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Strong-coupling methods for solving gauge theories formulated on a lattice are illustrated by studying the
lattice version of the massive Schwinger model. The vacuum state of the model spontaneously breaks chiral

symmetry and is equivalent to an Ising antiferromagnetic chain. Several lattice perturbation-theory
calculations are carried out to fourth order in the dimensionless expansion parameter 1/g'a', where a is the
lattice spacing. Pade approximants are then employed to extrapolate the calculations to large 1/g'a '. Good
agreement between these calculations and exact results on the continuum massive Schwinger model are found.

I. INTRODUCTION

It is hoped that lattice gauge theories will make
possible practical calculations in the field of strong
interactions. In addition, the theory is believed
to be as fundamental as any presently conceived.
The dictate of local color gauge invariance is the
central idea of the theory and it greatly restricts
the form of the theory's Hamiltonian and physical
subspace. The reason for introducing the lattice
is simple: It allows numerical analysis of the
theory even if it is strongly coupled. These meth-
ods bear a strong resemblance to the high-tem-
perature expansion used in statistical mechanics
to solve spin lattice models of magnetism. Al-
though the lattice destroys the usual space-time
symmetries (so dear to particle physicists), it
allows color gauge invariance (so dear to the
authors) to be formulated precisely. If the strong-
coupling calculational methods are successful,
then the lattice will not appear in the real solution
of the theory —the lattice will have played the role
of scaffolding and the space-time symmetries of
relativistic quantum field theory will be retrieved
when the hard work is completed. The formulation
of lattice theories and pedagogical discussions of
their fundamentals can be found in Refs. 1-4.

It is the purpose of this article to illustrate
Hamiltonian lattice gauge theory' calculations for
some simple models. Our motivation in under-
taking these exercises is to determine a simple
calculational scheme for composite-particle mass-
es and to work out enough orders of strong-cou-
pling perturbation theory to allow a comparison
of these results to answers obtained by more con-
ventional means. To that end we considered the
simplest lattice gauge theories of all —the mass-
ive and massless Schwinger models. '&' After con-
siderable bumbling about with sophisticated meth-
ods we found that plain old Rayleigh-Schrodinger

perturbation theory, improved via Pade approx-
imants, is a simple and surprisingly accurate cal-
culational scheme. Several strong-coupling cal-
culations carried to fourth order in 1/g'a' and
improved via Pade approximants are in good agree-
ment with the corresponding calculations in the
continuum theories. The calculations themselves
are very easy (there are no complicated integrals
or sums in lattice perturbation theory), and this
success makes us optimistic about applying these
methods to (3+ 1)-dimensional, non-Abelian gauge
theories. Although it may be necessary to carry
lattice perturbation theory to a very high order to
see the continuum limit appear, approximate but
meaningful calculations of the theory's mass spec-
trum may be accomplished by less Herculean
efforts.

This article is organized into five sections.
First, we formulate the massive Schwinger mod-
el on a spatial lattice. Some care is needed in
placing fermions on a lattice such that the Dirac
equation occurs in the continuum limit. This is
accomplished using the staggered lattice described
in Ref. 2. Finally, the Fermi fields are eliminated
in favor of spin matrices using the Jordan-Wigner
transformation. ' In Sec. III the first element of
strong-coupling perturbation theory is described.
This is the determination of the vacuum state of
the theory. By a second-order perturbation theory
calculation we find that the vacuum is the ground
state of an Ising antiferromagnetic chain. This is
a state which breaks chiral invariance by having

(gg), e 0. The calculation of the mass of the vec-
tor boson in the (massive) Schwinger model ap-
pears in Sec. IV. Strong-coupling perturbation
theory is carried out through fourth order, and
the expansion is interpreted as a diagonal Pade
approximant. For a large range of the expansion
parameter 1/g'a the energy of the state lies near
the value it has in the continuum theory. Similar
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II. FERMIONS ON A LATTICE

The continuum formulations of the original
Schwinger model' (QED with massless fermions
in 1+ 1 dimensions) and the massive Schwinger
model' have been widely discussed recently. The
massive model is a well-behaved, interacting
theory of quark confinement in which gauge in-
variance is an exact symmetry of the states. ' It
is a good laboratory for the (3+ 1)-dimensional
problem of interest. Our first task in studying
its lattice version is to formulate tj fermion
field on a spatial lattice. We follow Ref. 2 here
and employ a staggered lattice. We use this meth-
od for two reasons: It is convenient and it works.
(The reader can convince himself that seemingly
simpler lattice constructions, e.g. putting two-
component fields on each lattice site, do not give
the Dirac equation in the continuum limit. ) Con-
sider a spatial lattice (continuous time) with a
lattice spacing a. Label the lattice sites with an

integer n. There will be a one-component fermion
field P(n) at each site n p(n) sati. sfies the anti-
commutation relation

(pt(n), Q(m)j = 5„, (P(n), P(m)] = 0. (2.1)

calculations of the mass of a scalar state are also
carried out. These calculations support a plausible
argument that there is a stable two-boson bound
state in the massive Schwinger model. These
results are discussed and some remarks on re-
lated calculations which are in progress are made
in the concluding section.

at odd (even) sites be smooth. Thus we define a
two-component field P(n) as follows:

g, (n) = Q(n), n even

t}t (n)= p(n), n odd.

(2.5)

Then the components of P(n) satisfy the equations

(2.6)

where 6 indicates the discrete difference in Eq.
(2.4). Note that Eq. (2.6) becomes the massless
Dirac equation in the continuum limit,

(2.7)

in a standard basis where

yo- 0 1

One-dimensional fermion problems can be writ-
ten in terms of one-dimensional spin problems
by using a transformation invented long ago by
Jordan and Wigner. ' Let a, (n) denote a syin ma-
trix at each site. Define also

a(n) = [o,(n) +io,(n)]/2 Then . a representation for
the fermion field P(n) is

p(n) is related to a properly normalized continuum

field X having canonical anticommutation relations
by

l&n

(2.8)

y(n) = v a y(x).

Consider the Hamiltonian

(2.2)
l&n

H= —P [pt(n)&gn+ 1)-Pt(n+ 1)p (n)].
n

(2.3)

We claim that with a proper identification of a
two-component fermion field Eqs. (2.1)-(2.3) gen-
erate the massless Dirac equation in the continu-
um limit. First compute

One easily confirms that these relations reproduce
the fundamental anticommutation relations of the
fermion field stated in Eq. (2.1). The Hamiltonian,
Eq. (2.3), is simple in terms of the spin oyerators.
Since

Pt(n)gn+ 1)= —io+(n)o (n+ 1),

we have

( )]
~

( )
y(n+1) —y(n-1)

20
(2.4)

g [&r+(n)o (n+ 1)+ o+(n+ 1)g (n)].
1

(2 9)

Note that the time dependence of p(n) at even (odd)
sites is determined by the spatial difference of
p(n+ 1) at odd (even) sites. So, to ensure finite
time dependence in p(n) at even (odd) sites, we
must require that the spatial deyendence in P(n)

Therefore, as is well known, the free massless
Dirac field on a spatial lattice is equivalent to an
XF antiferromagnetic chain of spins. '

Next we note the form of the Dirac bilinears
when written in terms of spin matrices. First the
charge density becomes
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j =
2 [g, g] =

~ [g, , g, ] + ~ [g, , p, ]——,
'

[Q"(n), p(n) ]= —,
' [o'+(n), g (n)] = ~a ~(n),

the scalar density becomes

44= 4."4.—&.'4.-(- I)"p'(n)A( ) = (- I)"-'[I+e.( )],
the axial-vector density, which is also the vector flux, becomes

j,= ( y5$= p, p, +pJg, —Qt(n)p(n+ 1)+ pt(n+ 1)p(n) = —i[a'(n)e (n+ 1) —o'(n+ 1)o (n)],

and the pseudoscalar density becomes

spy' = f(gtg, —gtp, )—+f[p~(n+ I)p(n) —pt(n)p(n+ 1)]= [o+(n+ I)o (n)+ o+(n)o (n+ I)1.

(2.10a)

(2.10b)

(2.10c)

(2.10d)

It is interesting that the axial charge Q, = J j,(x)dx
interchanges P, with g, . Therefore, it can be
interpreted as a translation of the lattice by one
unit in a. The momentum operator, on the other
hand, has the continuum form, p, = J g( is, )-gdh

Since the discrete form of the gradient 8, connects
only even or odd sites [cf. Eq. (2.4)], the discrete
form of p, translates the lattice by 2a.

III. MASSIVE SCHWINGER MODEL ON A LATTICE

fr(n, n+ I) = e'~""' e"~', =- (3.1)

is defined on links. The quantity A(n) is the spatial
component of the Abelian vector potential. We
always work in the class of gauges with A'= 0 in
order to have a simple Hamiltonian and space of
states. ' In this gauge the electric field, which is
canonically conjugate to A, is A. The discrete
form of the canonical commutation relations of
the gauge field is

[A(n), E(m)] =i -V~ 1
(3.2)

Since the vector potential A will only enter the
lattice theory through the operator e'8= e'~", the
physically meaningful range of A is

The formulation of gauge theories on a spatial
lattice has been discussed and reviewed elsewhere
in considerable detail. ' ' We assume that the
reader is familiar with these ideas and turn direct-
ly to a specialization to Abelian models in 1+ 1
dimensions. Recall that fermion fields are defined
on sites as described above and that the gauge
field,

L(nc) = —E(m).
1

(3 5)

Because of Eqs. (3.3) and (3.4) the possible values
of L (m) are quantized in steps of 0,+ 1,+ 2, . . . .
This quantization of electric flux also occurs in
the continuum Schwinger model —it follows from
Gauss's law and the lack of transverse dimensions
of space.

The operators L(m) and exp[f8(m)] can be repre-
sented simply on a ladder spa, ce f~ I) ] consisting
of eigenstates of L(m),

(3 8)

He =
2 g E2(n)a = ~g a g L (n). (3.8)

Since L(n) takes on the values 0, + 1,+ 2, . . . , the
last form of H~ is particularly illuminating. Next
we must couple the gauge field to the fermions.
The requirement of local gauge invariance speci-
fies how this is done. Recall that a point-separat-
ed operator, such as g(x + e)y"y,g(x), is gauge in-
variant for arbitrary c only if it is multiplied by
the phase'

It follows from Eq. (3.4) that exp[*f8(m)] are the
raising and lowering operators,

(3 7)

Now we pass to the Hamiltonian. The gauge-
f ield piece is the discrete form of —,

' jE(x)'Ch,

0 & 8(n) & 2;r, 0 & qgA(n) & 2w. (3.3) exp ie A„

[8(n), L(m)]=f8 „. (3.4)

Define the operator I (n) which generates cyclic
translations in the variable 8(n), Therefore, to render the kinetic-energy portion

of the fermion Hamiltonian Eq. (2.9) gauge invari-
ant we modify it to

It follows from Eq. (3.1) and (3.2) that L(m), an
angular momentum operator, is

H =— [g'(n)e*'"lo (n+ 1)+ H. c.].1
2a „

(3.9)
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As discussed in Ref. 2 the sum H~+ II& reproduces
the familiar massless Schwinger model in the
continuum a- 0 weakly coupled limit. In summary,
the lattice Hamiltonian is

1x=
g2g 2 (3.12b)

&= —,'g'a Q L'(n)

+ —P [a'(n)e'a~a (n+ 1)+H.c.].1
20

(3.10)

Now we wish to solve for the eigenstates of 8.
If one considers the dimensionless parameter
g'a' to be large (strong coupling), then one can
apply standard perturbation theory methods here.
Write

For x «1 one can treat H„, as a perturbation on

H, . The first problem one faces here is the enor-
mous degeneracy of the unperturbed Hamiltonian

H0: This operator contains no reference to the
fermion fields, so states which are fluxless but
have any configuration of p(n) are degenerate.
Therefore, we must apply degenerate perturbation
theory and first diagonalize the perturbation in the
degenerate subspace. The first nonzero perturba-
tion occurs in order x' and reads

2
W= 2 H= H0+H. = H0+xV,

where

a, = L2(n),

V= g [a+(n)e'e~bgn+ 1)+ H. c.]

(3.11)

(3.12a,)

oz=»' oo o,v =v o, o=o), (o.to)
0

where the notation(p, L =0( indicates a fluxless
[L'(n) = 0 for all n] state with a fermion configura-
tion p which will be determined by minimizing
5E. We compute

gE=-x' P, L=O g+n e' ~g n+1 +Hc. g'me' g m+1 +Hc. , L=O
f1,m

1=-x' Q, L=O g+ng n+1g+n+1g n +Hc. Q, L=O
n

= —2x' Q, L= 0 1+g3n 1-g, n+ 1,L= 0
n

(3.14)

&,= g L'(n)+ ,' q g( 1)"—a,(n), - (3.15)

where

p, = 2m/g'a

and V remains unchanged. The mass now intro-
duces explicit symmetry breaking into the Hamil-
tonian and it determines which of the two anti-
ferromagnetic vacuums discussed for the mass-

Since 2 [1+a,(n)] is either 0 or 1, the minimization
of 5E is the same problem as finding the ground
state of an Ising antiferromagnetic chain. To
minimize Eq. (3.14) one wants —,'[1+a,(n)][1-a,(n+ 1)]
to be + 1 on as many sites as possible. There are
two ways to do this: a,(n) =+ 1 (- 1) on all even
(odd) sites or vice versa.

Finally we should generalize these considera-
tions to the massive Schwinger model. It follows
from the correspondences in Eq. (2.10) that H,
becomes

less model is the vacuum. Clearly the state with

a,(n) =+ 1 for odd sites and —1 for even sites is
the lower-energy state. We define this state as
zero energy in the perturbation-theory calcula-
tions which follow.

IV. STRONG-COUPLING CALCULATIONS

Our task here is to calculate the mass of the
boson in the massive Schwinger model to order
x4 in Rayleigh-Schrodinger perturbation theory
suitably improved by Pade approximants. In the
continuum theory this state is generated by apply-
ing the vector flux j' =j, to the vacuum. To be
properly defined the flux must be point-separated
and manifestly gauge invariant. The most local
lattice construction of this state with zero momen-
tum is therefore

~
1-)= +[a"(n)e ~a (n+ 1) —H. c.] ~0) .
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~ ~
~ ~ ~
~ ~

FIG. 1. Action of V on the vacuum.

Its unperturbed energy is

Q~ = 1+ 2p.. (4.1)

The first term of Eq. (4.1) records the energy of
the flux line and the 2p. gives the energy of the qq
relative to the vacuum. The factor of 2 comes
about asfollows. Whenthefactor o+(n)e'e("b (n+ 1)
+ H. c. is applied to the vacuum it raises (lowers) &r,(n)
at even (odd) sites. Thus the change in energy at the
even site is —,

'
g [the final value of —,

'
pg, (n)] minus

——,
'

p, [the initial value of —,
' gr, (n) in the vacuum].

Next consider the effects which can be caused by
V in Eq. (3.10a). When V acts on the vacuum, it
flips the spins at adjacent sites and puts a flux
line between them as depicted in Fig. 1. The
numerical value of the vertex is unity and its
action on the vacuum will be represented diagram-
matically as in Fig. 2. Note that there is a rela-
tive minus sign between the vertices in Figs. 2(a)
and 2(b) because of the relative minus sign in Eq.
(2.3). Now apply V to a state in which there is a
single boson as shown in Fig. 1. An alternative
simplified figure depicting the boson is shown in
Fig. 3. If a term in V overlaps completely with
the vector meson it can be destroyed. We shall
represent this possibility by Fig. 4(a), which is
related by Hermiticity to Fig. 4(b). Note that no
term in V can act at a site adjacent to the vector
meson —since the spins adjacent to the boson in
Fig. 1 are either both up or both down, a term in
V which lies on these links gives zero. However,
V can act on any other link and create virtual
mesons.

To carry time-independent perturbation theory
to high order requires considerable care. Let
E denote the exact energy of an eigenstate of H.
Then E can be calculated by Wigner-Brillouin per-
turbation theory':

~ ~ ~
~ ~ ~

FIG. 3. A vector-meson state. The qq are separated
by one link and one unit of flux.

E= e+ c„x",
n=l

(4.3)

substituting into Eq. (4.2), and matching coeffi-
cients to the desired accuracy. As will be explain-
ed below, only even powers of V contribute to
Eq. (4.2) for our lattice theory, so we write

E=c+ax +br + ~ ~ ~
2 4

and solve for a and b,

1-Pa= V V,&-H0

1-P 1-P 1 —P
C -H0 C-H0 C-H0

(4 4)

(4 5)

V V V, V

~ ~

~ ~
~ ~

1-P, 1-P 1-PE= e+xV+x'V V+@'V V V+ ~ ~ ~,
0

(4.2)

where c is the unperturbed energy of the state and
P is a projection operator onto the initial state.
Equation (4.2) has the advantage of proceeding to
arbitrarily high orders in V in a simple way. How-

ever, it is an implicit equation for the desired
energy E. The more familiar Rayleigh-Schroding-
er perturbation theory is obtained by writing E in
the form of an expansion,

~ ~ ~

(o)

n+l m+1
~ ~ ~
~ ~ ~

~ ~ ~

FIG. 2. (a) The vertex V acting on an even site (I
= even)-odd site. (b) The vertex V acting on an odd site-
even site.

(o) (b)
FIG. 4. (a) V destroys a vector meson. {b) V creates

a vector meson.
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FIG. 5. Second-order contribution to the vacuum
energy, Eo.

The terms through O(g') are simple and familiar,
but the term of O(x ) has a correction due to the
mismatch at O(x') between e and E. In the calcu-
lations to follow, we evaluate these equations for
the single-particle state and obtain E, through
fourth order. The perturbation also shifts the
energy of the vacuum, so we must calculate its
energy E, through fourth order and identify the
difference E, Eo a-s the meaningful calculation
of the mass of the meson.

It is convenient to have a diagrammatic inter-
pretation of Eqs. (4.4) and (4.5) which uses the
conventions stated in Figs. 2-4. Vertices and
states are indicated as in those figures. Terms
in the perturbation expansion are diagrammed by
figures which proceed from the bottom of the
figure (initial state) to the top of the figure (final
state) Inte.rmediate states and their correspond-
ing energy denominators are indicated by horizon-
tal slices bounded above and below by vertices.

Consider the second-order calculation of E, -Ep
in detail. The graphs which contribute are shown
in Figs. 5-9. First consider the shift of the
vacuum energy, Fig. 5. Clearly this contribution
is proportional to the number of links in the lat-
tice. Since our desired quantity (the mass of the
meson) is intensive, this vacuum shift must can-
cel against Fig. 6. To see the cancellation and
retrieve the finite remainder, we compute all
quantities on a lattice of N links (periodic boundary
conditions), and explicitly verify the required
cancellations. This method, although rather pe-
destrian, is very reliable. The vacuum graph in

~ ~

FIG. 7. A forbidden graph.

Fig. 5 contributes to Ep

(4.6)

since there are N links, a factor of g for each
vertex, and an energy denominator, g-Hp 0
—(1+2p). The disconnected graph in Fig. 6 con-
tributes to E,

The counting factor (N —3) records the number af
links on which the vacuum fluctuation can occur-
it cannot occur on any link which has at least one
site in common with the throughgoing particle
state. The reason for this rule, which stems
from the form of the vacuum, was explained in
the first paragraph of this section. In particular,
it prohibits any graph of the form shown in Fig. 7
and guarantees that only the even terms in Eq.
(4.2) occur for this theory. Thus, the theory's
expansion parameter is really y =x'. We shall
use the variable y everywhere below. The final
contributing graphs involve no vacuum structure
and are illustrated in Figs. 8(a) and 8(b). Figure

~ ~
~ ~
~ .

~

~ ~

~ ~

~ ~
~ ~

~ ~ ~
~ ~ ~
~ ~ 0

~ ~
~ ~

~ ~ ~

e~ ~~ ~
~ ~

{b)

~ ~ ~
~ ~ ~
~ ~ ~

FIG. 6. Second-order disconnected graph contributing
to Eg.

FIG. 8. Graphs without vacuum structure which con-
tribute to E& in second order.
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~ ~ ~ ~ ~

~ ~

~ ~ ~

~ ~
~ ~
~ ~

n'

~ ~ '~ ~ ~
~ ~ ~
~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

FIG. 9. Two graphs whose sum vanishes. The inte-
gersn andi l.abel sites.

8(a) gives

(b)

FIG. 11. Disconnected contributions to E &. Other
time orderings of these basic graphs must also be com-
puted.

1+2p,

and Fig. 8(b) gives

2(-1)( ~ ).

(4.8a)

(4.8b)
2Fig. 10(a):

( 2)(1 2 )~
(4.10a)

types of contributions: connected particle graphs
(Figs. 10), disconnected graphs (Figs. 11), vacu-
um graphs (Fig. 12), and the calculation of the
second term in b, Eq. (4.5), for the single-par-
ticle and vacuum states. The connected particle
graphs contribute as follows:

'Ihe minus sign in Eq. (4.8b) is the same minus
sign which exists between the two graphs shown in
Figs. 2(a) and 2(b). Graphs having the same form
as those in Fig. 8(b), but in which at least one
link appears between the initial and final meson,
cancel in pairs. This is shown in Fig. 9; the two
time orderings are equal in magnitude and oppo-
site in sign.

Let us collect the results obtained so far:

Eg —Ep= 1+ 2p. + 2p
1+ 2p

(4.9)

~ ~
~ ~
0 ~

Now we shall sketch the calculation of the fourth-
order contributions to E, -Ep. There are four

2
Fig. 10(b):

( 2)(1 2 )
(4.10b)

The disconnected graphs give the following contri-
butions.

4 (N —5) (N —4)
Fig. 11(a):

( 2)(1 2 ), 2 (4.11a)

4
Fig. 11(b): (-2)(1 2 )

(4.11b)

The calculation of the counting factors requires
some care. For Fig. 11(a), given the position of
the particle state, the boxes can be placed any-
where such that no lines overlap. Therefore, the
first box can occupy (N —3) sites and the second
box (N —6) sites, neglecting the possibility that the
first box is separated by only one link from the
throughgoing particle. In the two cases where the
first box and the particle are separated by one
link, there are (N —5) positions available to the
second box. Thus there are (N —3)(N —6)+ 2

~ ~ ~
~ ~ ~

~ ~ ~

~ ~
~ ~ ~

(b)

FIG. 10. Connected fourth-order contributions to E&. FIG. 12. Fourth-order contribution to E 0.
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= (N —4)(N —5) ways of making this contribution.
Finally this result must be divided by 2 because
the two boxes are identical. The factor of 4 re-
cords the number of different orderings of the
four vertices (different time orderings), each of
which contributes an energy denominator
[-2(1+2')'] '. Next consider the expression for
Fig. 11(b}. The factor of 4 comes from the four
time orderings shown in Fig. 13. Each graph con-
tributes the same energy denominator as for Fig.
11(a). Finally, in determining the counting factor
care must be used since graphs with an odd (even}
number of links separating the initial and final
particles carry the sign+ 1 (-1). Continuing, the
vacuum graphs of Fig. 12 contribute

~ ~

~ ~

~ ~
~ ~ ~

~ ~
~ ~

~ ~ ~
~ ~ ~
~ ~ ~

~ ~ ~
~ ~ ~
~ ~ ~

4 N(N-3)
(- 2)(1+2p)' 2

(4.12)
FIG. 13. The four nonzero time orderings of Fig. 11{b).

Finally one must calculate the quantities of Eq.
(4.5),

v' v v' .V. (4.13)

0 V' 'v'0 0 v' Vo = " "

for the vacuum and the single-particle state.
These evaluations are as easy as the second-order
ones. However, since the square of an energy
denominator appears in Eq. (4.13), one must be
careful with signs. For the vacuum we find

Since

,~, m
(1 2 )

(1+2')'+(7 —2g)y
g (1+2p,)'+ (5 —2p)y

(4.18)

where m is the mass of the boson.
Equation (4.16) gives us the behavior of the mass

m for small values of y = 1/a4g', i.e. , large values
of g'a'. To compare with continuum field theory
results, we are in fact interested in the limit
g~a'- 0. To make the extrapolation from small y
to large y, we follow our statistical-mechanics
colleagues and form the [1,1] Pade approximant"
of the power series in Eq. (4.16):

and for the single-particle state

(4.14)
2m 2m

P= (4.19)

1 V 'V1 1 V '2V 1

(V —2)'
(1+2p)' '

(4.15)

.8

.7

Finally, we collect these results and record
&o ~

2 —4p, —10
Eg —Eo= 1+ 2@+ y+, , 3 y + ~ ~ ~ .1+2p. (1+2p)

4—

3—

According to Eq. (3.9), this quantity is

(4.16)

y/g mEj —Eo= 2m =2y
ag g' (4.1V) FIG. 14. A plot of Eq. {4.21). The desired resu1t is

the dashed horizontal line.
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we have finally

1 2m

2y j./4 g

« /) '"]"[ ( /) "]
[I+(4m/g)y'~ ]'+ [5+(4m/g)y'~ ]y

' (4.20)

Let us compare this result with the massless
Schwinger model' in which m /g = 1/~v= 0.564.
Form=0, Eq. (4.20) simplifies to

except that the weight (- 1) for graphs with an odd
number of links separating initial and final scalar
particles is absent. The topologies of the second-
and fourth-order graphs are the same as those
in Figs. 5-13. The counting factors must be re-
calculated for Fig. 8 and Fig. 11(b) because of the
different sign considerations. The result of this
exercise is

m 6 ~ 4p+ 26
W= Wx ~ = 1+2p+ x' - ",x'.

1+ 2» (1+ 2» }'
m 1+ Vy 1

1+ 5y 2y'/" ' (4.21) (4.25)

The [1,1] Pade approximant for Eq. (4.25) reads

(1+by)'i4
1+ay

(4.22)

Then,

m 1 (1+by)'~ 1b'/
g 2y' 1+ay „„2 a

(4.23)

which is plotted in Fig. 14. We observe that for a
wide range of y the curve remains close to the
continuum result 0.564. Unfortunately, Eq. (4.21)
cannot be extrapolated sensibly to y- ~ using just
the [1,1] Pads approximant. There are two ways
to cure this fault. First, higher-order calculations
of m /g will allow the construction of the [2,2],
[3, 3], etc. Pade approximants. If the lattice
theory is behaving properly then the higher-order
analogs of Eq. (4.21}will closely approximate
I/~m for larger ranges of y. No single diagonal
Pade approximant can be extrapolated to y- ~,
but the trend for the [m, m] Pads expressions to
closely approximate 1/Mm for larger and larger
y should become clear. A second way to cure the
fault is to extrapolate the power series Eq. (4.10)
by using the form

~m 3+ 31y 1

g 3+ 13y 2y'~4 ' (4.27}

which is plotted in Fig. 15. Note that m+ is con-
siderably larger than m . We suspect that if the
equations for m and m+ could be obtained in high-
er orders, the trend m+ - 2m would emerge and
this state would disappear into the continuum.
This would reflect the fa,ct that the continuum
Schwinger model describes a free neutral boson
withm =g/~w. Perhaps findingm+=0. 8(2m ) in

a fourth-order lattice expansion is rather good.
Now consider Eqs. (4.20) and (4.26) for mx 0.

Consider the quantity 1-m+/2m for various

m. 1 2m

g 2y'1' ' g

„3[1+(4m/~')y" ']'+ [31+(4m/g}y' '] y

3[1+(4m/g)y "]'+[13+(4m/g)y'"] y

(4.26)

For the massless Schwinger model Eq. (4.26) re-
duces to

In the present case this method gives
l.2

= 0.&14, (4.24)

which is 30/o above the continuum value. It would

be interesting to see if this extrapolation procedure
improves in higher orders.

Next we shall calculate the mass of the scalar
state

I.O
m+

O.e

0.8

O.T

I1+) = P [o+(n)e» 'o (n+ 1)+ H. c.]0) . 0.6—

The identification of this object with a scalar at
zero momentum follows from Eq. (2.10d). The
calculation proceeds just as for the Il -) state FIG. 15. A pl.ot of Eq. (4.24).
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values of m. A simple analysis of the continuum
massive Schwinger model suggests that the

~ 1+)
state is a stable particle for any m different from
zero. Before we argue this point, consider Fig.
16, which shows (l-nt, /2m ) as a function of m

for y = 2.25. Clearly the tendency for the ~ 1+)
state to become better bound by the mug term in

H is apparent in lattice perturbation theory. We

expect that the ordinate of Fig. 16 will decrease to
zero once higher orders are calculated.

To supyort our assertions concerning the con-
tinuurn massive Schwinger model recall that it
can be written in terms of an equivalent interact-
ing boson field p. ' The Hamiltonian reads

~(&.-Ed
Bp.

= 2(1-2y+ 28y'),
m=0 Bm m=o

(4.31)

which also may be written as a diagonal Pade
approximant and extrapolated to large y. We

compute

model. ' We see from Eq. (4.16) that

Z, -Eo= 1+ 2y —10y'+ p(2 —4y+ 56y') + 0(pP).

(4.30)

Therefore,

2 2

H= —,
' P+ ~ +—y' —2K cos(2v n p) Ch,

Bx

Bus 1+ 12y
Bm o 1+ 14y

(4.32)

where"

(4.28) To compare with the continuum theory, note
from Eq. (4.28) that taking m a 0 causes the re-
ylacernent in the coefficient of P'

m '=g'/v g'/-v+ (2g/vw )me~-=(g/Mw+me~)'.
K=m e&, y= Euler's constant= 0.577. . . .

2r 7r

(4.29) Therefor e,

(4.33)

.50—
I

E
04~ .26-+'
E

.22

.2 .4 .6 .8 I.O L2 L4
f

I I

l.6 L8

FIG. 16. A plot of the fractional distance the scalar
state lies below the two-boson continuum. The horizon-
ta1. axis is labeled with f= 4~/g, a dimensionless mea-
sure of the fermion mass.

Suppose m is small and g/Me» m so the bosons
can be treated as nonrelativistic and weakly inter-
acting. Then the p' interaction in Eq. (4.28) should

be the most important nonlinearity. Its coefficient
is negative, so it gives an attractive 5-function
yotential in the nonrelativistic domain. Such a
potential always binds a state with the same quan-

tum numbers as )1+) (PC =++ ) in one spatial
dimension. Thus we strongly suspect that the
massive Schwinger model has a bound state for
arbitrarily small m which tends to the continuum

as m-0.
Next let us calculate 9(E, —EJ/sy, at m = 0 by

lattice methods for the state
~
1-) and compare

with the known result in the massive Schwinger

Bm

Bm
j o

= e&= 1.78. (4.34)

The detailed agreement between Eqs. (4.34) and

(4.32) is a pleasant surprise.

V. DISCUSSION

We hope that this article has demonstrated that
high-order strong-couyling calculations can be
carried out conveniently in simple gauge theories
on a spatial lattice. When these series expansions
are improved via Pade apyroximants, the results
can be extrapolated far from the strong-coupling
domain and good agreement with continuum theo-
ries results. We hope that this agreement will
transcend the particulars of the model we chose
to study here.

It was also encouraging that the actual strong-
coupling calculations were very systematic and
simple. With the aid of computers the calcula-
tions sketched here can certainly be extended
several more orders. Work in this direction has
begun. It is also clear that these calculations are
very similax to syin-lattice high-temperature
expansions used so profitably in statistic mecha-
nics. We anticipate considerable help in our pro-
.ject from our solid-state friends.

The reader, no doubt, has many reservations
about our great expectations. For example, we
defined the mass of the composite particle as the

gap in its energy-momentum relations, E(p), at
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zero momentum. Since the lattice does not have
full translation invariance, this definition may
not agree with a calculation of

quantities such as mass ratios and various low-
energy matrix elements. Some calculations for
(3+1)-dimensional gauge theories are completed
and results will be presented shortly.

In addition, one would like to know how the curve
in Fig. 14 varies as we calculate to higher order.
We do not have thorough answers for these ques-
tions at this time, but they are under study.

Note added in Proof. The calculations discussed
here have been extended to O(y'). Our methods
prove to be particularly good for dimensionless

ACKNOWLEDGMENT

Two of the authors (J. K. and L. S.) thank A.
Neveu and J. Gervais for their hospitality at
Ecole Normale Superieure during the Conference
on Extended Hadrons in Field Theory, where this
work was completed. J. K. thanks D. K. Sinclair
for checking much of the analysis presented here.

*Work supported in part by NSF under Grant No. GP-
38863.
Work supported in part by the National Science Founda-
tion.

'K. G. Wilson, Phys. Rev. D 10, 2445 (1974).
2John Kogut and Leonard Susskind, Phys. Rev. D 11, 395

(1975).
~Leonard Susskind, lectures given at the Bonn Summer

School, 1974 (unpublished).
4John Kogut and Leonard Susskind, invited talks at the

Conference on Extended Systems in Field Theory,
Ecole Normale Superieure, 1975 (unpublished).

5J. Schwinger, Phys. Rev. 128, 2425 (1962); J. Lowen-
stein and J. Swieca, Ann. Phys. (N. Y.) 68, 172 (1971);
A. Casher, J. Kogut, and Leonard Susskind, Phys.
Rev. Lett. 31, 792 (1973).

6J. Kogut and Leonard Susskind, Phys. Rev. D 11, 3594
(1975); S. Coleman, R. Jackiw, and Leonard Susskind,
Harvard report, 1975 (unpublished).

'P. Jordan and E. P. Wigner, Z. Phys. 47, 631 (1928),
reprinted in J. Schwinger, Quantum ELectrodynamics

(Dover, New York, 1958), p. 41.
For a review and references to the literature see
J. Kogut and Leonard Susskind, Phys. Rep. 8C, 75
(1973).

J. Schwinger, Phys. Rev. Lett. 3, 296 (1959).
A. Messiah, Quantum Mechanics (North-Holland,
Amsterdam, 1962), Vol. II.
Some introductory remarks on Pade approximants can
be found in H. Eugene Stanley, Introduction to Phase
Transitions and Critica/ Phenomena (Oxford Univ.
Press, Oxford, 1971).

~2The coefficient K is easily determined by requiring
that products of bilinears ft)( yield identical Green's
functions at short distances as cos(~xQ). Since the
Schwinger model is superrenormalizable, such calcul. —

ations are simple exercises in free-field theory. Our
result has been checked against that of B. Klaiber, in
Lectures in Theoretica/ Physics, edited by A. Barut
and W. Brittin (Gordon and Breach, New York, 1968),
Vol. XA.


