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We have calculated the fermion-fermion scattering amplitude for a non-Abelian gauge theory with SU(N)
gauge symmetry in the limit of high energy with fixed momentum transfer through sixth order in the coupling
constant. We have kept only the leading logarithmic terms in each order of perturbation theory. In order to
avoid the infrared problem, the Higgs mechanism is invoked to give masses to the vector bosons of the theory.
We find that the scattering amplitude exponentiates to a Regge form. This result is qualitatively different from
an earlier published calculation.

I. INTRODUCTION

A considerable amount of work has been done
on the theory of elastic two-body scattering in the
limit of infinite s and finite t, where s is the
center-of-mass energy squared and t is the four-
momentum transfer squared in a collision. Qual-
itative forms of the scattering amplitude have
been proposed based on the Regge model' and on
the eikonal or diffraction model. ' These models
are built on extrapolations from nonrelativistic
potential theory instead of relativistic first
principles.

The only theoretical structure thus far developed
which incorporates all the basic principles such
as superposition, analyticity, and so on is quantum
field theory. Because of this fact, explicit cal-
culations based on relativistic field theories are
of great interest. In such limits as s becoming
infinite with t fixed, where the effects of reso-
nances and other local properties should be
smoothed out, one can hope to see general features
suggested by field theories. Much work has al-
ready been done along this line. In most studies
one keeps only the leading asymptotic term in each
order of perturbation theory (the "leading ln"
approximation). The hope is that the nonleading
terms will not affect the qualitative conclusions.

The classic example of this approach is the
analysis of "ladder" diagrams in Q' theory. '
The Regge behavior has been shown to appear
when the ladder diagrams in the t channel are
summed. Many calculations of this nature have
also been done for massive QED.4 However, Q'

theory or massive QED is not expected to be a
realistic model for hadrons, because it does not
take internal symmetries into account. Thus, it
is important to look at the more realistic non-
Abelian gauge theories.

In this paper we consider the scattering of two
fermions for large s and fixed t for a class of

non-Abelian gauge theories with SU(N) symmetry
in which the vector mesons receive a mass p,

through the mechanism of spontaneous symmetry
breakdown. %e find that to sixth order in the
coupling constant the scattering amplitude expo-
nentiates to a Regge form. Some time ago,
Nieh and Yao' published the results of a similar
calculation. Our results are qualitatively different
from theirs. In extracting the behavior of individ-
ual diagrams as s- ~, we have used either the
standard techniques in parameter space' or the in-
finite-momentum technique of Chang and Ma' or
occasionally both. The main results of this paper
have been reported in a short communication. '

An outline of our paper is as follows: In Sec. II
we discuss the model we use, present the relevant
notation and kinematics, and give the results for
orders g' and g, where g is the coupling con-
stant. In Sec. III we demonstrate some remark-
able cancellations which occur in order g'. In
Sec. IV we calculate the leading behavior of the
transition amplitude in order g'. In Sec. V we
consider the generalization of our results from
SU(2) to SU(N) symmetry. And in Sec. VI we
present our conclusions and summary. Six ap-
pendixes are included, where detailed analysis
is performed or indicated.

II. NOTATION, KINEMATICS, THE MODEL, AND

LOW-ORDER RESULTS

The components of a four-vector V„will be
written as (V„V„V ), which are related to the
usual components by V, = V + V' and V~=(V', V').
The invariant product takes the form

V 8'= pV TV + pV W+ —V~ W~.

The Dirac matrices in this representation have
the following properties:
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and (2.1)

P' =((m' ——,'k )/Ws, 5, Is)+O(([1/Is ]', 0, 1/~&)).

Note that t= JP =-k,', while s =(P+P')', and that
P'+-'k'=m and P' + -'0'=m'

For concreteness we will restrict our consid-
erations to the case of SU(2} gauge symmetry
for the present. The generalization to SU(N) sym-
metry will be given in Sec. V. We start out with
the usual Yang-Mills Langrangian and, in order
to avoid the infrared problem, introduce a com-
plex scalar doublet and invoke the Higgs mech-
anism to give masses to the vector mesons.
This is a renormalizable model originally due to
't Hooft. ' After the spontaneous symmetry break-
down, the vector mesons receive equal masses p, .
In addition, a physical scalar particle with arbi-
trary mass M and two ghost particles appear.
Fermions are then added to the theory and cou-
pled to the massive vector mesons by the usual
minimal-coupling assumption. The Feynman
rules for this model are those of the usual Yang-
Mills theory with the addition of a number of
vertices and propagators associated with the
scalar and ghost particles. However, as it

b„y )=4,

b„y,]=0,
y, '=O.

We consider the scattering of two on-mass-shell
fermions p, +p, - ps+ p~ in the limit s»

~
t ~, m2, u2,

where s=(p, +p2)', t=(p, —p, )'&0, m' is the
fermion mass, and p,

' is the vector-boson mass.
For convenience we choose (see Fig. 1)

P, =P- ~k, P2=P'+ ~&y

p3 —P+ gk, p~-P —p&,

where k = (0, k~, 0), and, as s- ~,

P=( s, 0, (»u' ——,'k')/v s)+O((1/Is, 0, [1/Is]' ))

(2.2)

where A, is the helicity of the particle with mo-
mentum p&. Note that T B„„ is proportional to

This is a simple consequence of the
facts that, as s-~,

uq (P+ ~k)y, uq, (P ——,'k) = —I)», », (2.3}

and

~s
ug (P'- rk)y ug (P'+ ~k)= —5~ ), . (2.4)

Because of E»ls. (2.3}and (2.4), one also finds
in higher orders that the transition amplitude is

turns out, for the purposes of our leading-ln
calculation the only Feynman rules we will need
in addition to the usual ones are the two illustrated
in Fig. 2. The ghost particles do not enter to the
leading ln. We work exclusively in the t Hooft-
Feynman gauge.

Let us define the invariant transition amplitude
T by

(p„p, ) (S- I) ( p„p,) = iN(2-»»)'f»( p, + p, —p, —p,)T,

where X is a normalization constant. T may then
be decomposed into an isospin-flip part (T }and

an isospin-nonf lip part (T" ),

T = T'(~);, , »,
' (7');(, ;,+T",'&», , », &», . ,

where i& is the isospin index for the particle with
momentum Pz and where 7 is a Pauli matrix.
Lower case Latin indices will be used for isospin
indices, while lower case Greek letters will be
used for four-vector indices.

In lower order (g') we have the Born term,
which is trivial,

T Born

1 s

~QF Sabg

I

p-M +~~

FIG. 1. Kinematics of the reaction P&+P&-P3+P4. FIG. 2. Additional Feynman rules needed.
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+Tb n
= —(g /4)(2m) s'

n ln(s/mn)K(t)

and

(2.5)

proportional to z, z, z, z, as s- ~. Therefore,
we shall henceforth omit the factor
with the understanding that we are always refer-
ring to the helicity-nonf lip amplitude.

In order g' the leading diagrams are those
numbered 1 and 2 in Fig. 3 (hereafter denoted
3.1 and 3.2). The amplitudes for these diagrams
are identical to the amplitudes for the correspond-
ing diagrams in QED, ' except for the presence of
Pauli matrices. Therefore, we simply state the
answer, which is

The presence of Pauli matrices in the amplitudes

T3, and T, , simply gives rise to numerical
factors in T,'. . .and T,"', , „which are derived
in Appendix A. Note that T,"', » is smaller by

a factor ln(s) than T,', , , So T,"'. . .is neg-
ligible in the leading-ln approximation. Thus in

order g' we have

T'" = -(gd/4)(2s) 'w' —,in(s/m')K(t) (~), ; ~ (~};

+O(s) . (2.3)

Also, let us point out that, to the leading ln,
ln(s/m') = 1n(s/sn), where so is an arbitrary con-
stant.

III. CANCELLATIONS IN ORDER g

where

' da, da, t) (a, + a, —1)
(-t)asan + p, —tE

(2 6)

In order g the leading diagrams are found to
be those numbered 3-35 in Fig. 3. For each di-
agram in Fig. 3 there is an "isospin factor" most
easily defined by an example. For diagram 3 the
isospin factor is given by

(Ya 7b)it I (~ dc)7j In~dbeeace &

where

1 d2gj
s [(q+ nk), '+ p' —ie][(q —bk},'+ tt' —ie]

[7',
& ~b] = 2ideb, Tc .

21

26

l2

l7

22~

27

l3

IS

(2.7)

IO

20

30

The Pauli matrices are, of course, associated
with the boson-fermion vertices, while the ~,~
come from the three- and four-boson vertices.
These isospin factors are computed in Appendix A.

We will denote the sum of the diagrams labeled
m, m+1, . . . , n —1,n in Fig. 3 by T, , „. Of the
33 diagrams in O(gd) only eight need be computed.
The remaining diagrams may be obtained from
these eight by symmetry considerations. For
example, diagrams 3.6 and 3.7 give identical
amplitudes, while the amplitude for diagram
3.10 may be obtained from that of diagram 3.6
by the substitution s- u--s along with a change
in the isospin factor of the amplitude. In general
the change in the isospin factor of a "crossed"
diagram relative to an "uncrossed" diagram,
e.g. , diagram 3.7 vs diagram 3.6, results in an
over-all minus sign in the isospin-flip amplitude
of the crossed diagram relative to that of the un-
crossed diagram, as seen in Appendix A. That
is to say, one has

T,'„,(s) = -T„'„„,~(u) = T„'„„„~(-s)-, (3.1)

while

FIG. 3. The leading diagrams inO(g4) and O(g6).

T crossed(S) nnctosn&d(u} I&no&assed(

Hence we see in general that if T„„„,~(s)
cc s ln"(s), then

T'„„„,~(s)+T'„„„d(s)ts:sin"(s),

(3.2)

(3.3)



LAWRENCE TYBURSKI

while

T f„„~(s) + T,"' ~(s) cc s ln" '(s) . (3 4)
r-yk

So for the sum of a given diagram and its s—u
crossed counterpart the isospin-nonf lip amplitude
is less leading by a factor of lns than the isospin-
flip amplitude.

For convenience, the amplitude for diagram
number n in Fig. 3 will be written as T, „(s)
=G, „E,„(s), where G, „ is the isospin factor
given in Appendix A. Then we have that

q-&k

p/+q

Ecrossed( ) uncrossed(u) uncrossed( ) . (3.5)

First let us consider the "ladder" diagrams
numbered 3, 4, and 5 in Fig. 3. In Fig. 4 we il-
lustrate the labeling of the internal momenta for
these diagrams. Individually the diagrams 3.3,
3.4, and 3.5 are known to go as s', but the s' be-
havior cancels in the sum of the three amplitudes.
To obtain the leading behavior of the sum, it is
best to add the amplitudes for the diagrams to-
gether before evaluating the integrals and to
algebraically cancel out the terms which give
rise to the s' behavior of the individual diagrams.
Now to do this, we note that the s' behavior of the
individual diagrams may be obtained correctly
by making the approximations

u, (P+ ,'k)y„(P+ p'—+m)y„u,(P ——,'k)

=u, (P+ ,'k)y, (P+y')y, -u, (P —,'k)5'„5„'—

(v s+r, )5'„5„' (3.6)

and

ue(P' —ek)yp(P'+/+m)y) ue(P'+ ,'k)—
=ue(P' —,'k)y (P'+i/)y—u,(P'+ —,'k)5~5~

2
(s s+q )5~5~ (3.7)

in the numerators of the amplitudes T3 ~ 3 T3 ~ 4,

and T3 ~ 5 This is true because of the fact that in
momentum space the s' behavior of T3 ~ 3 T3 ~ 4,
or T, , is due to a linear divergence of the inte-
grals over the longitudinal momenta q and r„
i.e., if one would use the infinite-momentum tech-
nique' to calculate the asymptotic behavior of
T3 3 T3 4 or T3 ~ 5 one would find that the am-

gk

p'+q

FIG. 4. Labeling of internal momenta, Feynman
parameters, and Lorentz indices for diagrams 3 and 5
Of Fig. 3.

plitude is proportional to
vs vg

dq (Ws+q ) dr, (Ws+r, ) des'.
0 0

We shall refer to the approximation (3.6) plus
(3.7) as the ++ ——approximation. It corresponds
to having boson-fermion couplings proportional
to y, along the upper fermion line through which
a large P, flows, and having boson-fermion cou-
plings proportional to y along the lower fermion
line through which a large P flows. Then in the
++ ——approxima. tion T3 3 3 5 is given by

Te e e e 2[En e(s) Fe e( s)l (3 6)

and

T,"'. . .= -6[E,', (s) + E,', (-s)],
where

r,',( )= —rjtd' —,(2 ) 'f d' d q(qq+q )(dq+r, l(sr'+sq —Sqq —Srr —Sr q, —S ,—q'j

x [(P+r)' —m' i +]'e[(P'+q)' —m'+is] '[(q+r)' —id +id]

x [(q+ nk)' - jd'+id] s[(q —nk)' —y, '+ is] '[(r+ —'k)' —id'+id] '[(r —nk)' —id,'+ id]

(3.10)
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and where the factors 2 and -6 in (3.8) and (3.9),
respectively, are isospin factors.

E3,(s} in Eq. (3.10}has been obtained by in-
serting 1=[(r+q)' —t(, '+i&]/[(r+q}' p'+ie] in
the amplitude for graph 3.5 and then adding that
part of T3 ~ 5 which has the same isospin structure
as that of graph 3.3 to T3 ~ 3 With the aid of Ap-
pendix A, and noting that E, ,(s) =E, ,(-s), one
then obtains the results (3.8), (3.9), and (3.10).

Notice that in the curly brackets in Eq. (3.10)
there is no term proportional to q r, . Such a
term would give rise to s' behavior, but such
terms have been canceled out by summing the
diagrams 3.3-3.5.

To the leading ln we can make the further ap-
proximations in (3.10)

Ws+q =Ms

parametric integral. Usually q', =v sa, where a
is a function of the Feynman parameters. Then

q, /)t s will be «1 if a«1 in the regions of inte-
gration in parameter space which contribute to
the leading behavior. This is found to be the case.
The important regions of integration always cor-
respond to end-point contributions.

The value of E,', (s) to the leading ln as s- ~
may be obtained straightforwardly by standard
techniques. In Appendix B we caclulate the value
of F,', (s), and from Appendix B and Eqs. (3.8}
and (3.9) we obtain

T. . . , = -g (2v) 'v
3( —,ln'(s/m')K(t)+ O(s ln's)

(3.13)

and

and

v s+r, =Ms.

(3.11) T,"'. . .= --,' ivg'(2w) '7(' —,—,ln'(s/m')K(t)

+ O(s lns) . (3.14)
The combination of the ++- —approximation plus
the approximations (3.11) will be referred to as
the "leading-particle approximation" for identifi-
cation purposes. It corresponds to writing, e.g. ,

P+f'+m=-,'Wsy

and

P'+$+m = —,')t sy,

(3.12)

in all of the numerators of the fermion propagators
in a given amplitude. The validity of the leading-
particle approximation for obtaining the leading
behavior of a given diagram can most easily be
seen in momentum space where the ln's are seen
to arise from integrals of the form f~~Pdq, /q,
=lns. Replacing a factor of v s in the numerator
by a factor of q, would give an integral of the form

r
es

(q, /u s )dq, /q, - 1,
z/ is

which is down by a factor of lns. In parameter
space, the leading-particle approximation corre-
sponds to neglecting terms of the form q', /Ws
relative to 1, where q' is the constant "shift"
term arising from the change of variables q- q'
+q' made to diagonalize the denominator of the

Note that the nonf lip amplitude is less leading by
a factor of lns than the flip amplitude and is
therefore negligible in the leading-ln approxima-
tion. However, we will find that the sin's be-
havior of the flip amplitude in Eq. (3.13) is can-
celed out by the contributions from the radiative
correction graphs 3.6-3.17. Therefore, to show
that the nonf lip amplitude is negligible in O(g')
it will be necessary to show that the sin's behavior
in Eq. (3.14} is canceled out by the contributions
from the radiative correction graphs 3.6-3.17 in
Fig. 3.

Let us consider first the diagrams 3.6-3.13.
The labeling of the internal momenta for diagram
3.6 is illustrated in Fig. 5(a). One finds, using
Appendix A and noticing that E, ~(s) = E, ,(-s)
=F3,(s) =F3 9(-s) =F» (s) =DER ii(-s) =F~. i (s)2
= F, „(-s), that

Tp e g y3 4( 2 )(t2)[Fg 6(s) Fg 8( s)]

(3.15)

and that

T,"'6, „=4(-2i)(3)[F, ,(s) + F, ,(-s)], (3.16)

where, in the leading-particle approximation,

2
5/2

P. .ts)=
Z

P' . (2 ) '] d'e&'~(2 ~ a )((P-el*- * ~ (~I '((P ~ )* — * ~
'

)
'

x [(P'+q)' —m'+ie] '[(r ——,'k)' —p'+i~] '[(q —2k} —i(,'+ie] '[(q+ 2k)' —p'+it]

x [(q+r)' —p. '+i@] (3.17)
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Pb P-q

( )
q-$k

1/

P+r shown to cancel out in O(g') it will be essential
to properly renormalize the radiative correction
graphs in order to obtain the correct leading be-
havior in O(ge}. In Appendix B, F~ 8(s) is eval-
uated. After plugging its value into (3.15}and
(3.16), we find

T,', , » =g'(2w) 'v' —,—rln'(s/m')K(t)3f m

u, b
2=

P'+q

+ O(s ln's) (3.18)

T,"', , „=-',twg'(2s) 'v' —, , In—'(s/ec')K(t)

+ O(sins) . (3.19)
P+q+r- &k P+r

Upon comparing Eqs. (3.18) and (3.13) we see
that

T,', , » = O(s ln' s) . (3.20)

(b)
The ln's behavior has been canceled out in the
sum. Also, we see from (3.19) and (3.14) that

q--,I T3 3 3» O(sin S). (3.21)

P'+q
FIG. 5. Labeling of internal momenta, Feynman

parameters, and Lorentz indices for diagrams 6 and
14 of Fig. 3.

Thus, if the isospin-nonf lip amplitude is to be
negligible in O(g') as it was in O(g'), there will
have to be an additional contribution to T"' to
cancel out the ln's behavior of T3 3 3 $3 The
necessary additional contribution comes from
diagrams 3.14-3.17 in Fig. 3. These diagrams
contribute only to the isospin-nonQip amplitude
(see Appendix A), and one finds that

We would like to point out that in the leading-
particle approximation, which correctly gives
the sin's behavior of F, ,(s), F, ,(s) contains no
ultraviolet-divergent integration, and thus no
renormalization is required. We would like to
emphasize, however, that after the sin's has been

and

f
~3.i4 3.i7=o

T 33'»7
= 2(6i)[FS»(s) +F„,(-s)],

(3.22a)

(3.22b)

where, in the leading-particle approximation,

i, s'~'r. ..()=~2r' . (2 ) J~ ru (2r'r '))&p'+r+r —l)')*- * ~ )r) '))p+ )* —r ~ irl-'

x[(P'+q)' —m'+is] '[(r ——,'k}' —t), '+is] '[(q+-,'k)' —p, '+is] '[(q ——,'k)' —p'+is] '

&&[(q+r)' —p, '+ ie] '. (3.23)

See Fig. 5(b) for the labeling of the internal momenta.
We need not evaluate F», (s) explicitly, but can use the following device to obtain its value. Making the

usual infinite-momentum technique approximations, e.g.

2 1 2 -1
[(P—q)' —m'+is] '=(Ws) ' --q + —' + (O1 s/)+ ie

vs Ws (3.24)

we write
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E„,(s)+E„(s)+E,«(s)+E», (s)+F, ,(s)+E„(s)

2 1 2 -1
X[(r ——,'k)' —i1'+ is] '[(q ——,'k)' —)1'+is]-'[(q+2k)' —}1'+ie] ' q, + —~+isvs Ws

q2 1 p2 -1 y2 1
)P -1

X —g + — + EE y + — +$6

(q +y 1 k)2 1 k2 1 r2 1k2 1

+ q +r + ~' -~+i@ r +~-~+i@
(q+r —2 k)' —,k' q2 1 p2 1

+ q +r + — +it q + — +is +(s-24)+O(sins).
v'S

(3.25)

In the curly brackets in Eq. (3.25) we have the sum g symbolically shown in Fig. 6,

q2 —.'k2 . -' r2 .'k' .—-' (q+r--.'k)' —,'k' . -' r2 &k'
+ +Sf y + —~+zE' + g +y + ~ +f6 g +~ +26

(q+r ——.
' k)' —,

' k' q2
+ q +2' + ~ —~+Zf q +~—~+if

Neglecting the O(I/vs ) terms one finds

{3' + 2E) [(q + 2E) +(-q + 24) ] = (- W2)2{6q)(2' + 2E)

(3.26}

(3.27)

As is well known in QED studies' the presence of
a 6(q } in an amplitude will in general reduce the
amplitude by a factor of lns. In fact, one easily
sees by substituting Eq. (3.2V) into Eq. (3.25) that

E„,(S)+F32(s)+E,«(S)+E»3(S)+E„(S}+E,,(S)

=O(s lns) . (3.18)

-q+~ k l t q+i&& -l+gkl&

So from Eqs. (3.28), (3.22), (3.19), and (3.16),
and the facts that E„(s)=E„(-s}=F33(-s)
= F, ,(s) and E, »(s) = F, «(-s }, we obtain

3.14 -3.17 3.6 -3.13 O {

iwg3(2&1) 3w4 —, , In'(s/m2)K(t)

T„"', , „=O(s lns). (3.30)

The ln's behavior has been canceled out in the
sum. Thus we have demonstrated that the iso-
spin-nonf lip amplitude is less leading by a factor
of lns than the isospin-flip amplitude in O(g3) and

is therefore negligible in the leading-ln approxi-
mation.

Hence, we have shown in this section that

+O(s lns) .

Upon comparing Eqs. (3.29), (3.19), and (3.14),
we see that

p+q+r- $ k

q+ ~ -q+-k

P-r k

P-rk P+q+r-~k

q+ p -r+$k

P+& P+kk

-r+-,' k

p+q p+$k

-q+$k

T~'& C21n's{7}, ;, (7).. . +O(s lns) .
FIG. 6. Symbolic illustration of a sum occurring in

Eq. P.26).
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IV. CALCULATION OF LEADING BEHAVIOR IN ORDER g6

In Sec. III we saw some remarkable cancella-
tions take place, which resulted in the conclusion
that the transition amplitude in order g' was pro-
portional to s ln's. Now we must calculate the co-
efficient of s In2s in this order. To do this, we
will first write the amplitudes for the graphs 3.3-
3.13 in the leading-particle approximation [see
Eq. (3.12)], add the amplitudes together before
evaluating the integrals, and cancel out algebrai-
cally the terms which give rise to the ln's behav-
ior. After evaluating T~3 3]3 in the leading-par-
ticle approximation, we must consider the contri-
butions to the ln's behavior which come from
terms in T,'3 3]3 not given by the leading-particle
approximation. In particular, we must properly

consider the renormalization of the vertex cor-
rection graphs 3.6-3.13. Finally, we will have to
take into account the contributions of the diagrams
numbered 18-35 in Fig. 3. These diagrams also
contribute ln2s to the isospin-flip amplitude.

A. Contribution from diagrams 3.3-3.13 in the

leading~article approximation

Consider the amplitude P,', (s) given in Eq.
(3.10). The denominator of this expression is in-
variant under the combined interchanges q+ r,
q r+, and q r~, as follows from Eq. (2.1).
Thus, in the first terms in the curly brackets in
Eq. (3.10) we can replace q' by r' and q, q by
r+r . Then from Eqs. (3.8), (3.10), (3.15), and
(3.17) we find that, in the leading-particle approxi-
mation,

5/2

T~~ », —--g', (2x} ' d4r d'q ~ —,'(4r' —6r+x —3r q+-k'-p')[(P-q)' —m']+(2r +q )[(r+ —,'k)' —Iu']

x [(P- q)' —m'+ ie] '[(P+r)' —m'+is] '[(P'+q)' —m'+if] '[(q+r)' —p'+ iE]

x[(q+-,'k)' —p'+ is]-'[(q ——,'k)' —p, '+is] '[(r+ 2k)' —p'+is] "[(r—,'k)' —p, '—+ie] '.
(4.1)

We shall refer to T»», evaluated in the leading-particle approximation as A(s). In the curly brackets in
Eq. (4.1), we have the sum

1
—,(4r' —6r,r —3r q, k' —p-, ')[(P-q)' —m']+(2r +q )[(r+-, k)' —p, ']2 2 2 2 j 2

=[-r~' —2r+r —,'r—q, ———,(-k, '+p')][-q +O(1/vs)]+(2r +q )(r,r -r~' —r~ k~ ——,'k, ' —y. ')

=q [2r+r —r~ k~ —4(2k~'+3p')+ 4r q, ]+2r [r+r —r~' —r—~ ~ k~ ——,'(k~'+4p, ')]+O(1/Ws). (4.2)

The O(1/Ws) terms can be shown not to contribute
to the leading behavior of A(s). Notice in Eq. (4.2)
that a term in q r~2 has been canceled out in the
sum. Such a term would have given rise to ln's
behavior in A(s). After combining Eq. (4.2) with

Eq. (4.1}, one can evaluate the leading behavior
of A(s) by standard techniques. This is done in
Appendix C, with the result that

A(s) = -g'(2v) 'v',
2, ln'(s/m')

tion variables, e.g. , q- q'+q', then it may turn
out that q', /vs is not small in the important re-
gions of integration in ct space, and so q', /vs will
not be negligible compared to 1. So if we have a
term in the numerator coming from the fermion
propagators of the form (1+q, /vs )(1+q /vs ),
then we will make the approximation
(I+q, /vs)(I+q /Ws)=1+q, /Ws+q /vs. That is,
we retain linear terms such as q', /Ws, but ignore
quadratic terms such as q*,q'Js, relative to1. The

x [4&(t) —z(- t+ 2 p.')K'(t)] . (4.3)
P-q P+yk P+kk P+y k

B. Remaining contributions from diagrams 3.3—3.13

Next we must consider the contributions to the
ln's behavior of T33 3 J3 which are not given by
the leading-particle approximation. First, there
is a contribution from renormalization effects for
the vertex correction graphs 3.6-3.13. Second,
after one makes the shift of origin of the integra-

gk

FIG. 7. Illustration of the renormalization of the
vertex correction in Fig. 5.
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quadratic terms such as q', q'/sarealwaysfoundto
be small compared to 1 in the important regions
of integration in parameter space.

Finally, we should also point out that if the
important region of integration in parameter
space corresponds to say p„p„p, small, and if
say q+q' (x sp, p2p„ then a term in q+q' in the nu-
merator of the integrand will be as important as
a term in q', q' . This has already been seen to be

the case for diagram 3.3 (see Appendix B), where
the numerator term in q,'q' +q', q' originates from
the three-boson vertices.

Let us consider the radiative correction graphs
3.6-3.13. We renormalize the vertex correction
by subtracting off the vertex with q+-2'k=0, as
illustrated in Fig. 7. We can then write the exact
renormalized vertex as

1

(„,, = 'd' d'(2 ( ' dd, dddd, d Qd, —()

I„m'a, '+~'(a, +a, ) H. (P, q), H.(P, q =-5 k)
f(P, q) . fQ', q) f(p, q=- ', k)- (4.4)

where

f(p, q) = —(P q)'a,-a, —(q+~ k)'a, a, +m'a, (1 —a, )+p'(a, +a, ) —ie

and

H„(P, q) = [(a, —2)(p —q') + (1 + a, )(|('+ ~ if}][a2 (|- g) + a, (p+ ~ 1() +m ] y„

+y„[a,(P 4)+a (-P+k0')+m][(1+a )(P 4)+-(a —2)(j +2k')]

—[2a,(P- 4(}+ 2a, (P+ —,
' $) —4m ][(1—2a, )(P + 2 k)„+(1 —2a, )(P —q)v] .

(4.5)

(4.6)

(4.'I)

S2
s, 3xs=8T„,= —ig'(2w) 'w'

m

Then in the numerator of the amplitude T„,we will have the expression (see Fig. 5)

lt~(p + g k) V(( (p —g+m)y((T((1('g(P —
g k)g g l7d(P —g k)y)T (p +If +m}y„T((M2(P + ', k) .

In this expression Eq. (4.7) we take the limit Ws -~, noting that in V„, the large variable is 2P q
=vs q so that inH in Eq. (4.6) we need onlykeep the terms proportional to 2P q. Then we find that the
leading behavior in Eq. (4.7) comes from the term which has p = p =+ and A. = v =-. We then obtain for
T36 3/3 the result that

x 2-~ 1+ ~ P-q '-m'+i& ' '+q '-m'+ic
VS VS

x[(q+-,'k)' —p'+is] '[(q —,'kP —g'+i—e] ', (4.8)

with f(P, q) given in (4.5}.
The expression (4.8) contains the leading-particle approximation to T„„„which we have already con-

sidered. So we need to consider T„,„as given in Eq. (4.8) minus T„», as given in the leading-parti-
cle approximation. We shall call this quantity B(s}. B(s) can be shown to be given by the expression

2 1

B(d) = —(d'(2d( 'd', d'd dd, dd, dd d Qa, —(}m'

1—
f(P, q) Ws vs

2P q[a,a, +(1 —a, )(~ —a, ) q, q 2P q(& —a, )
f(P, q) ~~ ~~ f0', q)

x[(P-q} -m'+is] '[(P'+q) —m +is] '[(q+ ~ k) —p'+is] '

x[(q ——,'k)' —p'+is] '. (4.9)
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B(s) given in Eq. (4.9) is evaluated in Appendix D with the result that

B(s)=g'(2v) 'v',
2

ln'(s/m')[2K(t) —1(t)],-8~s 1

where

(4.10)

1())-=dddddd5 rd, —
)) [(-()d a, ~ d'(d, +d, )+ 'd, ' —(r] '.

0 i
(4.11)

Next, let us consider the ladder diagrams 3.3, 3.4, and 3.5. We have already considered T33 35 in the
leading-particle approximation. Now we must improve on the leading-particle approximation in order to
obtain all the terms in T» 3 5 which contribute to the ln s behavior. We can write the exact amplitude for
T„, „as (see Fig. 4)

T.'. ..= —(d'(8)(2r) 'fd rd'd')dl(P+r)*- * ~ (rl '((P'+d)* — * ~
l

rl('r ~ d'l* —
V,

* ~ 'r] '

x[(r+ 2k)' —p, '+is] '[(r ——,'k)' —p, '+i@] '

x[(q+ z k)'- p' +is] '[(q- 2k)'- p' + i~] '-(s--s),
where

M = u3(P + z k)yu(IS+&'+m)yuu, (P ~&k)ud(P' —
& k}yu(I '+g+m)yzu2(P'+ 2 k)

k ' k ' k
k k '

x 2r +q+ — 2r +q —— g"'+ 2r +q+ — (k+q —r) ug"u — 2r +q+ — 2q+r + — g "u
2 2 2 2 2

k }I k+ ——2q -r 2r+q —— g "+ ——2q r(k+q-r)-"g~ — --2q r-2q+r+ — g"
2 2 2 2 2

+(q-r —k) 2r+q- — gu +(q-r —k}(q-r+k)gegu —(q-r —k}u 2q+r+ — g"It X. k
2 2

(4.12)

(4.13)

Note that T„(s)= —T,'~(- s). Now in the leading-
particle approximation, and after canceling out
the s' behavior as in Sec. III, we had in Eq. (3.10)
the numerator factor

that

y„(P+y'+ m)y„~y,

(4.16}
S2

Num. =, (2r'+2q' —3q q —3r,rm'
-3r q, k'-p'). - (4.14)

and (4.15)
1 f 1 1P'+q'+ m =—, s y, + —,q, y + —,q y —qd

~ y~.

And, because of Eqs. (2.3) and (2.4}, we require

As was noted in Appendix B the terms in r', q',
q,q, and r,r in (4.14) contribute ln's behavior
in the amplitude for T33 Then the crucial observa-
tion is that terms in M given in Eq. (4.13) propor-
tional to either r', q', q+q, or r,r times either
q, /v s or r, /v s will give contributions proportion-
al to ln's. Hence these are the terms in j/t that
we now need to ferret out. That these kinds of
terms will give ln's contributions can be seen by
considering the momentum-space argument follow-
ing Eq. (3.12). The basic approximation then is to
write in place of Eq. (3.12)

1 i 1@+1™2 s y +2r, y +2r y, —r, ~
yd

(2) p, = v=i, p=](.= —,
(3) p, =+, v = i, p = ](. = —,

(4) p, =i, v=+, p =x= —,
(5) p, = v = +, p = A. = &,

(6) p, =v=+, p= —,

(7) p, = v=+, p=i,

(4.17)

First, consider the term in T3'3 3Q defined by
the equation (1) in (4.17). This corresponds to

yu(P'+g+m)y~ ~y

for specified v, p, p, and ](.. Equations (4.16)
need to be satisfied so that the amplitude will be
proportional to s. Making the approximations
(4.15), and taking into account the requirements
of Eq. (4.16), we find that all the ln's contribu-
tions to T33 3Q may be obtained by considering
the seven terms in M obtained by putting in equa-
tion (4.13)

(1) p. = v=+, p=]].= —,
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the ++ ——approximation to T33 34 discussed in
Sec. III. In order to cancel out the s' behavior
we must properly consider T33 35 in the ++ ——
approximation, which leads to Eqs. (3.8) and
(3.10). Furthermore, we know that the ++ ——
approximation includes the leading-particle ap-

proximation, which we have already considered.
Therefore, what we must now consider is T,'3 35
evaluated in the ++ ——approximation minus
T3 3 3 5 evaluated in the leading-particle approxi-
mation. We shall designate this difference as
C(s). C(s) can be seen to be given by

S2
C(s)=-(g /8)(2w) ' —, d'rd'q 1+ 1+~ —1 {2r'+2q' —3q,q —3r q. -k' —p,'jyn' vs vs

x [(P+r)' —m'+is] '[(P'+q)' —m'+ig] '[(q+r)' —p'+iq]-'

x[(q+ ~k}' —p,'+i~] '[(q ——,'k)' —p'+te] ' [(r+ ak)' —p'+iw] '

x [(r - ,' k)' —-g'+is] ' —(s —M) . (4.18)

We can make the further approximation in (4.18)
valid to the leading ln,

1+ 1+ ' =1+ + (4.19)

C(s) = g '(2w) 'w', —,ln'(s/m')[~(t) + I(t}]

+ O(sins) . (4.20)

Next we must consider the terms in T3 3 3 ~ 4 de-
fined by the sets of equations numbered (2)-(V) in
(4.17) combined with Eqs. (4.12) and (4.13). These
terms also contribute s ln's. We point out that
T3 ~ 5 only contributes in the ++ ——approximation.
We shall designate these contributions (2)-(V) to
T,'. ..as D(s} D(s} is ev. aluated in Appendix E
with the result that

s 1D(s) = -~~g'(2w) ~w', —,ln'(s/m')K(t) . (4.21)

In Appendix E C(s) is evaluated with the result that

grams are found to contribute O(sin's) to the iso-
spin-flip amplitude, and as a consequence of Eqs.
(3.1) and (3.2), the isospin-nonflip amplitude for
these diagrams is only O(s lns} and hence negli-
gible.

Diagrams 3.18-3.33 are identical to the corre-
sponding diagrams in QED except for isospin
factors. Thus, since these diagrams have been
computed in the QED case, we can obtain T3 ~ $8 3 3$

by consulting the literature, ' and by using the re-
sults of Appendix A for the isospin factors. We
would like to emphasize that in order to correctly
obtain the contributions from the graphs 3.18-3.29
it is essential to properly renormalize the self-
energy and vertex corrections, as we did for the
vertex correction graphs 3.6-3.13. We find from
Appendix A and Ref. 10 that

xK(t)(7).. ., {7).. . +O(sins),
(4.23}

We have now taken into account all the contribu-
tions to the leading behavior of T. . .». These
contributions are A(s) given in (4.3), B(s) given
in (4.10), C(s) given in (4.20), and D(s) given in

(4.21). Summing these contributions, we obtain
the result

T. . . » =A(s)+ B(s)+C(s)+D(s)+O(s lns)

and

m2 2I

xK(t)(7). .. (r).. ., + O(sins},
(4.24)

Tg M g gp =g g (2w) w 2
—ln (s/m )

= g'(2w) w' —,—,ln'(s/m')

x [h(t)+ ,'{ t+ —,'t '}K'(t}]P),—-,~ (r),

+ O(sins) . (4.22)

Note that in (4.22) the term in 1(t) has canceled out.

C. Contributions from diagrams 3.18-3.35

Now we must compute the contributions of the
diagrams numbered 18-35 in Fig. 3. These dia-

x K(t)(r).. . (v).. . +O(sins), (4.25)

Finally, we compute the contributions of dia-
grams 3.34 and 3.35. The labeling of the internal
momenta for these scalar ladders is the same as
for the vector ladders as illustrated in Fig. 4(a).
Then, with the Feynman rules for the scalar-
boson-vector-boson vertex and for the scalar-
boson propagator, as illustrated in Fig. 2, and
recalling Eqs. (3.1) and (3.2), we obtain in the
leading-particle approximation [see (3.12)]
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T3 34 3 35 2T3 34 + O(s ln s)

=(),"/4)(2~)" * ~ f'd'«'e((P+~P - ' ~ ) '(( 'P+ )q'"-( )
'

x[(r+ ~k)' —i('+ie] '[(r ——,'k)'- t( +if] '[(q+ 2k} —t( +ie] '

x[(q- '-k)' —t('+is] '[(q+r) -M'+is] '.
In Appendix F T3 3g~ 35 is evaluated and we find the result

T, »», = -+g'(2(() '((', —,In'(s/m')(('K'(t)(r)( (.- (r)(, ; +O(sins}.

(4.26)

(4.27)

Combining Eqs. (4.27), (4.25), (4.24), (4.23}, (4.22), (3.30), and (3.22a) we finally obtain for the transi-
tion amplitude in order ge the result

T e =T. . .»= —2g~(2(() '((~
2 —,ln'(s/m')(-t+ t(')K'(t)(r)( (

~ (T), ( +O(s lns). (4.28}

This is the full leading sixth-order result.

V. GENERALIZATION TO SU(N)

Now we wish to indicate the generalization of the
results of the preceding three sections to the case
of SU(N) symmetry.

Let the X, (a=1,. . . ,N' I) be the -NxN matrices,
forming a representation of the group SU(N), which
satisfy

Tr(~. X,}= 25„,
[X„1(,]= 2if, ( )(., )

isospiu factor G, (2) is replaced by an SU(N)
gauge group factor G, (N}. These factors G, (N)
are derived in Appendix A, and hence using Appen-
dix A we can generalize the results of the preced-
ing sections to the SU(N) case by simply multiply-
ing each amplitude T, (m = 1, 2, .. . , 35}as given
in Secs. II, IH, and IV by a factor G, (N)/G, (2).
Then we easily find that the net result in order g'
of making the above replacements is that the amp-
litude is multiplied by N'/2, i.e., Eq. (2.8) is re-
placed by

and

[P.„X~)=2d, („X,+—5, )) 1,4
(5.1)

T(4) = -(N/2)(g'/4)(2(() '((' , ln(s/—m')K(t}

where repeated indices are summed. We may
then, following the scheme of Grisaru, Schnitzer,
and Tsao, " introduce N' complex scalar fields
which develop a nonvanishing vacuum expectation
value. Then, as seen in Ref. 11, the generaliza-
tion of the Feynman rules that we need from the
case of SU(2) symmetry to the case of SU(N) sym-
metry is accomplished by making the replacements
7, X, in the fermion-vector-boson vertex,
e,|,-f,„in the three-vector-boson and four-vec-
tor-boson vertices, and 5„-d„,+(2/N)6„ in the
scalar-boson-vector-boson vertex. With these
replacements, the only change in the amplitude of
a given diagram numbered m in Fig. 3 is that an

x(Z.),, , (~.),. ..+O(s). (5.2)

In order g', it can easily be seen that all of the
cancellations which occur in this order go through
for the SU(N) case just as for the SU(2) case with
the obvious modifications. The net result is simply
that the amplitude in order g' is multiplied by a
factor (N/2)', i.e., Eq. (4.28) is replaced by

(e)
3 3-3 35

= (N/2)' ,'g'(2(() '(-(' —,—,In'(s/m'}

x(-t+ t(')K'(t)(X. )( ( (X.).. ( +O(sins).

(5.3)

VI. SUMMARY AND CONCLUSIONS

From Eqs. (2.2), (5.2), and (5.3) we have the result for the helicity-nonf lip amplitude

T=T +T +T

1 s=(g /8), , (x,)(, (,—(z,)(. (.

x [1—(N/2) (g'/8((')(-t+ t('}K(t)ln(s/m') + ,'(N/2)'(g'/8(('—)~(-t+ t)')'K'(t} ln'(s/m'}. ] . (6.1)
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This expression (6.1) contains what appears to be
the first three terms of an exponential series in
(N/2)(g'/8w')(-t+ p.')K(t) ln(s/m'). Hence, to the
indicated order, the amplitude (6.1) may be re-
written as

1 s i F(t)
T=(g'/8} „a—

a (1.}t,.t, (~.)t, ,i,

~ Sorn (6.2)

where 1(t)=—(N/2)(g'/8w')(-t+ t/, ')K(t). The ex-
pression (6.2) is clearly of the Regge form. Thus,
to order g' the results of perturbation theory sug-
gest that the vector boson in renormalizable non-
Abelian gauge theories with SU(N) symmetry lies
on a Regge trajectory with a trajectory function

a(t) -=1 —I'(t) =1- (N/2)(g'/8w')( t+ p,')K-(t). (6.3}

Note that the contributions of the scalar ladder
diagrams numbered 34 and 35 in Fig. 3 are essen-
tial for Reggeization to occur. Thus, it appears
that the entire apparatus of spontaneous symmetry
breakdown is required to produce the delicate can-
cellations necessary for Reggeization to occur in
non-Abelian gauge theories.

Notice that n(t) =1 at t = tt'. Thus the vector bo-
son lies on the trajectory. The real part of n(t)
is illustrated in Fig. 8 for (Ng'/16w ) = —,'. As

~

t ~-, a(t)-- . At t=0, a(0) =1 —(Ng'/16w').
When we approach t=4p. ' from values of t&4p,
o(t) tends to +~. The imaginary part of a(t) has
the simple form

2

Im(a(t)} =2w(Ng'/16w }, ,)„,ta 4t~a 1/ 2

x (1(t -4 p, ') .

We should also point out that, in the leading-ln
approximation, Eq. (6.2) may be replaced by

I -Ala(-t/ tg ) ln(S/f11 )
(g'/8) r

jt 2 ~p m

&-A l n(-t/h ) +2 A]fl(3(/fft2)
= (g'/8)—

m2 A2

(6.6)
where A —= (N/2)(g'/4w'), and A' is an arbitrary
constant A' » p,2.

We see from (6.6}that as ta'-0 the amplitude
2 Aln(S/m )T-0 as (tt')"'"~et i. One might wonder whether,

in analogy to @ED, taking into consideration the
emission of soft quanta would supply a multiplica-
tive factor of (ta') "'"'t ' in Eq. (6.6). However,
if the vector bosons in non-Abelian gauge theories
are confined then there will be no such factor and
the fermion-fermion transition amplitude will van-
ish for p.

' =0, in the leading-ln approximation.
Additionally, we would like to mention the fact

that the factor of N which occurs in the trajectory
function as given in Eq. (6.3) is actually the Casi-
mir operator C„of the group SU(N} defined by

faacf aae = C/e6ce .

The idea that the elementary particles of a La-
grangian field theory might lie on Regge trajector-
ies goes back to a series of papers by Gell-Mann
et al." Subsequently, Mandelstam" proposed cer-
tain criteria as sufficient conditions for Reggeiza-
tion. These conditions are met for the vector bo-
sons of a Yang-Mills-type field theory. A neces-
sary condition for Reggeization is that the residue of
the pole atn(t) =J, where /is the spin of the element-
ary particle, should factorize into a product of factors
depending only on initial- and final-state helicities,
respectively. Grisaru, Schnitzer, and Tsao" have
checked this factorization condition in the Born
approximation for various two-body processes at
J= 1 for the identical SU(N} model that we have
considered. They find that the factorization con-

= 4r'/e), ', .—',:(-;) (6.4)

where sp is an arbitrary constant. This is due to
the fact that ln(s/m') =ln(s/sc)+ln(sc/m') = ln(s/sc)
to the leading ln.

It is also interesting to examine the infrared be-
havior of T. Letting t/.'-0 in (6.2), and using the
fact that 4 5 6

K(t) ~ —In(-t/p, '),o-t
we find that

(6 6)

FIG. 8. Re(ee(t)) vs t for (Ngt/16wt) =a.
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dition is met in the Born approximation, and thus

that the vector meson may l.ie on a Regge trajec-
tory. This is equivalent to demonstrating Reggei-
zation to the one-loop level in our leading-ln-type
calculation.

While this manuscript was in preparation, we

received a copy of a report by McCoy and Wu'4

in which they calculate the transition amplitude
in order g' for the SU(2) case. Their calculation
is done by putting in a transverse-momentum cut-
off in the integrals, which at the end of the calcu-
lation is removed. This procedure is clearly
dangerous, since it does not properly consider the
renormalization of the vertex correction and self-
energy graphs. However, it turns out that these
authors obtain the same result in order g' for the
SU(2) case as we do [Eq. (4.28}].

We have also received a copy of a report by

Lipatov, "who calculates the fermion-fermion
scattering amplitude to order g' using dispersion-
relation techniques. He finds for the SU(2) case
that the transition amplitude has the form as given
in Eq. (6.1) with N=2.

Finally, we have also received a copy of a re-
port by Nieh and Yao," in which the transition
amplitude for fermion-fermion scattering is calcu-
lated by a technique similar to ours. They, how-

ever, do not find the result (4.27}, hut rather find

that in order g' the transition amplitude has terms
in it proportional to K(t) as well as terms propor-
tional to ( t+ ib')K'(-t). We do not know the reason
for this discrepancy.

Cornwall and Tiktopoulos" have found results
similar to ours for the case of high-energy, fixed-
angle scattering.

fabcfabe = N6ec~

N —4
~abc~abc ~ ~ecy

abcfabe

d„~=0,

+( m bee bc "~ }

=2
N'- 1

f,bc X,Xb = bNXc.

For diagram j. of Fig. 3 we have

Gb. x= (X Xb)b, b (X Xb)l, b

2

2

4&4

+ a(N —1)6;—b 6(
4

N —4—N+ (A.,).. .,(X,)...
4

+—,(N' —1)6b b 6b, b
.
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Gb, = (X,Xb)(A. b Xa)

2

2

APPENDIX A

In this appendix we derive the gauge group fac-
tors G,. (N) for SU(2) symmetry for the diagrams
numbered m (m=1, 2, . .. , 35) in Fig. 3. For the
SU(2) symmetry case we called these factors iso-
spin factors, and by putting N= 2 in the results
given below one can obtain the isospin factors used
in the text.

In addition to the definitions given in Sec. V of the
text, we will need the relations"

N+ (Xc)(kc) +—,(N' —1)66,N —4 4

Ga. a=- ~~b&a)(~e~c}fc~fMe

Using

+ Xb Xe Xe Xa).

= (f b f b + d bcd b )(X )(A, ) +—a(N —1)66
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X,1,P., =X,X,X, + 2if„X,X

2 —2N )L,

G3 2Q (A., A, X. ,)(X9 A, )f893.

1= 2—. (Z, ~,[X„Z,])(X,Z, )

we see that

2f~2 2'2 + 2,)2,

f(2 '—
2N) 2,

+dq 2 —2N A~

+—,(N'-1)5.,1

2 -2N X,X.+46.,1,
N —1

N

N2-1
2 2N— x, ~ —45, 1 (z X,)

=2i5„(1)(x,z, )

(N' ——1)55,
4i

3.15 3.16 3,17 3 14 '

In our calculation we do not need to know, for
example G@18 and Gs j 9 separately, but only the
difference G, 18 G3919 This is because with T318
—=G, «F(s), we have that T329=G, »F(-s)

3.29 F(s}2 ee ~t ~3.28 3.29 G3,28 G3.29)F(s)'
Hence for diagrams 18-35 we give only the dif-
ferences G, „-Q„„„that we require:

G, ,= ——,'(z, z.)(2m, x, + 45,.1)

N N —4=-— -N+ (~ )(~ )2 C C

(N —1—)55
N

G3 9= (A.,X8)(X8X,)f„,f88,

= ——,'(X.~,)(2N~, ~, + 45„1)

N+ &c &c

——(N' - 1)55.
N

Diagram number 5 in Fig. 3 only enters into our
calculation in the ++ ——approximation defined in
the text. In this approximation, it can be seen di-
rectly from the Feynman rules that

35 33 34

G, ,= (&8 ~, &.) (&8 &.)f,89

= —iN(X3 X,)(X8 X,)

= —its, ,

G3 28 G329 (A., X, A, a, }([A92 X9]}

N' —1

-2
N (G„, —G33)

=4(~,)(x,),
Gs.2o G3.21 G3.22 G3.2s

G 3,24 G 3.25

=G„,8-G3 „,
G„,—G„,= (~, X, X, Z, )([Z„X,])

N -1= 2 (G, , —G„,)

= -4(N' —1)(Z,)(z,),

3,28 3.29 G3 26 3.27 &

G3 39 G3 32 (~9 X9~3 ~9)([~92 ~9])

2 —2Ã Gs 1 Gs.2
N' —1

= 4(z, )(x,),

3 33
—Gs so Gs 31

G -G335=( g .)( ~ c~

3.8 3.10 3.12 3.6 9

G, ,=(Z, ~, ~,)(x.x,)f„,
= iNG~2,

2
X —(5..598 —5.8 59.)

+(d„,d„, —d„,d„,)
J

= (Z9 X.)(X,a, )f.„f~,
= —N'(Z, )(~,) .
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APPENDIX B

ln this appendix we evaluate E,', (s) and F„(s)
as s -~ to the leading ln.

For F,', (s) we introduce Feynman parameters

Q& with the internal propagators labeled as in Fig.
4(a). We combine the propagators with the Feyn-
man parameter trick, shift the origins of integra-
tion, and evaluate the momentum integrals in the
usual way. Then we obtain

d', (st= —,', d', (dtt)-'a dtt, ~ ~ ~ da, tt Qtt, —t)
0 3

1 1
&

+ —(a,n, a,s+JLd) '+2-(r', r' +q', q'') JL (a,u, n, s+JLd) '
+O(s ln's), (Bl)

where

J = Q1 + Q3 + Q4 + Q7,

L = a, + u, + a, +a, —(n, '/J ),
2

d WS al ala~J J2L
and

I I
Q5 =P1QS y

I
Q6 Pl 6&

I
Q7 =P1Q7,

Q2+Q +Q +Q = 1

II II
Q1 P2Q1 & Q3 P2Q3

(B2)

r'= ' 'Ws, I/
Q4 =p2Q4 y Q7 =P2Q7 ) (B3)

and

S Q1Q7q, = Ws,

s

Q
/I + Q

/I + Q I/ + Q /I
1 3 . 4 7

then the leading behavior of F,', (s) is obtained by
considering the regions of integration where p„
Q1 Q2 and Q7/I = 0 and where p2 Q1 Q2 and Q7'

=0. The result can then be straightforwardly
shown to be

d= —[k~ u&as+k~2n3n&+p, —is)+c.
The constant c in the last line is a complicated
function of t, m', p.2, and the Q&. We need not
give c explicitly, however, since in the important
regions of integration c is found to be =0. In Eq.
(B1}the terms in the square brackets give ln's
behavior, and they come from terms in the nu-
merator of Eq. (3.10) proportional to r' and q'
and to r,r and q+q . Qne immediately sees in
Eq. (B2) that the region a, =a, =a, =0 will be im-
portant. But also one must take into account the
effect of the "singular configurations" which occur
when J or L=O. Specifically, if we make the scal-
ing transformations

E', ( t=--,'d't(2 )'tdd, tt, tn'(-, —tt) K(t)
t

+O(s ln's) . (B4)

To evaluate E„(s)we will, for illustrative pur-
poses, use a "mixed" method combining parame-
ter space and momentum-space techniques. We
first evaluate the loop integral associated with
the vertex correction in diagram 3.6. This we
do using the Feynman parameter trick with the
parameters Q&, i = 1, 2, 3, associated with the in-
ternal propagators as shown in Fig. 5(a). Then
performing the momentum integration in the usual
way, we obtain

SE38(s)=(g'/32)(2v) '((', d, adda, a( 5,a+, a+, a—1} d'q ' [(P q)'-m'+ie] '-
le 0 2P qQ, Q, +d

where

&&[(P'+q) —m'+i@] '[(q+ ~ k)' —id, '+is] '[(q —~ k)' —p'+is] ', (BS)

d=p'(a, +u, )+m'a, '+
4 a, (n, —a., ) —k qn, a, —q'a, (u, +a, ) —ie.

The value of F„(s)as s-~ will be obtained by calculating the asymptotic value of the parametric integral
in (B5) as 2P ~ q = Wsq -~, and then evaluating the remaining q integrals by the infinite-momentum tech-
nique. ' The parametric integral gives
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' da, da, da, 5(a, +a, +a, —1)2P q(1-2a, ) 1,~ .
)~

~

~2P 'qQ2~3+ Cl 2!

Then making the usual infinite-momentum technique approximations, e.g. ,

2 g -1
[(P -q}'-m' +ie] '=-(Ws)-' -q +4-+0 — +is

VS S

we obtain

2 -1
g„(s)=(g'/82)(2 )

' ' —,—,
' —fdqdq d, 'q )n'(dsq —ia) (

—q ~ ~a(a
2 1

X q + +&E q+2k —p +l& q-2k —p +lg (B6)

Now if we integrate over dq, we find that the contour integral vanishes unless 0&q &-q)s . With this re-
striction, we can then evaluate the integrals in the standard fashion, obtaining

g, ,(s)= —t(g'/82)(q )
' ', —,)n'(-, —ia)K(t O)(+)n'ss).

t

APPENDIX C

In this appendix we evaluate A(s) defined as T», » in the leading-particle approximation. Combining
Eqs. (4.1) and (4.2), we have

SS/2
d(s)= ——,'g', (2 ) 'fd rd q(q [—,'r, —r n ——'(qn '+nn') ~ —'r q, ]

+2r [r,r —rd' —rd K~ —d(k~'+)(, ')]}

x [(P-q)' —m'+i@] '[(P+r)' —m'+is] '[(P'+q)' -m'+ ic] '

x[(q+r)' —1(,'+ ie]-'[(q+-', k}' -p'+ iq]-'

x [(q ——,
' k)' —!).'+ ie] '[(r+ ,' kP —)(.'+—ie]-'[(r——,

' k)' —p'+ ie]-' (Cl)

It is convenient to separate A(s) into two parts. The first part, which we shall call A!')(s), consists of the
the piece of A(s) which comes from the term in the curly brackets in (C1) proportional to q r,r . The
second part consists of the rest af A(s) and is called A(2'(s).

A "(s) is most easily evaluated in momentum space. Making the usual infinite-momentum technique' ap-
proximations [see Eq. (3.24)], we write

S2 2 1
A!'1(s)=-g' —,(2v) '-,' dr+dr d'rddq+dq d'qd(v sq —,'(r, r )}(V s) ' -q + +ie~m' v s

2 1 2 1
x r + ~+ic q++ ~+i~ q+r '-p. '+is ' q+-,'k'-p, '+i~

v s v s

x[(q —,'k)'-p'+is] '[—(r+—,'k)' —p'+if] '[r —~k)' —p, +is] '

r2 1 2 ~l
=+g' —,(2w) -', dr, dr d'rddq+dq d' hqrd, }I+~ I -~m + + + sr sq

x(q + q'//Ms+i@) '[(q+r) —p, '+ie] '[(q+ ~k) —)).'+is] '[(q —2k)' —!),'+is] '

x [(r+-',k)' —p. '+ i&] '[(r --,'k)' —!),'+ ie] '. (C2)

Examining the contour integrals over dr, and dq„we find that the integrals give vanishing contribution
unless -0 s &q &0 and 0 r&&-q . Then evaluating the contour integrals we have
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A"(s)=sr'(qs) 's'2 *.f dq f dr f d'l, d'r (1+~) ((-~ ) (l
2'

)

x[(r+q)A'+ p, '][(q+ —,'k)A' —ie] '{r [(r+q)A. '+ p'] —(r +q )[(r+—,'k), '+ p']] '

x[(q--R'%)A'+i]. '-ie] '{r (r+q)A'+ p, ']-(r +q )[(r--,'k)A'+ p, 'g '. (C2')

The presence of the factor (1 —rA'/v s r ) 2(1+q,2/v s q )
' in (C2) may be seen to provide cutoffs to the

transverse integrals in (C2) when rA'&7] sr and qR'&7[ s q . So we may get the correct leading behavior of
AM(s) by considering the regions of integration where 0& q & -ev s, 0& r & -q, 0& rA'& sv sr, and qA'
& ev s q, and by putting (1+q /Ws) '(I - rA'/v sr } '(I+ qA'/v s q } '=1 in (C2). Here e is restricted by
1» E»m/v s.

With the approximations given in the preceding paragraph the integrals in (C2) are elementary and we
obtain the result

A['](s) = -g'(2s) Rw' —,—', In'(s/m')(-R)K(t) . (C3)

Next we evaluate A[2](s) =-A, (s) -AI'~(s). Introducing Feynman parameters, combining the denominators,
and making the usual shifts of the integration variables we find that

~S/2
A~a(s)= —2'(2s) '7!, da, da, q Qa, =()f d' 'd'q'R(r, q)[(q')'R ~ ( ')'() ~ s] ',

m 0 j
where

(C4)

Q= o.,+e, + e, + a, ,

R = nl+ a2+ nq+ n2+ n() —(n() /Q) 7

1 k o. k ' 1 kc =-—Pa -P'a + —(a —a )+~ Pa + (n —n ) ———Pa + —(a —n ) +P'(a + n )+P"a2 2 2 4 5
Q

3 2 7 6 Q
3 2 7 6 I 3 2

k
+

4 (a, + n, + n, + n, ) -m'(n, + n, + n, ) —]].'(a, + n, + a, +n, + n,)+is,

1 k s ~Sr = r' ——Pn + —(a —a ) + qn, =-r'+ r' —q—
Q

3 2 ' 6
Q

'

1 k kq=q'+ —Pn, P'a, + (a-, —a,)+—L Pn, + (a, —n, ) -=—q'+q',

N(r, q) = q [-r, %A- —,'(2kAR+3p, 2}]+2r [r+r -rA'-rA'k, ——,'(kAR+4p, 2)]. (C5)

In order to avoid having to handle large unwieldy expressions, it is best to consider at this point what
terms inN(r, q) will contribute to the leading behavior (s In's) . To do this, consider the coefficient of s
in c. This coefficient is (a,/R)(n, +(a,a,/Q)}. The leading behavior of A["(s) as s- will come from the
regions of integration in a space where the coefficient of s is small. Now in N(r, q), we will, after per-
forming a Wick rotation, have terms in (r')', in (q'}2, and constant terms, i.e. ,

N(r, q) =al(rd)'+aR(qd) +aR+ odd in r'+ q'. (C6)

Therefore, it can be seen that after evaluating the r' and q' integrals we will have an expression of the
form

1
A"'(s) s'7' da, da, q Qa, -l)[2(sR ~ s,())[a,(a, q) ~ a a, )s+q)Rd] ~ qs, ()'R'[a,(a,() a,a,)a+QRA] ]

0

Let us make the transformations of variables as follows:
I I IQl = Pj&) ~ Q3= P1Q3, Q6= P~CR6 q Q7 = P~Q~ ~ Qs= PgQS & Qg+ +g+ +6+ ~7+ +8 =
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&&=P2&i' ~ &2= P2O'2 ~ &&=P2ol4 ~ +5=P2 5 y 8=P28 ~ &&+ &2+ +4+ +5+ &8 =1
~

p ZIP' OIll p + ill +Al + +l4I'
1 3 1 7 8 3 8 ~ 3 8

Ps= &2 ~ (CV)

Then the leading behavior of AI'I(s) can be seen to come from the regions of integration where some of the
p„ i=1, 2, . . . , 5 are small. The p„correspond to the "minimal t paths" when the effects of singular con-
figurations are taken into account. It can be seen, in fact, that the leading behavior of AI'1(s) (s ln's)
comes from the regions of integration where some three of the p„say p„p~, p, i, j, k=1, 2, . . . , 5 (i+j +k)
are small. Then, it can be shown that only terms in a,R and a,Q proportional to Wsp, p&p, and terms in
a,Q'ft'a (Ms)'p, 'pz'p~' will contribute to the leading ln. Hence we need only keep terms in N(r, q) which
will behave as described in the preceding sentence for some i,j,k=1, 2, . . . , 5 (i&j & k). Then by analyzing
the behavior of N(r, q) in all of the above-mentioned important regions of integration one finds that N(r, q)
can be written as

N = (r')'(-3n, /Q) q' —2r+ (q')'(a, /Q)'+ r f .%~q' ——,'(2k2~+ 3p ')q' + negligible . (C8)

Substituting(C8) into (C4), evaluating the momentum integrals, and considering all of the aforementioned
important regions of integration in n space we find by straightforward but tedious analysis that

A("(s}=-g6(2v) Sv' —
2 & ln2(s/m~)[2K(t) —2( t+ & p')K-(t)] . (C9)

One finds, in fact, that the terms in (r')'(-3n, /Q)q' and in r', (q')'( /aQ)' in N as given in (C8) give con-
tributions to the leading behavior from the region of integration in n space where py p4 and p, are small,
while the term in [r', k, ——,'(2k,'+ 3g')]q' gives a contribution from the region where p„p„and p, are
small.

Combining (C9) and (C3) we obtain the result Eq. (4.3).

APPENDIX D

In this appendix we evaluate B(s) which is given in Eq. (4.9}.
We may separate B(s} into two parts B"'(s) and B"'(s) with

2 1B"'(s)-=—ig'(2 ) 'I' —, d'q dadada, 5(Z, —()
0

m as + p (ax+au) 2P. (2a2ns —sa3)
f(P q) - f(P q}

1+ p- q)2- m2+i&
vs

x [(P'+q) —m +if] [(q+ 2k) —p +if] [(q —2k) —p, + if]

And, of course, B 2'(s) =B(s) —B"'(s) . —

f(P, q) is given by [see Eq. (4.5)]

f(P, q) = n,n, )t s q —(P"+ q'}n,n, —(q+ -,'k)'a, a, + m'n, (1 —a, ) + p'(n, +a, ) —i v. .
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Then as ~s-~ we have that

d(w, de, dn, 5 Q(w, —1 ln =-win(Msq -ie),t m (wa + t[, (Q y+Qg)

0
' ' '

~
' - f»q

and that

dc(,dc(,dc(, 5 Qn, —1 Wsq =-win(v sq —iw).l (2(ra&3- 2(r s)
fP, q

Then we have

2

B"'(s)=+ig'(2w) 'w' , —d'q 1- 1+ [1n(v sq —ie)][(P- q)' —m'+i@] '
m' vs Ms

(D2)

(D3)

x [(P'+q)'- m'+if] '[(q+ -,'k)'- 1[.'+is] '[(q —&k)' —1['+i,e] '.
This expression (D4) may now be evaluated directly in momentum space in a way entirely analogous to the
way F, ,(s) was evaluated in Appendix B. We find the result

S2B"'(s) ~g'(2w) 'w' —,ln'(s/m')K(t) .m' (D5)

We should point out that the terms in qJv s in (D4) may be neglected in evaluating B+'(s). Now we need to
evaluate B(*'(s), where

S2 j. 1

Bo'(s) =ig (2w) sw' 2—d q dn, d(w, dn, 5 Z &, —1 1- ' -1

x [(P-q)'- m' i+]e'[(P'+q)' —m'+i@] '[(q+ ~k)' —p,'+it] '

x [(q —2k)' - p'+ ie] ' . (D6}

This expression can be seen to be equivalent to T3 6 3 g3 evaluated in the leading-particle approximation,
but with a factor of 1 in the integrand replaced by (1-q,/~s)(1- q /v s ) —1. So we can write

SS tt2

B'((s) = g'(2w) '-, d qd r(2r +q )1- . 1+ -1m' vs vs

x [(P+r)' —m'+ ei] '[(P —q)'- m'+it] '

x [(P'+q) —m +it] '[(q+r) —p +if] '

x [(r- —,'k}'- p'+le] '[(q ——,k)'- p'+is] '

x [(q + —,'k)' t[,'+ is]-' . (DV)

We find in fact that to obtain the leading behavior of B(2'(s) it is sufficient to make the approximation in

(DV) that

(2r+q) 1- ' 1+ -1 =(q)/vs.
Ws vs (D8}

Then introducing Feynman parameters with the labelings indicated in Fig. 5(a}, and evaluating the mom-
entum integrals in the usual way, we obtain

where

3 1
'(((s) =dd'(dd[ ' —, d, . . .dd (( Z d& —1)(,jY[ XY[,(,K+ ~,) +d] ',

p

(D9)

X=(y3+a +0.7,
F=(r, +(w, +(w d+a, +(r, —((r,'/x),
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k kd=- Y Po. ,--e6 -X o.4-n, + @~7 X —-X P'n, -X P n, + o.,a, X

2
+XV (ai +a3) P +a2(P ) +(a~+as+ac) ——tN (ai+a2+a3) —p (a~+as+ a~+a~) +If .

J

In obtaining B'2'(s) we have made the changes of variable

1 k a,r-r'- —Pe ——o. - q —'
2 ' X

(D10)

(Dl1)

1 av kq-q' ——-Pa +a P'+(a —a )———Pa ——a4 s 2 X s 2 6 (D12)

If we make the transformations of variables
I I

1 pl 1 & 3 pl 3 & 6 pl 6 &

~ll —
p ~II ~l p ~Ill ~lll+~tl/ —1

then we find that the leading behavior of Ba'(s) as s - ~ comes from the region of integration where p„p„
and p, are small. %e then find the result

B"'(s)=-g'(2v) 'w' —,2t In'(s/m')I(t), (D13)

with f(t) given as in Eq. (4.11).
The approximation (D8) can be justified by noting that the leading behavior of B"'(s) must come from the

regions of integration where some of the p, (i =1,2, 3) and possibly a, are small. Then by using Eq. (Dll)
and (D12) we can investigate the behavior of the neglected terms in Eq. (D8) in the various regions of in-
tegration just mentioned. We then find that the neglected terms in Eq. (D8) are indeed negligible to the
leading ln.

Combining Eq. (D13) for B~2'(s) with Kq. (D5) for B"'(s) we obtain the result (4.10).

APPENDIX E

In this appendix we evaluate C(s) and D(s) as defined in Sec. IV of the text.
C(s) is given by Eqs. (4.18) and (4.19). We label the internal propagators with Feynman parameters

as in Fig. 4(a), and make the shifts of origins in the loop integrals defined by

r=r +r -q-a,

and

where

+q

1 kr'=- —Pa + -(a —a )J ' 2 ' 4''

1 a kq' = ——a P'+ 2k(a —a ) —~ Pa + -(a —a )8 5 g 1 2 3 4
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and

J—Qg+ CMg+ A4+ Q'7 y

Q'7L=e2+e, +a, +a7 — J . (El)

Then we find that

S2 j,

C(s)"--(4'/4)(q ) 'el~ da, da, q ga, 1)
0 4

x dV'd'q'M r, q r' J+ q' 'L+c ~, (E2)

where

C=(a, c(,n, s/JL)+d

and

k 1 k 1 k e kd=——(n +a +a +a ) ——Pc/ + —(a —a } - —-(a —o. ) —~-(a —c( )—
4 3 4 5 6 J i 2 3 4 L 2 e s J 2 3

2

2

—m (a, +a~) —Id (a~+ad+ c(~+c(6+c(7)+c(,P +c(~P' —,P a,' — P'c/, ———c(2 P' +jr

and where

M(r, q)= —(q'+q')+ —(r, +r', ) 2(q'+q')'+2 r'+r' —q'~-q'~
v~ vs

-3(r'+r'), (r' }-3(q,')(q+q') +negligible

= -', (q ')' (r ', /4 4 ) + ,'(r ')' (q' // 4 ) - —(q' + r ', ) (—q',q' —r ', q
' 4) + ee gli gie le .

s
(E4)

In order to avoid a plethora of terms, we have kept in Eq. (E4} only the terms which are found to contrib-
ute to the leading behavior as s- ~. These terms can be seen to be of the kind described in the paragraph
following Eq. (4.14) in the text.

Then evaluating the loop integrals in the usual way we find that

S2
C(s)= -(g'/4)(qs) '—, da, ~ da, q Pa, —1)

0

Qje2~S+ JLd '+2S ~ + —' —+ —e&e2e7 Rj&2&78+JL(J L J
(E5)

Now we make the changes of variables as in Eqs. (B2) and (B3) in Appendix B. Then the leading behavior
of C(s} in Eq. (E5) comes from the regions of integration where p„af, and a,"=0 and where p„a,', and

c(,"=0. The result for C(s) can then be seen to be Eq. (4.20).
Now we consider the evaluation of D(s}. D(s) contains six terms corresponding to the six sets of equa-

tions numbered (2)-(7) in (4.17). These terms will be designated D (s) (i =2, 3, . . . , 7). First we consider
D("(s). With p, = v=&, P=X= —in (4.13), M assumes the form

1 s'" Ssy2
M- —— (2r+q), 'r =-2 (r, )'r +negligible.2 m m

(E6)

Then introducing Feynman parameters and making the shifts of the origins of the loop momenta exactlyj
as was done in the evaluation of C(s) in this appendix, we find, after evaluating the loop integrals in the
usual way, that
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s2 I
D"~(s)=--', d'(2w) m' —, dn, dad~ Qu, -))m 0

-2+(a,a,a,s+JLd} +2s ',' '(a,a,a~s+JLd)
«3

The leading behavior of D ' (s) may be obtained by considering the region of integration where p„a,', and
e,"=0, with the result that

D")(s)= ——,'g'(2w} 'w' —,—
i
In'(s/m')K(t)+ O(sins) . (E8)

D ' (s} is obtained by setting g =+, v=i, p=P. =- in (4.13}. Then

M- ——u, yi(ri ~ y')y u, ~ —(2 q+r), 2(I+r+ — +(2r+q), (q-r-k)i

3 s , (r, }r,'+negligible.
2 m2

D"i(s) is obtained by setting p, =i, v =+, p- X = —in (4.13), and so

(E9)

, (r, )ri +negligible.
2 m'

We find from (E9) and (E10) and by evaluating the loop integrals that

S2
D(')(s}+D(d)(s) = dg'(2w)~wd —

W da, ~ ~ da, 5 Qa, -1 ~(a,ama, s+ZLd) '
0

The dominant region of integration is where p„a,', and a,"=0, and we find that

(Elo)

(E11)

D("(s}+Di"(s) =-ag'(2w) 'wd —,
,

ln'(s—/m')K(t)+O(sins).-s4s

D")(s) is obtained by setting g = v=+, p=X=i in (4.13}, and so

S3/2M--2, (q )'q, .tN'

(E12)

(E13)

This leads to the result
2 1

D(')(s}=—wg6(2w)~wd 2da, —~ da75 Qa, —1 -2 (a~,aa,nasl+L}d2

2

+2s ' ', '(a,a,a,s+ZLd) '

The dominant region of integration is where p„e,", and a,'=0, and we find that

D'"(s) =--,'g'(2w} 'w' —,—ln'(s/m')K(t)+O(sins) . (E15)

D'"(s) is obtained by setting p = v =+, p = —, d(. = i in (4.13) while D" (s) is obtained by setting p, = v =+,
p = J., X = —in (4.13). In both cases

3/2
M- —,(y )r~'+negligible.

2 m2

With (E16) we obtain the expression
2 1,

DI6 (s)+D (s) = &ge(2w)~w —
~ da ~ da~5 Q a& —1 Q(a|ama7s+ JLd) ~

0 j

The dominant region of integration is where p„a,", and u,"=0, and we find the result

(E16)

(E17)

D(8)(s) + Di') (s) = -ag'(2w) 'w'w —ln'(s/m')K(t) + O(s lns) .
m 2l (E18)
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Summing the results (E18), (E15), (E12), and (E8) we obtain the result

D(s) = —4~g~(2v) v ~—,ln (s/m )K(t) +O(sins),

which is Eq. (4.21}.

APPENDIX F

In this appendix we evaluate the contribution T, „,~ from the graphs 34 and 35 in Fig. 3 as s- ~.
The amplitude for T, I, » in the leading-particle approximation is given by Eq. (4.28). Introducing
Feynman parameters with the same labeling of the propagators as for the vector ladder in Fig. 4(a), and
evaluating the loop integrals in the usual way, we obtain

(Fl)

where J, L, and d are as given in Eqs. (El) and (E3) in Appendix E. The dominant region of integration is
where e„e„and a, = 0, and we find, using the fact that

z'(t) =

~ ~de, ~ da46 n, -1 e, +e, a, +a~

, f(-t)[a,a, (n, + n, ) + a,a,(a, + n, )]+ t).'(n, + a,) (a, + n, ) —toj' ' (F2)

that

which gives Eq. (4.27}.
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