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This paper is a detailed account of a study in perturbation theory of the high-energy behavior of non-Abelian

gauge theories. We calculate the fermion-fermion scattering amplitude up to sixth order in the coupling
constant in the high-energy limit s l oo with fixed t, in the approximation of keeping only the leading
logarithmic terms. Our results indicate that the high-energy behavior of non-Abelian gauge theories are
complicated, and quite different from the known behaviors of other field theories studied so far.

I. INTRODUCTION

The high-energy behavior of hadron-hadron scat-
tering amplitudes has been under intensive study,
both theoretically and experimentally, for almost
two decades. On the theoretical side, one approach
is to study the high-energy behavior of the scatter-
ing amplitude in various renormalizable field the-
ories. The study is made through perturbation
calculation in terms of Feynman diagrams, making
high-energy approximations at each order of per-
turbation. The basic assumption of this approach
is that the highly complicated physical hadrons can
actually be described by the highly idealized field
theories. Another assumption that is usually made
and is technical in nature is the validity of the high-
energy approximation of keeping leading terms at
each order of perturbation. Notwithstanding these
uncertainties, studies of this kind are useful in that
they may shed light on the general features of high-
energy hadron scattering, or they may serve as a
basis for selecting field-theoretic models for had-
rons. However, one should not lose sight of the
uncertainties in interpreting the results of these
studies.

Among the prominent field theories that have
been extensively studied are the Q' theory and
quantum electrodynamics (@ED). The Q' theory is
the simplest field theory and many interesting re-
sults have been obtained in this theory. ' In the
past few years, QED has been intensively studied
by Cheng and Wu. ' Their results are extremely
interesting. First, a rising total cross section,
actually saturating the Froissart bound, ' is pre-
dicted in general agreement with the result of the
Pisa-Stony Brook experiment at CERN. 4 Second,
QED is a gauge theory, and there is increasing
evidence that gauge theories may be of fundamental
physical importance.

An immediate important question is whether the
salient features of QED are also possessed by the

potentially more realistic (for hadrons) non-Abe-
lian gauge theories. Additional impetus for study-
ing the high-energy behavior of non-Abelian gauge
theories comes from recent activities in construct-
ing renormalizable models for weak and electro-
magnetic interactions, ' as well as the observation
that non-Abelian gauge theories are asymptotically
free' and therefore might provide a basis for un-
derstanding Bjorken scaling in deep-inelastic elec-
tron scattering. These are the motivations for our
present study.

Some of the results here were published in a
letter, ' modified by an addendum. ' The present
article is a detailed account of the sixth-order cal-
cu)ation. We will report part of the eighth-order
calculation in a subsequent article.

The sixth-order results indicate that the high-
energy behavior of non-Abelian gauge theories is
quite different from all the other theories studied
so far. In fact, the non-Abelian theories have a
much richer structure.

We recall that in P' theory or QED, in each or-
der, the dominant diagrams at high energy are of
multiperipheral type. " In other words, in the t-
channel effectively only two-particle cuts are in-
cluded. In non-Abelian gauge theories multiple-
particle-exchange effects enter. Besides, renor-
malization effects are important.

In view of the complexity involved, we have cho-
sen to study SU(2) as the internal-symmetry group.
This way we do not have to consider scalar-fermi-
on-fermion and gauge scalar-vector-vector cou-
plings. The technique used, however, is general
enough to encompass all such modifications if nec-
essary.

Specifically, we study in the sixth order the high-
energy limit of the near forward scattering of two
fermions. If we denote by s the square of the total
energy in the center-of-mass system, by -t the
square of momentum transfer, and by T~ and T
the isospin-nonf lip and isospin-flip amplitudes, re-
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T" = (-60vi 1ns)AK„

T~ = —20(ln s —iv lns) AK„'

(2} ladder with scalar production,

T =(3vii~)ap, '(K, )',

T~ = 2(ln's —is lns) A p'(K, ) ',
(1.2)

(3) radiative diagrams and ladder with vector-
meson production,

T~=[48 —18(y' —', t) K, j-vi lnsAK„

T~ = [16 —6(p' ——', t ) K, ] (ln's —iw lns) AK, ;
(1.3)

(4} 3-vector-meson exchange in the i channel,

T~ = (12wi 1ns)AK„
T~= O. (1.4)

where

A= (16v') '(g/2)'g'sm ',
1

da25 1-&i —&2' -tz, n, + p,
' '

spectively, we find that the important regions from
which the dominant terms arise are as follows:

(1) vertex and self-energy renormalization,

K2=
J

d(XgdR2dQ35(1 —Qg —&2 —Qg)

[ i+1 +2 +3 i (+1+2+ +1 +3+ +2 +3H

To the leading order in lns, the isospin-nonQip
amplitude T" is purely imaginary, and the isospin-
flip amplitude T~ is purely real. The imaginary
part of T~ is given in the above equations, and
there is no other contribution to the first order of
lns.

The plan of this payer is as follows: In Sec. II,
we shall define the model. Notations will be devel-
oped. Fourth-order results are reported in Sec.
III.

In Sec. IV, we shall do some preliminary work to
cancel out unwanted terms, which would otherwise
mask the true high-energy behavior of the theory
in this order.

In Sec. V, we delve into the problem of extracting
the dominant behavior of the terms prepared in
Sec. IV.

Discussions follow in Sec. VI.
Three appendices are attached, where some ra-

ther detailed analysis is either presented or indi-
cated.

II. LAGRANGIAN AND KINEMATICS

For simplicity, we take isospin as the internal-symmetry group. We have both an isodoublet of fermions
and an isodoublet of bosons. The Lagrangian is

il= --,'(s„A„-a„A„+gA„xA„)'—1(s„—&g' ~'A„) yl'- g'I pl'- lhlyl'
1 g—Py —. s" ——7 ~ A" g —m Pg."i 2

(2.1)

After making a change of variable and invoking vacuum instability (owing to p & 0}, we write

v =~ (&+X+ ir F)l
kli

where X/v 2 is the vacuum expectation value of y. Then the interaction density is

(2 2)

i!,„,= ——(B„A„s„A„)~ -A" x A" ——(A x A „)~ (A"x A" ) + —
ItI y„7.g ~ A& ——A& ~ (fe„x xa„f)-

——A~ ~ (g xs g ) ——(X'+f'}A A~ -—P X A ~ A'- —(f'+ X')' ——
X X(P+X')

2 2 ~ 2 ~ 8 2
(2.3}

where p =gX/2 is the mass of the physical mode of
A„. X has a mass of MhX. We specialize to the
Feynman-'t Hooft gauge, then f has a. "mass" p..
The Faddeev-Popov loops are generated by the ad-
ditive effective Lagrangian

2 4ÃX+t ' (8'~ su+ P2g~ } I2 4)-iTrln 1+ 2 2—8 + p,

are the structure constants.
We write the 8-matrix elements as

&fl(s-1)li&=iW2")'~(P. -f }T.
N is the usual wave-function normalization.

We shall use the following kinematic notation
(see Fig. 1):

(2.6)

where

(i;}~a= e;~a (2.5)
p, =p -gk, p, =p+ pk,

1 p 1
p2 —p'+ gk, p~ = p' —2k,
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FIG. 1. Schematic drawing of fermion-fermion scatter-
ing.

FIG. 2. Graphs which contribute in fourth order to
dominant behavior.

p" = ((p '+ —,'k'+ m')' ~3, 0, 0, (p ~),

p'"=((p' +-.
' k'+m')'~, 0, 0, —~p~),

k"=(o, k„, k„, o),

~k~=(k "k )",
g""= (-1, 1, 1, 1),

S = —(P +P3)' f = —(P). -P3)'

s+ t+ u = 4m'.

The Dirac equation is

(m+y p)u(p)=0

or

g(p)(m+y p)=0.

(2.7)

isospin-flip and isospin-nonf lip amplitudes, i.e.,
(2.8)13 24 13 24

III. FOURTH-ORDER CALCULATION

There are two fourth-order diagrams (Fig. 2}
which contribute to the dominant high-energy be-
havior. The extraction of their contributions is
exactly the same as in massive @ED. We delete
the details;

Tt'P(s)= (5~ (52) (~) )n(-s)K,

xu(p }v3r5g5(p, )g(p, )r5 7'5 g(p, ),

(3.1)

We shall consider the limit s -~ while t & 0 is
finite.

Furthermore, we decompose the T matrix into

x g (P3) &. &.,g (P,) g (P.) &.,7'., g (P,).
(3 2)

IV. SIXTH-ORDER CALCULATION-ALGEBRAIC REARRANGEMENT

The extraction of leading high-energy behavior in non-Abelian gauge theories is complicated by cancella-
tion among graphs. As is well known, to extract the first few leading terms for a graph is laborious; and
to see them cancel away is, to say the least, discouraging. A better approach, and in fact one more likely
to lead to correct answers, is to arrange terms among graphs so that the cancellation occurs algebraically
in the integrands, preferably before the momentum integrations are performed. This we will do in the
following. It may not be obvious at first sight why we choose to arrange terms in the manner we have done.
However, we will explain as we go on.

A. Ladder amphtudes

We assign momenta to internal lines as indicated in graphs (1), (2), and (3) of Fig. 3. The corresponding
amplitudes are

(» . g dk, dk2» 1 Pl
(2,)4 (2,)5u(P3)y &.. . .(p k } y 7;,u(pi)g(P4)y"3&. . . .(p )

y '&.,u(P3)

1 1 1 1 1
~c c c ~c c c +Q fk P Q1 3 5 5 4 3 1 3 3 4k, '+P (k+k, ) +g' (k, -k3) +P, k3 +y, ' (k+k3) +P (4.1)

~ (2) g d kl d k2 fk 1
g (2 )4 (2 )4 u(P3)'Y 55,(p k )

'Y r5 u(px)u(P5)y 4'r
( k )

'Y & u(p3)

where

1 1 1 1 1
'xS'5 '5'5S "x"3"3"4k,'+ P' (k+0,)'+ P' (k, —k-,}'+g,

' k, '+ g' (k+0,)'+ u' (4.2)
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N +x' +¹
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

N'„„„» =(2k, —k,)„(2k,—k, +k) g„„+(2k,—k2)„(2k, —k, +k)„g„

(4.3)

(4.4a)

N~ „„„=(-k,—k, —2k)„(2k, —k,)„g„„+(-k, —k, —2k)„(2k, —k2)„g„„+(2k2 —k, )» (2k, —k2+ k)„g„„
+ (2k, —k,)„(2k,—k, +k)„g„„+(-k,—k,)„(2k, —k, +k)» g» „+(-k,—k,)„(2k2 —k, +k)„g

(4.4b)

(4.4c)

(3) . g " d'k, d'k2 f,3
1" ='2 ~. (2.) (2.) "(p)y'".m+y (p, k, )

''","'P'"(P"'"
( k) ''" "'P'

tX e f (g g —g g )+ f f (s E —s' s )145 235 1 2 3 4 1 3 2 4 315 425 3 4 1 2 3 2 1 4

ca»a ca»» (g»» g»» g»» g»»)]345 125 3 1 2 4 3 2 1 4

1 1 1 1
X

k, '+ p,
' (k+ k, )'+ p' k,'+ p' (k+ k, )'+ p' (4.5)

Let us look at iT"'. This amplitude cannot give any lns factor, since the left half of the graph has com-
pletely independent internal integration from the right. In fact, the factors z. .. z, , g „„g„and

g„„g„„giverise to s' terms while the other terms together give at most s.ft3t24t25 ft1tt2~5 1
y

1 2 f 1 &4
Thus, we write it as

iT '=—iT +iT1 2

where

~ (3) . g d'k, d'k2 „1
Q Qg (2 )4 (2 )4 &(Ps) y '~ .(p k )

'Y r,+(Pi)&(p )'Y

(4.6)

1
X y»r»Q p2m+y (p, —k,)»~ '4

1 1 1 1Xg '~'4'3 k, '+ p' (k+k, )'+ p' k,'+ p' (k+k, )'+ p,
' ' (4 f)

1
2 (2 )'(2 )' ' '3 +y (p —k) ' P'" ' ' +y (p, k)

1 1 1 1
Xq~'~'&'5 '5»4'3k, ~+ p' (k+ k, )2+ p2 k2»+ p' (k+ k2)'+ p2 ' (4.8)

We have interchanged p., —p, 2 in one of the bilin-
ears of iT,",'. This does not affect the coefficients
of the s' terms. Also a change of labels and dum-
my integration variables has been made in iT,"'.

We turn to work on iT"' and iT"' so that terms
contributing to s' behavior cancel out the corre-
sponding ones in iT"'.

The first thing to notice is that N'„, „„[Eq.
(4.4a)] contributes up to power of lns O(1} to
iT"''2' [Eqs. (4.1) and (4.2)]. This we neglect.

For N', „„,[Eq. (4.4b)] we do the following1e2u3V4

manipulation: Clearly, in order to obtain lns fac-
tors for the amplitudes, both p, (or p, ) and p, (or
p4) must appear somewhere in the seven denomi-
nator factors before we carry out the internal in-
tegration. Because of this, we realize that we are
allowed to drop terms with (k, )„and (k, )„,while1
replacing (k, ) by -k„and (k,)„by -k„. This' "3
is a consequence of applying the Dirac equation
and what we said just a moment ago. For example,
if we have (k, )„, then after contracting with y»i,
the relevant combination in i T"'"' is
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P~ 'a+~,

p-k '
1 1

i P4-k2 p-g )(
1

a+&2 P4

-k2 P2 k2

This we do not need to consider any further, since
Pj has been completely eliminated from the denom-
inators. As another example, suppose we have

(k, )», , then the relevant combination is

P k1

Pg

P2 P k1 k2 P

u(p, )y ~ k,'m+y ~ (p, —k, )

P1 P2

= —u(pa)[m+y ~ (p, —k,)+y k)
1

m+y p, —k,

FIG. 3. Ladder graphs in sixth order.

1=-u(p, ) 1+y k
m+y ~ ip, —k,)

1
( )

y k,u(p, )
1=—-u(p, k

m+y ~ (p, -k, )' (4.10)

= —u(p, ) . (4.9)
I

1.( k )(m+y'p, —y'k, ) u(p, ) In short (k,)„,-- k», .
After we make all these substitutions and sim-

plifications, we have

iT& ——i — g a a(-4u(pa}{y»&[m —y ~ (p, —k,)]y ~ k» —y. k»[m -y (p, —k~)]y»&] 7', 7', u(p, )

x u(pa}{y ~ k, [m -y ~ (pa-k»)]y» —y» [m —y (pa —k,)]y kp 77a, u(p»)

-4u(p, )r"'[m —r (p& k&)]r -k.&a, 7'a, «p|)

xu(pa){r k[m -r (p, -k.))r»-r»[m-r (p. -k.))r k)~., 7.au(p»)

—4u(pa){y» [m -y. (p -1k))y k —y ~ k[m —y ~ (p~ — k~)]y»)a7ar„u(p, )

xu(pa)y k, [m —y (pa —k»)]y» r„r, au(p)»

+4u(pa)y k[m —y (p, —k,)]y"ar, 7, (up )1u(p ay}»[m —y ~ (pa —k»)]y k7, Ta u(p))»
1 1 1

Xga/a»a5 aaaaaa m2+(p k )» k 2+$2 m2p(p k )»

(4.11)
1 1 I 1

k, '+ p' (k+k, }»+p' (k, —k, }'+p,
' (k+k, }'+p,

' '

and a similar expression for iT,'. iT~' ' ' here are of course iT ' ' ', respectively, when N» „„is
due to N~»» [Eqs. (4.1)-(4.4)]. We will show in Appendix A that iTi~" ' "do not contribute to O(s ln's).
Note the special combinations in the first three terms of iT»' .¹»„[Eq.(4.4c)] is now taken up. It will lead to s' terms for iT~'i' ~'~. Thus, instead of treating+ jPgP3Pg
it alone, we find it advantageous to combine iT,' ' ' with iT,', to effect cancellation of this unwanted be-
havior. We then consider

iT C 1

. g 2 dk, dk2 ~x 1
g ), )

u(p, )ar r., 7., ( k )y ~(p, }u(p,)r„, .. ., .(p k )r»,u(p }
1 1

1 1 1 1 I
Xqa&aaa» aaaaaa k a+ ~a (k+k )a+ +a (k k )»+ pa k a+ ~a(k+k } + p

x [2k,'+2k, »+2k ~ (k, +k, )+ p,'], (4.12)
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where we have multiplied and divided iT&'& by (k, —k, )'+ &4' to arrive at this form. Now we write,

2k, '+ 2k, '+2k ~ (k, + k, )+g2=((k, '+ u2)+ [(k+k, )'+ &22]]+((k22+ i&')+ [(k+k, )'+ &22]) —3i&2 —2k'

and define

iT&4 & —iT& ~ &(k )+iT«s &(k )+iT& ~ &(i& f)

where, e.g. , iT&"2&(k,) is the piece due to [(k,'+ p')+ (k+k, )'+ L&,'] in Eq. (4.13), i.e.,

(4.13)

(4.14)

~ (1 3) ~ g 2 1 2 P2zT ~ (k, )=i
2 g (2v)'(2s)' u p' ' ' (p, —k, )

1
m+y p, -k2g

1 1 - 1 1 1
2 4 2 k& +&& (k+ k&) + &4 ) (k, —k )'+ &2' k, '+ P,

' (k+ k )'+ P'

Similarly,
~ (ys3) g ', d'k, d'k2 „, 1iT ~ (k,)=i

2 g (2 )4 (2 )
u p' 'T2'Tm&y+(p )y" u(p&)

1
4m+ y g 4—

1 1 1 1 1
~aaa ~aaa 2 2 2 2 2 2 2 2 +'&'"2 '2'4" k, '+ P'(k+k, }2+&2' (k, -k, )'+ g' k, '+ g' (k+ k, )'+ y.'

and
1;)'" "(rP, t)=-l'(— 4'(g* -', ))

(
)',

(
)*, i7(&b" r.,~. (,7"* (0)l~+y s p

(4.15)

(4.16)

1 1 1x u(p, )y„T, T,» '2 '4»&+y ~ (P, k, ) '& ' 4&'2'2 '2'4'2k, '+ )«' (k+k, )'+ g'y, u(p, )~. ..e. ..
1 1 1

X
(k, -k, )'+ p2 k,'+ («' (k+ k,)'+ &2'

(4.17)

lf we are to evaluate the high-energy behavior of iT""(k,) [Eq. (4.15)] and iT""(k,) [Eq. (4.16)] we would
find that Lt Ls 0(s ln's). We do not want to do that, however. We prefer to cancel these amplitudes out with
parts of the radiative graphs.

Before we turn to this task, we may remark that it is obvious we should do the same thing to iT,"' and
iT,"', i.e. , we define

iT""=iT"'+iT',"=iT""(k,)+iT'""(k,)+iT'""(&&.')

where, e.g. ,

(4.18)

' (k, l='
2 g (2,). (2„). (p, )y '.. ., , .(p k)y (p, )

1
xu(p )y T T y u(p4 lk) 44 42u2+y (p +k ) Il2 ' 2}

1
4&4242 42()4()2 k + &22 (k+k ) + P (k k )24 &22 k 2+ i&2 (k k )2 2 ~ (4.19)

B. Radiative graphs

We will consider only those radiative graphs due to three-vector coupling in this subsection. The rest
will be included later.

There are altogether twelve of them in this category (see Figs. 4 and 5). However, we need to consider
only two, since graphs (6) and (7) are related to graphs (4) and (5), respectively, by s-u crossing, plus
proper change of isospin matrices. Graphs (8) and (9) are the time-reversed diagrams of graphs (4) and
(6}, respectively. Finally, graphs (4')-(9') are the left-right reflected graphs of the corresponding un-
primed ones.

With the momenta as assigned in graph (4}, the amplitude is
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P3

p, -k&

p -k)

P)

Py

P4 "z

Pp

Pg

p k1

p)-k)-kp

P)

,
Py

(P -k2

P2

(4')

Pg

p, -k, -k2

P4

)

p, k

(6)
P) P2

{6') (7')

Pg Pg

p, -k,

P1 2~

P4- k2

(e)
P2

(9) (8') (9')

FIG. 4. Three-vector radiative graphs. FIG. 5. Left-right mirrors of graphs in Fig. 4.

(4.22)

T —
' dk dk ( 1 1 r"~(p )2 (2s)' (2s)' ' ' '~ 'a '4' m+y (p, -k, ) m+y (p, -k, )

(4.20)
k, '+ p,

' (k, -k, }'+p' k, '+ p,
' (k+k, )'+ p,

'
There are basically two kinds of terms in the three-vector vertex: the ones with k, and ones with k, . We

can show that the former ones give O(s ln's) to f T"', while the latter after renormalization give O(s ln's).
We then define

jT( ) jT( ) + iT(4) (4.2l)1

where iT,",' are obtained by retaining only the k, ,-dependent terms, respectively, of the three-vectort
vertex, i.e.,

~ (4) g d kz d k2

(2S)4 (2S)4 &Ps) ag aa 44

&&(-r"'[m -r (p, -k,)]y"'[m-y (p, -k, )]r k, -y"'[m r(p, -k, )]r'k, [m--y {p, -k )]y"a

+2y"4,"'[m -y (p, -k, )]y"[m -y (p, -k, )]y„)u(p,)
1

1 1 1 1
m'+ (p, -k, )' m'+ (p, -k, )' k, '+ y,

' (k, -k,)'+ p' k, '+ g' (k+k, }'+p' '
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~T(4) g z 2 -l
2 2 g (2v)4 (2v)4 (P3) a1 aa a

1 1 1 1x 2y"& y"2 y k, -y"& y k y"2
m+y (p, -k, ) m+y (p, -k, ) ' m+y ~ (p, -k, ) 'm+y (p, -k, )

1
' m+y (p, -k, ) m+y (p, -k, ) '

x (p, ) . .y, y, (P2)c. .. 1 1 1 1
42 al 2m+r (p —k) 1 234k1 +il (k1 —k2) +Q k2 +p (k+ka) +Q

(4.22)

We introduce the following expression:

(2v)4 (2v)4 24(P3) a1 43 aay y, (p k )
y ~(pl)u(P4) a2 a1ra2 m+r .(p k )ra1u(P2)ea24344

1 1 1 1
X

k, '+ g2 (k, -k,}'+g2 k, '+ 132 (k+ ka)2+ g' ' (4.24)

It will turn out that this is a useful quantity to consider in order to cancel out the O(s ln's) behavior in the
ladder. Thus, we calculate the difference between iT,"' and iT"', Eqs. (4.22) and (4.24). We reexpress
one of the fermion propagators in iT~4) as

1
g(p, )r"1

(
}r"'M(p,) =M(P3) r"'

( }[m+r (P, -k, )] .(
}r"' l(p, )

1 1

1ykm+y (p, -k, ) 'm+y (p, k,)-
+ y"' (m+y ~ p, ) y"' 24(p, ). (4.25)

1 1
m+J p, -k, ' m+y' P, -k,

Then

~ (4) ~ (4) g 1 2 —I2T, 3T
2 g-(2 )4 (2 )424(P3)v.. 43 44 4~344

x y'1[m -y ~ (p, -k, )](m+y p, )[m -y (p, -k, )]y"'

—2y"'[m -y (p, -k, )]y k,[m -y (p, -k, )]y"'

+2y" 1[m -y (p, -k, )]y '[m r'(p, -k1)]y 'ka-

—y"'k"' [m —y '(p, —k,)]r"[m -y (P, -k, )]r
1

P4 2

1 1 1 1 1 1
k, '+ 11' (k, k, )'+ g' k,'+ p' (k+ k,)'+ g' m'+ (P, -k,)' m'+ (P, k}- (4.26}

The noticeable features of the terms in the curly brackets are (a) the first term has a projection operator
(m+y ~ p, }, which can be shown to suppress its high-energy behavior, (b) the last three factors of the third
term are in the reversed order of those of the second term. This combination also creates high-energy
suppression. And, finally, (c) the fourth term involves a contraction, which is not a good way to realize
large high-energy behavior. In fact, by paralleling the analysis to be pursued in Sec. V, we can show that
iT,"' iT"'-O(s lns-). This will be further discussed in Appendix B. Then

iT"'=iT"'+iT"'+i(T"' iT"')-1 2

=—iT,"'+iT"'+O(s Ins) .
We now manipulate the expression for graph (5}, the amplitude of which is

(4.27)
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d 'k d'k 1 1iT(5) y"4«p )2 ~ (2w)' (2w)' '"' 'am+y '(p, -k ) "m+y '(p, -k, -k, )

-(p.)y"'. . .y.. . (p, )'2m+y '~P4 -k, )

1 1 1 1
(k, + k,)'+ )&2 k, '+ i1' k,'+ )12 (k+ k, )'+ P

' ' (4.28)

We introduce the following two expressions:

2 u al ya2'7 Y 2' u )g u )y '7 'p u }
d'k d'k 1 1

a 2 8 (2w}4 (2w)4 (p3}y m+ y .(p k ) aa a1 44 (pl aaa244 (p4
a2 m+y .(p k )ya1 42 a1 (p2

1 1 1 1
X

k, '+ P' (k, -k, )'+ P' k, '+ &1' (k+ k,}'+P2

(+ ) 1'u&* &y"1 y'2v 7 2 u(*)e2) (2W)' (2W)
' ' m+y ~ (p, -k,' -k ) '2 '1 '4 "' 42'2'4

~u(pa)ya y. ~. ~. u(pa)»
1 1 1 1

'2 m+ y ~ (p, -k, ) "1 '2 ' ' k" + p' (k'+ k )'+ p' k '+ y,
' (k+ k, )'+ p'

(k', = k, —k2), (4.29)

2 (2w}' (2w)'" P' m+ (P -k )

1 1 1 1
"2m+y (p, -k,} "1 4' '1 ' k, '+ p,

' (k, +k, )'+ i1' k,'+p'(k+ka)'+g'
iT,",' are used to juxtapose according to

.T(a& (iT(a& T(a& iT(a&)+ iT(a& iT(
b a

(4.30)

(4.31)

where, if we multiply and divide the first bilinear form of iT12& and iT,"', respectively, by m+y (p, —k, )
and m+y'(p, —k, —k, ), we obtain

'T&5) 'T(&) iTi&5)
Z

=-(l
1 1 1 1 1 1 1

ma+(pa-k, ) m +(p, —k, -k2) m +(pa —k2) k, +i1 (k, +k2) +i1 k2 +i1 (k+ka)2+i1

(4.32)
with

N&g&aa=u(pa)(2y"2[m —y'(p, —k, )]y"'[m —y (p, —k, —k, )]y k, —2y k, [m —y (p, —k, )]y "1[m — y (p, —k, —ka)]y"2

—[m+y (pa —k,}][m—y'(pa —k,}]y"1[m—y'(p, —k, —ka)]y2
—ya[m- y'(p —k )]y"1[m-y'(p, —k —k )][m+y'(p —k )]

+k2"ay [m —y (p, —k, )]y"1[m —y'(p, —k, —ka)]y„—y"'[m —y'(p, —k, )]y"1[m —y'(p, —k, —k2)]y'k,
—y k, [m —y (P, —k, )]y"1[m —y (P, —k, —ka)]y2+2k&aay[m —y (P, —k, )]y"1[m —y (P, —k, —k2)]y„}

&&a„r. v. u(p, ).
We will show in Appendix C that

iT"' —iT' ' —iTa"=—O(sins) .a

(4.33}

(4.34)
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Now we see the purpose of interlacing iT"'"' with the overbarred quantities. For example,

5 4 4
(4) .—() g d k1d k2 „1 &2

2 (2 )'(2 )' ' m+y (p —k }1 1

1 1 1 1 1
x e u(p, )r"2m+y'(p~ —k2) ~& '2 '& ' k, + p (k, —k2) +p k2'+p (k+k2) + p,

rrupi) 2 2 2 2 2 2

(4.35)
which cancels out the term with 1/(k, '+ p2) in the square brackets of i T"'"(k,) [Eq. (4.15)], upon using the
commutation relation

«r ]=2'ea a a ra31 5

and relabelling some isospin indices.
Similarly, for graphs (f) and (8) we introduce

(7) g d k1 d k2 1
2 (2p) (2s) ' m+y'(p, —k, —k )

(4.36)

x&, u(p, )y, r„T r. u(p, )
1 1 1 1

%««3««4 ~&m+y (p4 —k2} "& '2 '& k~ + p (k k+~ k+)2+ p k2 + p, (k+k2) + p,

g' dk1dk2
+r(p -k')' """' "" "" + ( -k} "

1 1

5

'ET = — g
~
—(7)

b 2

1 1 1 1
X

(k+k,')'+ p (k,' —k, ) + p k2 + p (k+k2) + p

d'k& d'k2
(2 }4 (2 )4 (P3)r . (p k )

r
a& ««2 a& (Pl }

(k, +k, =k,'), (4.3't)

'z'3'& " 2m+y (p~ —k, ) ~« '2 'i '' k, + p (k+k, +k2)+ p,
'

k2 + p (k+k, ) + p' '

(4.38)

'T(8) g dk1 dk2 „1
2 . (2 ) (2 ) ' + '(p, —k, )

1
'iw'4 ' '2m+y (p, —k, ) '~ + '~ (k+k, ) + p (k, —k2)'+p k2 +g (k+k~) + p'

(4.39)
We can show that

iT"' —iT,' ' —iT' '=—O(sins),b (4.40)

iT2 ' —iT ' = O(sins),

where iT,"' is that part of iT"' in which the three-vector vertex has only k, dependence. Besides,

~ (7) ~ (8) g ' d k1 d k2 „1iT, +iT =
2 g (2 )~ (2

}4u(p)r"
( k )y"r [r, , r ]u(p)

1

1" „„., (P,)r.. .„„)r„,„., (P.)

1 1 1 1
(k+ k, )'+ p, (k, —k, )2+ u' k, '+ u' (k+ k, )'+ u'

(4.41)

(4.42)

which cancels out the other part of iT""(k,) (Eq. (4.15) with 1/[(k+0, ) + p ] in the square brackets).
It is clear by now that we can introduce iT"' and iT"' in the same manner. Together with iT,"' and

iT~"', they will cancel out iT""(k,). iT' '', iT", ~', iT"'', iT 7~', iT"'', and iT similarly defined will
cancel out i T""(k,) and i T""(k,).
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All in all, we find that

jT '+ jy '+ jZ" '+ jZ'4'+ ~ ' '+jy' +jy ''+' ' '+ jZ' 9''

=iT"' '(p. f)+iT' ' '(p i)+iT' '+iT' '+iT' '+iT' '+iT' ''+iT"''+iT' '+iT,' ''+O(sins). (4.43)

We may remind our reader that the subscript 1 in iT,""'~2" means that we retain only the k,- (and possibly
k-) dependent part of the three-vector vertex

V. SIXTH-ORDER CALCULATION; EXTRACTION OF LEADING HIGH-ENERGY BEHAVIOR

A. Scalar X production

The graphs we first consider are shown in Fig. 6. We have

2 ~ 2 2
'u & v+ m-& ~ p, -k, &" 7, u, , &„7, ~-&~, -k,

1 1 1 1 1 1 1
m +(p, -k,}' k, +p' (k+k, )2+p' (k, -k2)2+m„2 k,2+ F2 (k+k2)2+p2 m'+(p, —k, )2

(5.1}

We may approximate, at high energy, and

u(P5)y "2(m y(P, --k, ))r"'u(P, ) = 2P"'P"'/m-

and (5.2)

x,x2 = (a, + a,)(a, + a, ) .

Simple integrations yield

u(P5)y„, [m —y (P, —k2}]y„,u(P2} =—2P'„,P'„ /m . (lo) 1 ln s
2 s

We introduce 0. parameters for this amplitude
in the same way as we would for graph (1) (see
Appendix A). We have

de3dn4c4s d~65 1 —~3 Q4 Qs Q6

&T (lo)
&

g 3 3 I(lo)1 2 ' s'-' 16,a

x u(p, )T~~, u(p, )u(p, )~,,r ~u(p2),

where

(5.3)

(a5 + a.)(a5 + a5)
10)

We then scale the variables according to

I+3 ~1+3& ™4I 1+4 t

and

&s =&3&s~ 0'6 =@2&6 ~

(5.5)

I ' =2 de&&5 1 — ~& D 3 (5.4)

with

(10) a1 a2 a7 $10)

P3 k+k)

p-k i
1 1

Pg
T
I

I
I

I

I

t10) k ~asa5(a5+ a5) +a5a5(a5+ a5)~ P k1

(io)

+ & (a+5a+5a5+ a5)A 1 FIG. 6. Ladder graphs with physical scalar production.
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then

1 ln2sI'"'=—— ««d«, «(,l —«, —)«, ) f d «kr'll(',1 —,' —«,')
S

1 ln2s
K1

x do.,' da,'5(1 —o.,' —a,')' [k'(p, ~ ~tl+p. ~lo(l)+u'(p, +p, )]'

(5.8)

with

A@1d(l25 1 Ql +2} 2 2
1

k 01' + /L

Consequently,

2 4

2 + + 2 zln sK1 3Ta7a lg 4TaT M 216m2 2 m'

The contribution of graph (11}is obtained by s —-s and a proper change of r-matrix ordering,
2 4

iT "=—i 6, 2
g'p, ' ——, —,'ln' -s K,'u, i~7 Q Q 4 7~7 M p2}.

(5.7)

(5.8)

(5.8)

B. Evaluation ofiT ' ) (p, g) and jP ~(p, t)

The extraction of the leading behavior of iT "(p,', t) is almost identical to that in the previous subsection,
with proper changes of coefficients and isospin structure. We find

and

2 4
'T"'"(«*,')=—'(

()
* t tt «'t«* l«')(—*) l) ' &,'«((.) .. . ()',) (),) « . ((,)«, „.

(5.10)

2 4
')'*"(«*,0= ((() . 3 t «'t«' ~ —.«')(—,)-,') *(- ) '0«, )«. .«()', ) ()', l«. . ()', )«.,«.. .. , .

(5.11)

C. Renormalization due to fermion-fermion-vector coupling

The graphs which fall into this category are the ones shown in Figs. 7 and 8. Those in Figs. 8 are left-
right reflections of the ones in Fig. 7. These graphs, except for trivial isospin factors, were considered
before in massive quantum electrodynamics. '

Take graph (12) to start. Strictly speaking, it has nothing to do with renormalization. We include it here
only for cataloging convenience. We write

where

(2v)
(t ( ft } (Pt)y(l r() y .(P +k )y()gT()tu(PR) k + (k+k )

(5.12)

— C k1 —
v3(iT) ft, 2 (2v)t u(Pt}y T()t m+y'(P —k, )

1 1 1
xy»T, (p, )'tm+y ~ (p —kt —kt) 'am+y ~ (p —k ) "t )'s k +it

2
3! dX1dX2dX X45 1 — X, '4 4 (5.13)

with

d(~) = x,[m' + (P, —k, )'] + x, [m' + (P, —k, )' ] + x,[m' + (P, —k, —k, )'] + x, (k,' + u')

2+ 2
1 ~(12) r

b(~)' =(x, +x, +x }'m'+x, (x, +x, )k'+x(2x, +x)k k, —2x x P k, +x(1 —x)k, '+x)t',
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P -k) k+k23 & 2

P4

k1 tP)-k1-k2 i(P2+k2

P-k k2

P)
(12)

Pg k+k ~4
2

p,
-k

P,-k,-k2, (P +k
2

P1-k2

2 P2

(13)

(15')

(12) (12 ) (13')

(14)

FIG. 7. Vector-fermion-fermion radiative graphs. FIG. 8. Left-right mirrors of graphs in Fig. 7.

and

), = I, —[(x, + x,)P, +x P, —x,u, j.
After rationalizing the fermion propagators, the leading behavior for N("'~&' is obtained by retaining only

the y ~ k, term for those two lines adjacent to the external fermions, i.e. ,

2pPxpP2

where an average has been performed. Then after the k, integration

(iT )»&2 -=— 2 dx dx dx~dx~5 1 -Z, x, x~ 2 u(p3)rg 7'g Tg Tg u(pg) . ''g 4 2pvypP2 1
16g2 2 m

(5.14)

Inserting this into Eq. (5.12), we obtain
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2pPypP 2
T

2 16 u(p, )r, r, r r, u(p, )
16m m 3 3 +1 Q &3

x2 dx dx, dx dx, 5 1 — x x
2

& P4 „T., m-r 2+k2 ~] Ta + 2

d k

x 3 f da,c4,~3dn45 1 — e& 4
D( j2

(5.15)

when

D&, ~
= n, b&„~' + a, [m' + (P, + k, )' ] + a, [(k + k, )' + p, '] + a, (k, ' + g')

—agnaxgx4s + n3a4k + g (k2 ——k2 + ask) p

in which we have made use of the observation that the important region of integration is o.$ Q2 x3 0 to
simplify.

A straightforward integration leads to

6 2 S
iT " = i —,—, —,

'
ln (-s)fC,u(p, )r, r, r, r, u(p, )u(p~)v;, r, u(p, ). (5.16)

~e turn our attention to graph (13). This requires a mass renormalization. It is clear that the point of
subtraction has no effect on the most leading term. We choose to subtract at the physical mass of the
fermion. Then

~ (i3) g k2 — u, 1
u(2,). u (p, )y ' . .(p „)

[- &~. (p, — .)] , .(p k )
y ' .,"(P.)

1 2 1 2

in which

1
( 4 '~ ~tm+y (p +k ) "& " ' k,'+g' (k+k )'+g' ' (5.I'7)

1
&„. (P, -k2) =[m+y (Pi-k, )]' —,2(r.,)'

I

dx, dx, 5(1-x, —x,)x,x,

2m'x, (1 + x,)z
m(1+x, ) +[y ~ (p, —k, )-m](1 —x,) 1-

dZ mX, '+P, X,
m'x, '+[(p, —k,)'+in']x, x, z+ g'x,

(5.18)
is the renormalized mass operator. We introduce a parameters and write

g 1

2 8@2
dz dx, dx, &(1 —x, —x,)x,x,

4 1x 3! da, dn2da da 5 1- g a;
s=l D(13)

(5.19)

where

D&„~ = n, [m'x, '+[(p, —k, )'+m'] x,x,z + u'x, ].

+ n, [(k +k,)' + u'] + a, (k,' + u') + a,[(p, + k, )' + m']

XIX2ZS + &2+k + j ~ k2 = k2 + CL2k

and

After carrying out the k, integration, we arrive at
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1x dz dx,dx, b(1 —x, —x,)x,'x, dn, dn b(1 —n, —n, ) dn, dn, -n, n4x, x, zs+k n, n, +9,
6-S

2
— —2&in -sK1Qp3T~T~ T QplQp4'T T Qp2 s (5.20)

Graphs (14) and (15) can be treated similarly. (We subtract the vertex correction at zero momentum
transfer when the fermions are on shell. ) Let us not overload the reader with details. Suffice it to write
down the results

iT(12)+ iT(13)+ iT(14)+ iT(15) iT(12 )+ iT (13')+ iT(14')+ iT(ls')

6 1 2

ln s Kl pg + & 7+ 7+ &
7' Q pl Q p4 1+ T+ Q p2 5e21a

iT "+iT "+iT "+iT"=iT ")+iT" +iT" +iT " )

6 1 2—» 1n'SK1Q P, T. y7a Ta &Ta Q Pl Q P4 Ta Ta P2 (5.21b)

t

D. Evaluation ofiT, ,...,iT,

Let us return to Eq. (4.43). We already picked out the dominant terms of iT "i(p') and iTi'"(p'), as they
are given by Eqs. (5.10) and (5.11). We need now to work on iTi,", etc.

We draw attention to Eq. (4.22). There are two ways in which iT~'~ can give 0(s ln's) terms One .way is
due to vertex renormalization; this can be seen, because if we retain the k, ' term in the curly brackets, we

will have a divergent integral. The second way is when we shift k, to carry out its integration; the shifted
part turns out to give a non-negligible contribution.

We write

where

1 1 1 1
xgc p, &, T, y y &(p )

2 1 "2 m +y (p4 —k, ) "i ' m'+ (p, —k,)' k, '+ p.
' (k+ k, )'+ p' '

(5.22)

d(,) = x,[m'+ (p, —k, )'] + x,[(k, —k,)' ~ p,'] ~ x, (k, '+ p')

= kl + ~(4)

iz, —k, +x,p, +x2k2,

b«~' ——-2x,x,p; k, + x,'m'+ x, (1 —x,)k, '+ (x, + x,)p,',

N,"'"'=&(p3)&. &. &. (-y"~[m -y (p, —k, )]y"'Im-y (p —k)]y k

-y~~[m -y (p, —k, )]y k, [m-y (p, —k, )]y&2

+2 y»k~p[m —y ~ (p, —k, )]y [m —y ~ (p, —k, )]y~)u(p, ) .
It is natural to split

(5.23)N~i"2=»»2(k = k )+N"»2(k =x p +x k )(4) (4) 1 1 (4) 1 1 1 2' 2

where N»»(k, = k, ) is obtained by equating k, to k, and N"»2(,'e, = x,p, + x,k, ) is obtained by equating k, to
x,P, + x,%,. Note that because of the .0, integration, there is no cross term between k, and x,P, + x,k, .

It is easy to show
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2p~~p» —,
N2i22(k, = k, ) —= 3k, 'u(p, )r, r, r, u(p, ) (5.24)

which indicates that a subtraction is necessary to render a finite result. We choose, consistently as be-
fore, to subtract at the point when k, = 0 and when the fermions are on shell; i.e. , instead of Eq. (5.22),
what we should be calculating is the subtracted quantity,

x {N22»(k, = k, —k, )/d(4)3

With

(5.25)

—u(p3)y"'T, T, r, [m-y'(p, —k2)](-6x,'m +3}2, )y22u(p2)/da) }
1x e u(b )r r y u(h

24344 2 I (2 m 4, y ~ (p k )4 2

1 1
m'+(P, —k, )' k,'+)22 (k+ k, )'+ p2 '

and

d4 —k, +b(4)

b&& ——b& ) !& 2--x, m +(x2+x3))l

For identification purposes, we will call the part due to ¹&"2(k, = k, ) and the subtraction the renormali-
zation part, i.e. ,

(iT, )„„=— —
g 4 ', 2! dx,dx2dx36(1 -x, -x, -x,)

x {N"'"2(k2 = k2)/d(4)'
(4)

—u(P )y3" r,2T, r, [m —y (P, —k2)](-6x, m2+3k, ') y"2u(P, )/d&4)3]4. ..
xu(P4) T4 TP y2 y2 u 2)

1 1 1 1
'2 '& "2 m+y (p —k, ) "2 2 m2+(p -k2)2 k22+)22 (k+k2)2+)22

'

(5.26)

The steps taken to extract the dominant term of Eq. (5.26) are slight variations of those for iT23). We
quote only the result,

S

(i&',"),.„=——
( P, P

P 2—,';i 's((, (P,) . . r (P, )u(P, )~ ,v. (P )&~. '. . (5.27)

We tackle N,"&,"2(k, =x,p, +x,k, ) due to the shift in k„which appears in

i 4

(i T2(4))P"'"( = — g, dx2dx2dx36(l -x2 —x2 — )x[3N"&"2(k, = x,p, + x2k2)/b(4) ]

x e u(P4)T T y2 y2 u(P2} 2 2 2 2
1 1 1 1

'2'3'4 '2 '2 "2 m+) (p, —k, ) "& m +(p, -k2) k2'+)2 (k k +)'+2)'2

(5.28}
of which the 0, integration has been performed.

Combining denominators through the introduction of n parameters, we have
5

16'
5

X 41 datd N pd05 1—
f=1

"N" 2( 2kx, p, +x,k,)e, u(p, )r, r, y„[m-y (p4 —k, )]y„u(p,)

(5.29)
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where

D«) =n, [mn+ (p, —k2) ]+ah[(k+ k2) + p,']+ ah[ma+ (pa —kh)a]+ aa(kh2+)h2) + a,b«)a

= [a, + a, + a, + a, + a,x,(1 —x,)]k, '+ [a, + a, +a, +a, + a,x,(1 —x,)] 'B«)',

B(,)' -(s —2m' —k')(n, +x,x,a,)a,
+ m [(at +x x)n2)a+ah +nax) ][n) +a2+na+na+nax2(1 —xa)]

+ p, '[aa + a a +a, (x2 +x, )][a,+ a, + a, + a, + a,x,(1 —x2) ]+k a, (na + a,x2x, ),

and

p, (a, +x,x, n, ) +p,n, kn-,
2 2+ n, ++2+a, 4+ 5 2(1-X2)'

~ T(4)
(&

T(4)) (
~ T(a) )

shift
1 1 rcn 1 (5.36)

The total contribution to iT,'" is, of course, the
sum of Eqs. (5.27) and (5.35), i.e.,

This in fact is due to the A%2 part of the shift,
whence, after k2 integration,

with

Xu(Pa)Ta Ta Ta u(P()e

xu(p }T~T u(p )I( ), (5.31)

I(4) = &1C&L'2dX'35 1 X1 —X2 —X3

A simple change of variables
I

1 1 1 2& 1 5

5

B(4)
(5.32)

(5.33}

and elementary integrations give

1 1 1 (5.34)

which leads to

xu(p, )T, T, T, u(p, )e

u(pa) aa atu(pa) ~ (5.35)

The high-energy behavior is controlled by the
conditions n, —= 0 and/or n, +x,xha, =—0. After a de-
tailed analysis similar to that in Appendix B, we
come to the conclusion that

N"h "a(k, =x,P, +x,k, )
(4)

p

a( + n2 + ah + na + n ax2(1 —xa)

(5.30)

The contributions of graphs (6), (8), and (9) can
be obtained from Eq. (5.36) by simple changes, as
remarked in the introduction to Sec. II B. What is
necessary to complete the analysis of the radiative
graphs of Fig. 4 is graph (5}[and graph (7}, which

is obtainable from graph (5}by s —u and rearrang-
ing isospin matrices].

We concluded in Eqs. (4. 34) and (4. 43) that if
we are only interested in O(sin's}, then we do not
need to be concerned with graphs (5) and (7) at all.
However, as it turns out, the leading terms of the
isospin nonflip amplitude are purely imaginary and
of order sins. For graphs (4), (6), (8) and (9),
owing to their being planar, we automatically
obtain this order of accuracy as a bonus (we em-
phasize, for the imaginary part of the isospin
nonf lip and the real part of the flip amplitudes
only). We are therefore induced to obtain also the
s lns terms for graphs (5}and (7}.

Needless to say, it is less laborious if we can
devise a trick to accomplish this feat. The perti-
nent observation is this: W'e can correctly obtain
the dominant terms for graphs (4)-(9) by splitting
them into halves. The s —, t finite limit can be
reached by first evaluating the left halves with
k2' held finite but p, ~ k2 tending large. After that
the halves are joined and evaluated in the desired
s-, t finite limit.

Now, if there were no isospin we could repeat
the gauge-invariance argument as used in massive
@ED to show that the most leading terms of the
left halves cancel out when we add up, e. g. ,
graphs (4), (5), and (9). Since the dominant terms
of the left halves lead to the dominant terms of the
whole amplitudes, we conclude that if we replace
all the 7 matrices by 1, the leading high-energy
terms of graphs (4), (5), and (9), should add up
to zero. Thus, we have

(5.37)
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' —s
((& '&) '" —= &

(& && &&, , lln*( —&(((, (p,(&.,&~&. (», )&...,.,ii(», )&.,&.,»(p, ), (5.38)

and thereupon,

(iT(5)) = (i T(s& iT(s) iT(5))

2 g 169 ' 'ln's+, —,'ln —s K,N p, T, T, ~. u p, e.,.,u p, 'T T~Q p (5.39)

and

(iT(5) )&hif( —(iT(5) iT (5) iT (5)
) &(&if(

I a

Altogether, then

2 g 16+,—,'ln's+, —,'ln'(-s) K,u(p, )7„v, r, u(p, )e. ..,u(p, )v„v.„u(p,).
(5.40)

(iT,"'+iT,"'+ i T"'+ i''+i T"'+iT"')~,= (i T,"'+ iT," '+i T" '+i T,"'+i T" '+ iT(' ')„„

I

& «(p,), —,
' ln'( —s) r, v +—,—,

' ln'sr„r, u(p, ) (5.41)

and

(iT' +iT" +iT«'+iT'7 +iT' '+iT' ') ' =(iT'4'+iT&')+ jT'' '+iT' )+iT(' '+iT(9))~"
I I I I I I I I I I I I

5 1 2

= —2 — g, K,u (p,)([v, , T ]r, &. ..
+Tg [7 &T ]Kg I )u(pi)

xu(p, ) ~ ~ ln ( —s)T, r, +, ~ In'sr „r(up). (5.42)

Note that Eqs. (5.38) and (5.39}are consistent with Eq. (4.34).

E. Three-vector exchange

Our arduous analysis will come to an end upon examining effects due to three-vector-meson exchange
in the i channel. The graphs are shown in Fig. 9. It is easy to see that graphs (16'), (17'}, and (18') can
be obtained from (16), (17), and (18), respectively, by twisting the left fermion line. This corresponds to
proper s —u plus some rearrangment of v matrices. Besides, graph (17) is the time reversed diagram
of graph (18). Thus, we actually need to consider only two graphs.

These amplitudes were in fact analyzed in massive @ED." We shall therefore delete the details.
following results are obtained:

e 2 Sjg~'~'=2j — ln —s I" 'u P, &, «,,& P, & P „7„~„&P (5.43)

(5.44)
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8 1 2ST'"'=-2a —-

+ 2 lnSl I ~S Ta Ta Ta2+ pl + p4 Ta Ta Ta (5.45)

e 1 2 s
u(P3) T2 va, ra u(p&)u(P2) 32 32 &2 u(P2) ~ (5.46)

6 1 2
iT&1'"=2i —,ln(- s)I""'u(P3) r2 T, 7, u(p&)u(p, )7. .2r.3u(p2), (5.47)

and

6 (iT&" &=—2i — ~, ln(- s)lu" u(P, ) 3', 7, r, u(P, )u(P, ) 32 3; 3„u(P2), (5.48)

where

I&121 d d d 6 (1 )I (o& +2)( 2 3)
&2&c2 &23 k +[&2 (&2& + &23) + &31&23 ] t1 (5.49)

and

g~d~ do 5 1 —~ —0. —o, ln ' -iw1 2 3 1 2 3
&2 (&2 pc&)

1

o&& &22 &23 k + [&23(&2& + c&2) + &2&c&2 ] t1
(5.50)

VI. SUMMARY AND DISCUSSION

(&6) (is' )

If we combine Eqs. (5.21a), (5.21b), and (5.41),
we obtain the first result (1.1). Equations (5.8)
and (5.9) are combined to give the result (1.2),
while the result (1.3) is the sum of Eqs. (5.10),
(5.11), and (5.42). Equations (5.43)-(5.48) lead to
(1.4).

The amplitudes in the sixth order are obtained
by combining (1.1)-(1.4):

T&~«& =[ —12 —15(&&2 ——' t)K&3]ni InsAK,

+12' i lnsA. K2, (6.1)

TI3~& =[ —4 —4(g' —t)K, ](ln2s -i «Ins)AK,

(6.2)

()S) ()S')

FIG. 9. Three-vector-meson exchange graphs.

These are the final results of our sixth-order cal-
culation.

In the process of preparing this manuscript, we
learned of an independent calculation by McCoy and
Wu, ' which was performed by using an approxima-
tion scheme somewhat different from ours. In this
paper, we have adopted the more traditional ap-
proach of extracting the high-energy behavior in
the Feynman a space. In the approach of McCoy
and Wu, which may be called the "infinite-momen-
tum approximation", the internal-momentum vari-
ables are first discarded in comparison with the
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infinite momenta of the fermions, and then integra-
tions are carried out by imposing a transverse-
momentum cutoff. In contrast, we have considered
the contributions of these internal-momentum vari-
ables, and kept the leading terms. Roughly speak-
ing, the calculation of McCoy and Wu corresponds
to taking the infinite-momentum limit before per-
forming internal-momentum integrations and re-
normalization whereas our calculation corresponds
to performing the integrations and renormaliza-
tions first and then taking the high-energy limit.

The result of McCoy and Wu is somewhat dif-
ferent from ours. Theirs corresponds to drop-
ping the terms linear in K, in (6.1) and (6.2). Al-
though we realize that the two different calcula-
tional schemes do not necessarily lead to identical
results, since they correspond to two different
limits, we are nonetheless somewhat puzzled by
the apparent difference in the two results. It is
known that the two different calculational schemes
indeed lead to identical results in the case of @ED.
Since we had the benefit of knowing the result of
McCoy and Wu during the final drafting of the pre-
sent manuscript, we have made efforts to check
our calculation. Difference, however, still per-
sists.

The infinite-momentum technique has its advan-
tage in its simplicity (relative to the conventional
technique using the n parameters), and is there-
fore better suited for carrying out higher-order
calculations. However, it is less understood and
is perhaps subjected to question concerning its
rigor. If the conventional method yields identical
results as the infinite-momentum method in low-
order calculations, then justification is provided
for the infinite-momentum method, which can then
be used, with more confidence, in higher-order
calculations. Unfortunately, our calculation (using
the conventional method) does not agree with that

of McCoy and Wu. It is of importance that another
independent calculation using the conventional
method should be carried out to settle this ques-
tion.

Another reason for our detailed discussion above
has to do with Reggeization. If the results obtained
by McCoy and Wu are accepted, then the isospin-
flip amplitude Reggeizes and the vector mesons
lie on the corresponding trajectory. This was
demonstrated by Grisaru, Schnitzer, and Tsao"
at the one-loop level in our language. In fact, a
recent report by Lipatov" for the vector-meson-
vector-meson scattering also gives such a behav-
ior. This last calculation is done dispersively,
and corresponds to the sixth order conventionally.
Unfortunately, we are not sufficiently fluent in this
approach to be able to make a meaningful comment
on the exact correspondence between the disper-
sive calculation and ours.
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APPENDIX A

We want to show that iT,"'"'do not contribute to O(sin's). To be specific, we discuss Eq. (4.11).
We introduce e parameters to diagonalize and complete squares for the internal momenta. Then Eq.
(4.11) takes on the form

(A1)

where

D«&
——a, [m +(p, —k, ) ]+a2[m + (p~-ka) ]+as[(k+k, )'+ p,']+a~(k, + p, ')

+ a,[ (k+ k,)'+ p']+ a,(k,'+ p')+ a,[(k, —k,)'+ g']

= A. k '+ A,k,'+ (a,a,a ~+ [ (n, + a, + a4+ a,)a,'+ (a, + a, + n, + a,)a,' —2a,a,a,] m'

+ [agn4(n2+ as+ ae) + asae(ay + a3+ n~) + nv(a~+ ns)(ay+ a 6) —a|n2] k

+ (a3+ a4+ n5+ n8+ n7)A|+ p j (A2)
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k's are related to k's by

k, = COSek, + Slnek, + k'h'f'

8hif tkl {(+2 +5 +6 +7)+tpl +2 +7P4 [+3(+2++5+ +6+ +7)+ +5+7] ) t

k, = —sin8k, + cosek, +k, (AS}

st ft,ks = {(&xi+Qs+ &54+ o&7}&52P4+Ql &r7pl —[Qs(01+ &53+ &24+ Q7) + &53&27]kj
1

(A4)

0 here is the angle of rotation to diagonalize the internal integrations. All we need to know about it are the
properties

(
1 2 1 . 2 Q2+ Q5+ Qt6+ Q7—cos 8+ —sin I9

A.t A Xi%

(
1 2 1 . 2 Qti+ @3+@4+Q7—cos 8+ —sm 8

Xlh

1 1 . Qt,sin8 cos8 =—
Xl

(A5)

Alp = (Qt+ &53+ &54)(Q2+ Q5+ &56) + &57(&51+ &52 + Qs+ &54+ Qs+ O&6) (A6)

N«& in Eq. (Al) is the numerator in the curly brackets of Eq. (4.11).
The denominator of Eq. (A2) tells us that the dominant high-energy behavior of IT5&t' is controlled by

Qy Qt2 Q 7 0, perhaps not simultaneously. In any event, it is neces sary for us to pick up s' from the
numerator N(y) in order to attain a behavior s ln s for the amplitude, since we will inevitably pick up a
1/s factor from the denominator after all the integrations. Let us then take a close look at the numerator.
Consider the first term of N(y) with all isospin matrices suppressed

Nt&tt&
'" =——4u(p, )[y 'y'(p, —k,)y'k, —y k, y (p, -k,)y"']u(p, )

(P.) [k, (P. -k. .)r., r., r (P. k-,)r k, ] (P-.) . (AV)

First of all, we cannot have all k's replaced by linear combinations of k 's as given in Eqs. (AS) and (A4),
because we simply do not have s' for the numerator this way.

Therefore, at most a pair of k's is replaced by k's. However, they should not be adjacent to each other,
such as u(p, )(y 'y'k, y'k, —y k, y k, y ')u(p, ) or u(p, }(y"'y k, y k, —y k, y k, y ')u(p, ). They vanish
either identically or after average.

Hence, at most one of the k's in each of the bilinear forms of Eq. (AV) can be replaced by k's. Then
there are the following possibilities:

(1) N let term (k2)u(p )[y sy o (p kshift )y 4 r 4y (p kshift)r 3 ]u(p )

x«(P4) [r„sr (p, -k;"")r„, r„,y (p, --k "')y„,u(p, ), (A8)

where (ks) denotes some correct combinations of k,' or F22 with 8. To obtain s' for Eq. (A8), we must
have k;h'"-p, and k;h"'-p, of Eqs. (AS) and (A4). Pushing y p, and y p, through to act on the appropriate
spinors, we see that we can at most achieve sk . This is negligible.

(11) N let term (k 2) u(p ) [ y 3y 4y kshlf'1 y ks f y y 3]u(p )

x u(p, ) [y, y (p, —k;u") y„, —y„y ' (p, —k;h'") y„]u(p,) . (AS)

In this case, since y ' and y 4 stand next to each other in the first factor, we have no way of obtaining s'.
Likewise,

Nisi term
( ks)u(p ) [y sy (p kshift)y 4 y ey, (p kshift)yss ]u(p )

xu(p)[r k'""'r r rr r k""-']u(p).
can be neglected.

(A10)
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(iii} i&t
ls't 't erin ( $'2)tt(p ) [y 3y 4y p kshif t y + kshif

't
y 4y 3]ft(p }

X tt(P )[y kshift y y y y y iks&ft ]tt(P ) (A11)

This time, two sets of y„, and y„stand next to
each other to tame the high-energy behavior.

Therefore, all the k's in Eq. (AV) must be due

to shifts. In that case, k;h"' in u(ph) M(p, )
must be proportional p, or k, and k;""' in

u(p4)tt(p2) must be proportional p, or k, other-
wise they act on spinors and give a small numer-
ator. We notice in fact, that p2 and Py so obtained
are accompanied by a2 and e„respectively, as
seen in Eqs. (A3) and (A4). What amounts to is a
behavior -aiah(pi pe)'k', which is negligible.

An analysis of this kind can be carried out for
the second term of N«),

Nhftd&
™=——4u(ps)y"3y (p, —k, )y khu(pt}

Xtt(pe)[y ky ~ (pe k,)y„s

-y„y (p, k")y -k]tt(p, )

-(k2)k'p, p, , (A12)

which is negligible. Nor can we replace one of
the k's in the first factor and the k, in the second
factor by k's. For then we would have, for ex-
ample,
~2nd term (k 2) (P )y 3y p (P ksltif't )y 4S(P )

x«tt(p, )( y ky„,y, , —y, ,y, ,y k)M(p. ) .
(A13)

which again can be dropped since y„and y„are
3 Q4

next to each other.
What is left is when all the k's in Eq. (All) are

replaced by shifts. In particular, k, in the first
factor is -p, . Some simple algebra gives us

frothed
term ct (p, p )2k2 (A14)

fit"" '" =—4tt(p )y 'ky ' (p - k )y"'tt(p )

&«(p.)y„,y (p, -.k.)y ktt(p. ) . (A15)

If we replace k, and k, by k 's, we cannot have s'
for it. If we substitute k, and k, by their shifts,
we can at best obtain (k')'s. Consequently,

can be discarde
We conclude then iT~" does not contribute to

O(s ln's), nor does iT,"'.

A direct analysis of the relevant integral shows
that if we let a, -a, -0, we do not have a singular
configuration. Thus iV2;d '" - O(s lns), which we

drop.
Simil. arly, N3rd ™is negligible.
Lastly, we look at the fourth term of N, y),

APPENDIX B

We want to show that iT,'4' —iT"' does not contribute to order s Inns. We look at Eq. (4.26}.
Combining denominators, we rewrite it as

5

$T2 iT = g 2 i de dh2dZ~5 1 +1 +2 +32 2

JX
(2&f) (2&f)4 te& d«&3 m + (p, —k2) k22+ it (k+k2)2+ p. m + (pe —kh)

(B1)
where with all isospin structure understood,

iV«&=—
"' "' s(p.)[y"y (p, -k.)y'piy (p, -k,)y"' 2y"'y'(p, -k.)y k, -y (p, -k,)y"'
m

+2y"'y (p, —k,}y 'y (p, —k,}y.k, —y"'k, 'y (p, —k,)y"y (pi-k, }y„]u(pt) (B2}

d«& and k„etc. were introduced after Eq. (5.22).
Since k, appears only once for each factor in Eq. (B2), we can substitute x,p, + x,k, for it. This is be-

cause a shift of the integration variable, k, = k, + xhk„ is needed to bring the denominator (with Feynman
parameters) into diagonalized form [see Eq. (5.22)]. After using y.p, to act on M(p, ) and y.p, to act on

u(ps) and dropping m whenever it appears, we have

+4(1 —x,)p, k y"'y k y" +2x y"'k" k ' —4x y"'k" p, k ]u(p, ) . (B3)
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We carry out the k, integration and combine denominators to prepare for k, integration. This lead to
5 ~ 5 d

iT3 ' —iT —= — — g 3 dx, dx3dx36(1 —x, —x3 —x3) 4} da,-6 1 —g a&

where for easier access, we copy

&&—:a&+ Q3+ Q3+ a~+ Q3x3(1 —x3),

D(4)- Xk2 + X 'B(4) (B6)

k, =k, +&& '[p, (n, +x,x,a,}+p,n, - kn, ], (B6}

B&,&' = (s —2m' —k')(n, + x,x,a,)a,
+ m'[(a, + x,x,n, )'+ n, '+ a, x,3&&]

+ p, '[ a +3a, + n (x3+3x )]3&&

(B7)

I—= dX, dX2dX35 1

X dQf] 5 1 — Q~

+ k Q3(Q4+ Q3x3x3)

Dismiss N&4) for the moment. After k, integra-
tion in Eq. (B4), we must end up with an integral
of the form

Q1 —Q1x1x2 and Q1+ Q5 —p y

then

(B9)

I = da2dn45 1 —O'2 —e4

X1X2 Px dx, dx2de dP, 2%3 ~

(SX1Ã2Q P+CE )
(B10)

Now, let us incorporate N«) and consider the
case when k, 's in Eq. (B3) are due to the shifted
piece of Eq. (B6). A moment of reflection con-
vinces us that we should have at least one k,

Q 3p4 . Then, to obtain s ln's for iT,' ' —iT
we can allow N«&-m 's'a, (x„x„a„orp). We
run down every term in Eq. (B3) and find none so
constituted.

What about replacing two of the k, 's with k2?
After averaging, Eq. (B4) becomes

(Pl P4}
~4) 2m 2

1X.
[s(n, +x,x,n,)a, +a ]2 3 (Ba)

&& k3 [ 2+ 2x, —6x, + 3x3 && '(a, + x,x,a 3)] .

in which a is what is left in Eq. (B7) after we take
out s(a, + x,x,n, }Q,. The way to extract the domi-
nant behavior of I is to scale

(B11)

This can be shown not to yield s ln's behavior,
when plugged into Eq. (B4).

APPENDIX C

We want to show that iT"' —i T,"' —iT', -O(s lns). We analyze Eqs. (4.32) and (4.33).
As usual, all denominators with k, are combined. Then

2
iT"' —i T"' —iTa = — g 31 dX1dXzdX3dX45 1 —X1 X2 —X3 X4

with

1 1 1 1

d&» m'+(p4-k3) k, + p, (k+k3) + p
(c1)

d&» ——x, [m'+(p3 —k, ) ]+x3[m +(p, —k, —k3) ]+x3[(k,+k3) + p ] +x4(k, + p ) =k, +b&»

k + kshift
1 1 1

k& =p, (x, +x3)+kx, —k3(x3+x3),

b&»
——m (x, +x3) +k3 (x, +x4)(x, +x3)+k x,x3+2p, 'k3(x, x3 x3x4)

(c2)

+2k k,x, (x,+x,)+ (x, +x,)&&3 . (c3)

N&, &&

' in Eq. (Cl) has terms with or without }3,3 dependence. Either way, after the k, integration, we shall
introduce 0. parameters to form a common denominator
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D(» = alb(»'+ a, [ (k+ k,)'+ p2] + a, [ (p4 —k,)'+ m'] + a4(k, '+ p2) = l((» k,'+ X(» IB(»2

in which

(5) al(+I +4)(+2 +3) a2 3 4

B(3) = sala3( —xi%3+ x2x4)+ m [ (aI(xlx3 —x2x4)+ a3) + aI(xI+ x2) X(3)] + Q [ aI(x3+ x4)+ a2+ a4] ll(31

1 a2a4 a la 4 I 2 I 2+3+4 I 3+2+4] I
2I

k =k +k'~"
2 2 2

(C4)

X(3) f Pla1( 21+3+ 2'2+4) k[ aI21(3(2+ 23)+ a2] +P4a3] (C6)

Equation (C4) implies that the high-energy behavior of Eq. (Cl) is controlled by a, -a, -0 and/or a pair
+1, 2, 3 4 which makes xix3 %2+4 0.

Consider first the case when all the k, 's in Eq. (4.33) are replaced by k;"'" of Eq. (C2). Then, after the
k, integration,

5

x 4f da. ,do.,da, dn~g 1 — a
)-"1

4
a N( 1 (k =k" )e

«(~4)~.,[m —~ (f4 k2)]~.,v.;-.,u(f2) D, .1

(5)

(C6)

Note the appearance of the factor o., in the numerator.
We consider separately two possibilities:
(i) k, = k23~" In order to reach a s ln3s behavior for Eq. (C6) it is necessary for N(3'& '(k, = k'"'" k = k'"'")

-
a3sp

"Ip "2/m. After another round of tedious but straightforward scrutiny, we find that the best we can
do 1s

N"' (k =k'""' k =k'"' ) a a ( xx+3x)sp"'p" /m (C'I)

(ii) Two of the k, 's are equated with k, : It is quite clear that this will not do. Even if we do not pick up
other damping factors, the optimal behavior is

N"'"' k' p "Ip-"2/m

This, when inserted into Eq. (C6), will not lead to the required magnitude.
Finally, we look into the case when k, = k, . Once again, some algebra gives

N(, 1& 2(kl=kl)-k12u(p3)y 2y"Iy k,u(p, ), etc.

which can be dropped.
This completes the demonstration that

iT"' —iT(" —iT'3" & O(sin s) .

(C6)

(C9)
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