs. (48) and (49) should
apply] are those for x -y + ¥; those for ¥ -y +y
cannot be related to known ones even using vec-
tor dominance. On the other hand, it is possible
that the ¥’ is the lowest 35, level of a mixture
of quarks orthogonal to that in the ¢ if there is
more than one species of heavy quark.'® In this
case the reduced matrix elements for ¥’ -y +y
should also have the relative values predicted by
Eqs. (48) and (49) if all the X levels are composed
of the same qq mixtures. Hence, we present two
cases, one in which Eq. (26) applies only to
X =Y+ ¥ and the second in which it applies to both
transitions. (The estimates of Ref. 11 are based
on the use of actual 35, L =1 pionic decays to
evaluate reduced matrix elements, and, hence,
differ somewhat from those given in Table V.)

TABLE V. Comparison of model involving strict £1’
dominance with model based on vector dominance (Ref.
11) for transitions ¥’ —y+x and X =~y +9.

Strict £1’ dominance (Refs. 5—7)
L(2t —y) = Tt —y9) =0 =),
1T —v2) = 4T’ —v1*) = T’ —vo0*),
W(0yy,1%) =<5+ cos
w(o

7Y
yys 2) =73+ 21 cos?o,,,
W(6,1%) < 8 - cos?0=2+sin%,
W(6, 2%) =1+ L cos’,

W(6) = W(6").
Eq. (50) for x =y +¥
L2t =) =4Ta* —w), [o* —mw)=o,

e 2B%/B*

w -0 1
() vy 1+2B02/B12’

1l

) = 2
77,1 )=1+7cos“d

W(6,1%) <1~ cos0=sin?0,

W(9, 2*) = 1+3 cos?.

Eq. (50) for both ¥’ —y+x and x —y+¢

In addition to above,
L’ —~y2%) =9I @’ —y1%), T —y0*)=0,
W(e)=W(¢’),
W(0y,, 1*)x1 +0052977,
W(6yy,2%) <4 cos’d,,+93 cos’0,, +33.
For 0% angular distributions, see Eq. (17). Here
I =T/ (phase space).

The suppression of the *P,—y + ¢ decay in Eq.
(50) is notable. It comes from the fact that in
the single-quark-transition theory there are two
electric dipole contributions to *P, electromag-
netic decay, one (E1’) coming from the “con-
vective” current and another (E1) from the mag-
netic moments of the quarks. The relations (48)
and (49) imply that these two contributions ex-
actly cancel one another. This goes against the
grain of the naive nonrelativistic models men-
tioned earlier, which would predict |E1’|>|E1].
Fortunately, tests of these ideas will be possible.
In the case of pure E1’ transitions, if phase-space
factors are neglected, one finds

T@' =y +°P,) : D@ -y +°P,) : (¥ -y +°P,)

=5:3:1 (pure E1’), (51)
and

TP,y +3)=T(P,~y+)
=T(*P,~y+¥) (pure E1'), (52)

If, on the other hand, the relations (48)-(50) hold,
the P, state is much more highly favored both



in production and decay than would follow from
Egs. (51) and (52). This can be seen in Table V.
For values of the reduced matrix elements based
on actual fits to 35, L =1 meson decays, one ob-
tains instead of the values in Table V the pre-
dictions

TP, -y +9): TP, ~y 9) :T (P, =y + 9)
=~(35 to 40):3:1 (model of Ref. 11) (53)

where I'=T"/(phase space). If the same ratios
of reduced matrix elements held for the processes
(1), one would obtain similar predictions for
Y’ -y +3P;, but multiplied by the statistical weight
2J+1. Such extreme ratios probably can be ruled
out already by the observed signals in x(3410)
—~hadrons,3 2

According to Table V, one of the best spin and
multipolarity tests occurs for the *P, state with
JP€=1*, For this state, W(68) is expected to be
peaked around 6=90° (rather than at 0° and 180°
as for J=0 or J=2). Moreover, the degree of
peaking is fairly sensitive to admixtures of M2
transitions.

V. ATTEMPTS AT CLASSIFICATION

The preceding discussion allows us to guess
at certain properties of the observed x levels
and to predict where remaining states may lie.
The results of this exercise are summarized in
Fig. 2. The specific points of interest in Fig. 2
are the following:

1. The x(3410) has J¥€=0**. This prediction
is based on several circumstances. The primary
reason for this assignment is the absence or
weakness of the transition x(3410) -y + ¥, in com-

c=— c=+
37F ¥(3684) 5
s o
MASS ——t—-—( S,)
(GeV)
y X(3530) {CONTAINS
3.5 3p,
—_— —_ 3
4 =
3
x(3a10) °p
3.3
i 3
sk ¥(3095) 35, '
- Ay

FIG. 2. Possible classification of observed x levels
and prediction of remaining states. Not shown is the
X (2.8) mentioned by Wiik in Ref. 3, produced in y —7y
+X(2.8) and a possible candidate for the lowest 1S, level.
It is also possible (see Wiik, Ref. 3) that x (3410)—y + ¢.
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parison with the observed x(3530) -y +  rate.
Otherwise, on the basis of the observed 070~
mode of the x(3410),% one would have been unable
to decide between the 0** and 2** alternatives
mentioned in Sec. III.

This argument assumes, of course, that the
x(3410) and x(3530) are produced roughly equally
in ' —y + x?®; they do seem to contribute roughly
equally to the four-pion and six-pion signals.®
The absence or weakness of the decay x(3410)
—v+ § is suggested by data taken at SPEAR:

See Feldman, Ref. 3. Essentially no events of
this type are found as compared with at least 50
events consistent with x(3510) -y + y. [By con-
trast, the DASP group (see Wiik, Ref. 3) sees a
signal of two events in the former process and
six in the latter.] A simpler argument that the
x(3410) should have JP¢= 0** is that it is consistent
with being the lowest-lying x object, if one puts
hadronic and electromagnetic decay information
together. (In the “light” ¢g, L =1 hadrons, the
0** states also lie lowest.)

The 2** state, wherever it lies, should also
have an observed 070~ decay mode. Why is this
not observed? A possible answer lies once more
within the realm of the Melosh transformation.®
We have already mentioned that the 35, L=1
meson transitions to pions and 35, L= 0 mesons
are dominated by a (3,3), AL,=1 term. Let us
assume decays of y(0**,2"*) proceed by mixing
of these states with small amounts of 35, L=1
(ordinary light-quark) states followed by decays
of these states obeying the usual Okubo-Iizuka-
Zweig®® selection rule. Whatever the light-quark
compositions of the y states, let them be the
same for the 0** and 2** states. Then in the
limit of (3,3), AL,= 1 dominance, one finds

£ ~7m)  F(0** ~KK)
F@  ~mn) T2 ~KRK)

10. (54)

Since only a total of 11 events (7*7~ and K'K™)
are observed at SPEAR in the x(3410) decay,’
the failure to observe another peak in the 0*0~
spectrum is not evidence against a 2** state at
present levels of statistics. In fact, recent daia
from DESY (Wiik, Ref. 3) contain one candidate
each for x(3410) - 070" and x(3510)-070".

2. The x(3530) band probably contains a state
with JP€=2**. 1t is only this band at present
which is responsible for the cascade process
P’ —yx =yvyd. The (model-dependent) arguments
of Sec. IV indicate that it is the 3P, state whose
decay to vy should be most prominent.

3. A JPC=1** state should exist in the vange
3.4-3.55 GeV. This state is expected as a °P, ¢qg
state if the 3P, and 3P, states are identified as
above. It has been argued® that the hadronic
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decay of this state should be suppressed. This
occurs since a color singlet with spin 1 cannot
decay to two massless colored gluons. Depending
on the hadronic branching ratios of the *P, and
%p, states, this argument could lead one to expect
the °P, rather than the 3P, to dominate the cascade
process. [Note the unfavorable ratio, however,
for °P, -y + 3, quoted in Eq. (53).] Naively one
might expect the °P, to lie between the 3P, and

the °P, (if the mass formula has the usual L -$
splitting).3!

4. Theve should exist 'S, and ' P, states as
shown in Fig. 2. One puzzle in the present
approach is the smallness of the observed ¢’ —yy
widths.3:3%2 A number of schemes®'** have pre-
dicted these widths to be an order of magni-
tude greater. While the present symmetry
approach makes no prediction for the absolute
magnitude of these widths, one nonetheless feels
uneasy that they have turned out to be so small.
One possibility, suggested for example in Refs.
30 and 33, is that the spatial overlap of the y’
with yx simply is small for some dynamical rea-
son or other.*® Another possibility, valid only
in models with more than one heavy quark, is
that 9’ contains quarks other than those in the y
states or in 3. Hence, the y states would be
orbital excitations of the ¥, while the ’ would
have its own family of orbital excitations x’ lying
above the y’. A small overlap between the quarks
in 3’ and those in x or y would then give the small
decay rates for ¢’ ~yx, while the transitions
X —~7v¥ would proceed with “normal” rates.

VI. SUMMARY

We have reviewed methods for determining the
spins and parities of the states x observed in
' -y + X, X—(hadrons or y + $).*® These methods
apply to cases in which the photon does not necess-
arily have the lowest possible multipolarity, and
we have presented possible reasons for the exis-
tence of such mixed-multipolarity transitions.
On the basis of specific estimates for the relative
strengths of such transitions (and for certain
hadronic y decays), we have attempted a prelim-
inary quark-model classification of the observed
x levels. We conclude that the most plausible
quark-model assignment for x(3410) is 3P, and
that within the x(3530) peak there is a *P, state.
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APPENDIX: ANGULAR DISTRIBUTION OF
THE SECOND PHOTON

In this Appendix we discuss in more detail the
angular distribution of the second photon with
respect to the electron-positron beam direction.
This distribution allows the determination of the
spin J of the intermediate y particle. The ad-
vantage of this method over the photon-photon
correlation measurements lies in the requirement
that only the second photon has to be detected.

By not observing the first photon one is integrating
over its angles 0,, ¢,. We discuss in detail the
simpler case J(x)= 1 and only quote the results
for J(x)= 2, where the corresponding formulas
are more tedious.

We use as Z axis the incident positron direction,
and an arbitrarily chosen X axis which is redun-
dant. With respect to the Z axis the ¢’ particle
is produced in the incoherent superposition of
J,= £1 states. The two states have identical
decay distributions since parity is conserved.

We shall therefore consider only the state J,= +1
in what follows.

After the decay of the ' particle with the
emission of a right-handed (R) photon at 6,, ¢,,
the x particle is left in a coherent superposition
of its states (quantized with respect to the Z axis):

[x)= R,[11)+ R,[10)+ R;|11)
= Y R,|1m), (A1)

where the coefficients R,, are functions of the
angles 6,, ¢, and of the helicity amplitudes B, B,
(we use the notation ~1=1):

R,=B,D¥DL + BDOIDL: . (A2)
The arguments of all ® functions are the angles
(¢4, 015, =¢1) or (¢, 6,,0).

Similarly after the emission of a left-handed

(L) photon the coefficients L, describing the state
of the x particle are

L,= EofD)lkilfD:no*‘ Elg);koliol

mi > (A3)
where the helicity amplitudes B,, refer to left-
handed photon emission.

Using the coefficients R,,, L, we can compute
the total rate W(6,) for observing a second photon
at 6, independently of its polarization and of the
polarization and angles of the first photon:
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2 2 2 2
wo)= il (| T raoit| + | 3 zeoit| «| Craoit [+ | 2 Laoit|)
m m m m 61,01
2 2
+ 2|A0|2<I ZRmiD,ln’E + ZLm:D,‘,,T, > (A4)
m m ell¢l

where we have suppressed the dependence of D}, ./(d,, 6,, —d,) on its variables. In Eq. (A4) the angular
brackets represent integration over all angles ¢, 6, of the first photon.

In evaluating Eq. (A4) one has to perform angular averages of expressions of the type (RXR,+ LXL,).
These vanish unless m = n by integration over ¢,. Taking account of this, one may write Eq. (A4) as

W(6,)= (R}{R,+ LYL, + RB{RI + L; LI>[|A1|2(|dil PP+ ldiz]?) + 2|A0|2|di0|2]
+ (R§Ro+ LELy) (2|A, [P|d5, [P+ 2]|Ao [P dgo ) - (A5)

Replacing the rotation functions d,,,,- by their explicit representations, we obtain for the angular distribu-
tion of the second photon W(6,) of a spin-1 object y

W I=D(6,)= C,[5 |A, |51+ cos?6,) + |Ao|A(1 —cos?6,)] + Co[|A,[*(1 - cos?6,) + 2|A,|2cos?6,]. (A6)

f

Equation (A6) shows that the distribution W(4,) As seen from these equations W(6,) depends also

is typically quadratic in cosé, for a spin-1 inter-
mediate state y. It is interesting that the terms
in cos?6, are all multiplied by the same bilinear
combination (2|A,|%-]A,|?). This same combina-
tion multiplies the term in cos?@ y» as may be
seen in Table III. Thus, if 2|A0r2= |A,]? the
distribution in 6, will be isotropic, as will be the
distribution in 6, even though the spin of x is
unity.

The coefficients C; in (A6) may be obtained by
explicit angular integration using the expressions
(A2) and (A3). We find

C,= <RTR1+ L¥L,+ R{RI"' L%L'1>

= 14—5 (3302+ 3312 —BIBO) s (A7)
C,= (RI¥R,+ L3‘L0>

= £ (2By’+ 2B,*+ B,B,) .

on interference terms between the helicity ampli-
tudes B,, B,. It should also be noted that in the
E1-E1 case when B,= B, and A,= A, one obtains
an angular distribution in 6, of the same form as
the corresponding Oy y distribution (see Table III
or V):

E1-E1 case forJ=1,

W(6,) <5+ cos?6,. (A8)

The same computations can be carried through
for the case J = 2. The analog of Eq. (A4) has
an extra set of terms proportional to the helicity
amplitude |A,|?, in which the first index of the
D functions is +2. The analog of Eq. (A6) reads

W(6,)= C,[5]A,[%1 + 6cos?6,+ cos®0,)+ 5|A,|X1 —cos®0,) + §|A,|*sin*6,]

+ C,[5]4,]2(1 = cos®6,) + 5|A, 21 - 3cos®6,+ 4 cos*d,) + 3|A,[* sin®f, cos?6,) (A9)

+ Co[3]A,[2sin%0,+ 3|A, [*sin%0,cos26,+ 5 |A,|*(3 cos?6 - 1)?],

where the coefficients C; are bilinear forms in B,, B,, B, obtained by angular integration over 6,, ¢, of
forms of type (R¥R;+ L¥ L;). These are given below. Equation (A9) shows that typically the decay distri-
bution of aJ = 2 particle has terms up to cos*6,. It is interesting that in all terms of (A9)the cos®6, has as
coefficient the bilinear form (|A,[>~4|A, [*+ 6] A,|) which is the same as the A coefficient of the cos®6,,
distribution given in Table III. Thus if |A,[*—4|A,|*+ 6|A,|* vanishes, the distributions W(6,) as well as
W(ew) will only be quadratic in cosé, (or cos6yy, respectively). This happens in particular if the transi-
tion y —yy is pure E1 so that A,;A :A =V 6:V3:1. Similarly, it is sufficient for the transition 3’ —yx to
be pure E1 in order for the cos6, term to vanish. The explicit expression for the coefficients C; in (A9)
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is given below:

C,= <R)2kR2+ LiL,+ R;RE + L§L§>

= 12-[6B,2+ 8B,%+ 8B,>~V3B,B,+ 3V2B B,+ 2/6B,B,],

1}

C,=(RfR,+ L¥L,+ RIR; + L¥L)

= 2= [15B,*+ 13B,%+ 13B,*+ V3B,B,~3V2B,B,~2V6B,B,],

Co=(R{Ro+ L§Ly)

(A10)

= 0= [8B,%+ 6B,%+ 6 B,+ V3B,B,~3V2B,B,-2V6B,B,].

It may be checked, using the expressions (A10), that under the assumption of E1-E1 dominance B,: B;: B,
=vV6:V3:1=A,:A,:A, the angular distribution W(6,) takes the form

W(6,) = 13+ 21 cos?s,.

(Al11)

which is analogous to the distribution in the angle Oyys given in Table V.
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