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Angular distributions for the cascade Y’ - xy’' —Yyy’'— p*p " yy’ are calculated for Sy =0,1,2. Ina
nonrelativistic quark model the ratio of the partial rates T'),/T'5, can be calculated and is independent of the
shape of the central binding potential. This ratio is of the order of (photon energy/quark mass)? and is
numerically & 0.0025. This supports the use of the dipole approximation for the radiation. The use of
Cartesian tensors simplifies the determination of the angular distributions significantly.

Preliminary data! indicate that the ¥’ (see Ref,
2) [the ¥(3.7)] has a radiative decay mode into a
new particle (or perhaps several particles) of
narrow width which we denote by x: ¥’—yxy’. This
new X state itself decays radiatively into a ¥ [the
¥(3.1)] particle®: x - ¢y. The important determi-
nation of the spin S, of the x is possible from data
on angular distributions in the cascade decay
P = xy' = ¥y'y. Some of these distributions for
S, =0,1,2 have been published.*"® In this brief
note we present the distributions for the complete
process e'e” ~ '~ xy' = ¥y'y~pu 7y, taking
account of the polarization in the initial e*e” colli-
sion and of the analysis of the final § polarization
provided by the p*y~ angular correlations. As
shown below, dipole radiation is likely to domi-
nate. The separate cases S, =0,1,2 are calcu-
lated using a Cartesian tensor method, assuming
dipole radiation. We should like to emphasize that
this method greatly simplifies the calculation of
such processes if the particle spins are not ex-
cessively large.

We use a simple nonrelativistic quark model to
estimate the significance of quadrupole and octu-
pole radiation. We take the ¥’ and ¥ to be 3S states
and x to be 'S, °P,, °P,, °P, states. The parity of the
¥, ¥, and x(S) is odd; the parity of the x(°P)
states is even. It follows that the decay ¥’—~ x(*S)y
must be a pure M1 transition. Since there is no
ambiguity for the x(}S) we turn to the 3P states.

In our nonrelativistic model, the ¥’s and x’s are
composed of bound ¢¢ pairs described by a Hamil-
tonian in the center-of-mass frame:

_ P s
H= g +V (7)), 1)

where p=(p, - D,)/2 and T = (¥, - F,) are center-of-
mass variables. The potential, V, may depend on
the spin state, but is a purely central potential so
that T and § commute with H. We shall not make
any assumption about the actual shape of the po-
tential, V. In the center-of-mass frame, the in-
teraction of the quarks with the electromagnetic
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field is taken to be
H) = 20 {5 [R(F/2) + A(-F/2))]
my 7
+§g(51 +32)'[§(F/2)—§(—f/2)]
+—21§g(61 - 62) ° [ -ﬁ(F/Z) +§(‘F/2)]} ’
(2)

where g is the gyromagnetic ratio for the quark
whose mass is mg and whose charge is e,. Since
we are considering transitions 35 - 3P, with sym-
metric spin combinations, only S = (&, +3,)/2 con-
tributes. The leading nonzero contributions to the
transition matrix elements in the static limit are

given by
o)

H{] = <x(3P)
(3)

where the photon has momentum k and polariza-
tion €. The first term gives rise to E1 radiation.
The second contains both E1 and M 2. 1t is ap-
parent that there is no E3 radiation since only
|AL|=1 operators can contribute to an S-P transi-
tion and the ﬁ B interaction gives at most |AS|=1.
The M2 matrix element is isolated by sym-
metrizing in S and ¥. The E1 radiation arising
from P& may be compared directly with the M2
radiation since the matrix elements of p and
are related via Eq. (1): [H,T]=-2ip/mq. The
ratios of the partial rates for ¥’ —Xx(°P,)y [the
ratios for x(°P,)— yy are the same except for the
obvious statistical factors] are found to be

Calp5.7- £3. *xw.f_}
mq[Zp €~ S- (kx&)k 3

0, S,=0,
T gk \?
= X =
T (Smo) 1, §,=1, @
5, Sy=2.

Taking the nominal values g=2, k=300 MeV, and
mq =2 GeV, we find T}, /Ty, <0.0025. This analy-
sis suggests that the dipole approximation should

suffice, even for amplitudes, where the M2 effect
should be about 5%.
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Although we shall henceforth assume that the
radiation is purely dipole, it should be noted that
our preceding estimate is based on some assump-
tions of particular concern. The first is the as-
sumption that the forces in both the spin-singlet
and spin-triplet channels are central. The second
is that the quarks couple to the electromagnetic
current in the naive fashion. The former as-
sumption neglects forces such as the spin-orbit
force and the tensor force which might be called
for in a detailed phenomenological treatment of
the q7 interaction. The latter assumption is in
contrast to the approach of the Melosh transfor -
mation, in which the electromagnetic current has
a more complex form when written in terms of
the (constituent) quarks which are bound by a non-
relativistic potential.®*” If the Melosh transforma-
tion approach is correct, there should be signifi-
cant M2 amplitudes for S, =1, 2 although E3 am-
plitudes would still be expected to vanish. Finally,
we must note that we have approximated phase fac-
tors e!*'T by unity in Eq. (3) since we expect that
kr<1,

We have chosen a nonrelativistic quark model
for estimating the importance of quadrupole and
octupole radiation. We are unwilling to use the
detailed predictions of the model literally. For
example, it would be dangerous to interpret
(gk/8mg), which could be determined from the
E1-M2 interference, as actually measuring quark
properties. We proceed now to the calculation of
angular distributions on the assumption that dipole
radiation dominates, as is suggested by our model
analysis above. Of course, the angular distribu-
tions we obtain depend only on our use of the di-
pole approximation, and not on the hypothesis
that the new particles are nonrelativistic bound
states of a quark and an antiquark,

We denote the polarization vector of the 1~ y’

(or the 17 ¥) by ¢; (or ¥,). If the x particle has
spin 2, its spin state is described by a symmetri-
cal, traceless spin tensor x,,. The spin state of a
spin-1 x particle is described by the vector ¥,.
We represent the photon spin in the decay ¥’ - xy’
(or in the subsequent decay x — ¥y) by an electric
or magnetic field vector E, or B, (or E, or B,).

If the x parity is even, we have the following mini-
mal, gauge-invariant, static (E1) couplings for
the ¢’ — xy’:

1" =2%: E*x% o5, (5)
1" =1%y: E* X{ Un€rim s (6)
17 - 0%y: E{*y;. )

The couplings for the subsequent x - ¥y decay are
similar. If the x parity is odd, an electric vector
E, should be replaced by a magnetic vector B,.

This has no effect on the final distributions if the
photon polarizations are not observed, which we
take to be the situation. Since in the §’ rest frame
the recoil velocities of the x and ¢ are much less
than ¢ @?/c?<1), the static approximation suf-
fices. We use the polarization sums

EX:I Xmn =2 OpmD 1+ O Om) = 50,1 0 (8)

pol

Z X&' X =04, 9)

pol

to compute the angular dependence of the matrix
elements for the cascade ¥’ - xy’ — ¢yy’ in the
three cases:

- ->

172y @B 70+ @B -EY

- ->

-2(@*-EXN(P B, (10)

1- -—1*)/’7: (E*'ﬁ'*)(ﬁ* .'llj/)_ ('ZZ*JI)(E’* .E'/*)’
(11)

1= 0t yy: (P EX(E*-T). (12)

The decay rate involves the absolute square of
one of these quantities. We assume that the pho-
ton polarizations are not observed and use

D ELE} =0y ~ ki, (13)

pol

;;Ek*Ez =0y —k Ry . (14)
Here %’ is a unit vector along the direction of the
first photon emitted in the decay cascade ('~ xv’)
and % is a unit vector along the direction of the
final photon (y = ¢v). The spin alignment of the
final § particle is analyzed by its leptonic decay,
Y—~e*e” or = u*u”, which provides further angu-
lar information. Thus, we work out the decay
chain in which the y undergoes a leptonic decay
involving the couplings ﬁ?-iﬁv, where u (v) is the
Dirac spinor of the lepton (antilepton). Since the
masses of the leptons are insignificant compared
to their energies, we can neglect these masses
and secure the replacement

Y= D ATy u e (b =B 1) . (15)

pol
Here [ is a unit vector along the direction of one
of the leptons. (The angular distribution of other
modes where the ¢ spin is not analyzed is obtained
simply by averaging over the direction of 7.) The
colliding e* e~ producing the original ¢’ may be
polarized along the direction % of the magnetic
field in which they move, a direction perpendicu-
lar to their line of flight at collision, which we
specify by #. Again we can safely neglect the
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mass of the electron and derive,® in a manner
similar to the work leading to Eq. (15),

PR~ (1 =®2) (B, = i2y) + 2020, B, (16)

J

1197

where @ (-@®) is the degree of polarization of the
incident e~ (e*), with 0<®Z<1. The full angular
distributions which follow from Eqgs. (10) to (16)
are given by the following.

Wo= (1= @){[1+ (B R)?|[1+ @ 1)2) +[1+ B+ D)2 [1+ (2 B)?) + 2[1+ (k- 1)?][1+ (- £)?]
— 2k B2+ ([oR)2+ [ B)2= (Lo BT R)(B o B) =14 (i 1)2+ (i B')?
+ (@ R)2 =R R) B R) = e DA R)T B) = e D)@ B)( - B7)]

+ 20 D) R)T BB o R) =L 1) BT R) (R - B) -

L@ k)BT R)(I R}

+ 25 @H[1+ (B2 [1= (R D)2 +[1+ B - 1)) [1= (R )]+ 21+ (B - D)2 [1 = (h-%")?)
—H 1o D)2 = (R k)= (o )+ (o Yo BY(R o R) + (e D)o BT+ )+ (o D) (R B7)(T+ )]
=20 )R- R)(T R)R < R)+ 5 (e D)o k)T R)(R + B) + 5 (o B) e Br)(r « D) (o~ D)} (17)

Sx=1:

W,=2(1-@2){[1+(

(@
-2’

B[ 1+ (Fe B2 +[1+ G- 1)?[1+ (B - )]
B2 (e R) 2 ([ B)2 = (Bt o D) (B D) (B o B) = 14 (2 1)+ G+ B1)2

+@ k)= @) R)R - R) - @ D)@ R)(I-F)
— @ D)@ k)ER)+ G- D)@ - R)E- R (R - B)]}

+ ZeH[1- (ke B [1+@-B)F+[1-

(e D)7 [1+ (R« B)?)

— 1= (D)2 = (b= (R B)2+ (k) B)E - B)+ (R D) R)I+R)
+ D)o RYA R = (e D)o R)(I- R (R < R)]. (18)

SX=O:

Wo= o(1-02) {1+ @ &) [1+ (-2} + 2021~

(e R")?)[1+ (- R)?)}. (19)

Here we have normalized the distributions such that their average over all angles is unity.
If the final y particle decays into modes which do not analyze its spin or if the leptons in its leptonic
decay mode are not observed, then the appropriate angular distributions are obtained by averaging the

results above over the direction of [ :

Wy= (1= @[22+ 6(k’ + &)+ 6(7i - )%+ (s B7)%+ 3(» ) (i o ) (B! + )]
+ S02[29+9(k" - k)2 = 12(h k)2 = 2(h- k') = 6(h+ ") (h-R) (' - R)] , (20)
1= (1= @2 - @)+ @) R) (R - B)] + T @21+ (R k)24 2(h k") = 2(h- R (- R) ' - B)],  (21)

=;(1 - @1+ @k +302[1 = (R 7)Y

If only the angle between the two photons is ob-
served, then we average over # and % (the corre-
lation of these two vectors can be disregarded
since they never appear together) to obtain these
distributions®*:®

W= &[73+21(k" - 2)?7 , (23)
W= 5[5+ & -£)7, (29)
W,=1. (25)

All of the above results may be obtained with

(22)

techniques based on spherical rather than Carte-
sian tensors.'® For intermediate states with spin
greater than 2 the spherical tensors may be more
convenient. However, for spins less than 3 the
Cartesian tensors provide a significantly more
efficient procedure.

We have enjoyed discussions of these matters
with S. D. Ellis, E. M. Henley, A. J. G. Hey,
J. D. Jackson, P. K. Kabir, J. L. Rosner, and
W. M. Tannenbaum.
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