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Schwarz has shown a procedure for describing off-mass-shell states in dual models. The construction of such

states is an important preliminary to constructing physical currents. The basic requirement motivating the

construction of such states is that amplitudes with off-mass-shell lines should contain exactly the same

spectrum of hadrons as the corresponding on-mass-shell model. This condition, which one must necessarily

impose if one hopes to describe physical currents, led Schwarz to construct a dual current for a particular

choice of space-time dimension D, namely D = 16. Since this is not the critical dimension of the Veneziano

model, a modification of the model appears to be necessary in order to bring the two dimensions into

coincidence. In this paper we construct a method whereby it may be possible to find solutions which hold for

any choice of space-time dimension D. %'e construct this current perturbatively, and find a unique solution

up to the 6th level, given a few assumptions.

In the o(0) = 1 Veneziano model' it is desired to
construct an off-mass-shell scalar state of mo-
mentum q. We are motivated by the fact that the
lack of a realistic dual current has been one of the
chief shortcomings of the dual model. ' We write
the state in the form' S

~ Oq), where S is an opera-
tor constructed out of the harmonic-oscillator
raising operators (a" ) and the momentum opera-
tor ao~ (p, =1, 2, . . . ,D; m=1, 2, . . . , ~).

In order to implement the fundamental spectrum
condition we require the state to satisfy the Vira-
soro conditions'.

in the form

(L, —L,)e rB
i Oq) = e r(L, —L„B]~ Oq) = 0, (7)

We now attempt to construct an operator B which
will satisfy (7) and (6). To convince oneself that
such an operator may in fact exist, consider the
following: Let

(L, -L, —1)e B ~0q)

L,+g A,„a, a, —Lo, B '+(,~D —1)B i Oq)
r=o

(L„-L,+1-n)S ~0q)=0, n =1, 2, . . . .
It is sufficient to just consider n =1 and n = 2 be-
cause L, and L, generate all the additional Vira-
soro conditions through the algebra. Schwarz
showed that a solution to (1) is

(2)

where

T=—
2 ~~r a-r 'a-

S(D) = 1+ S,+ S,+ S,+ ~ .

where

S, =K,a0 a „
S2 K21a0 a-2 K22 -1 a-1

+ K23a0 ' a 1a0 ' a

i.e. , S„ is a linear sum of all products

(9)

(4)

such that

(L„—L, +1 n)e B~Oq)=0, n=-1, 2. (6)

Using the commutation relations between L„and
a, .a the Virasoro conditions can then be put

However, solution (2) will satisfy (1) only for the
case D = 16. In order to arrive at a solution which.
does not require a particular choice of D it is now

proposed that we try a solution of the form

S = S (D) = e B(D),

where 8 is an operator such that

(products a, a, are not included). One substitutes
(9) into the equations (L, L,)S ~

Oq) = 0—and

(L, L,
- 1 )S~ O)q=0-subject only to the require-

ment that the coefficients be of the form K=a+
bq', where a and b are constraints (recall that
a, '= 2q'). It turns out that the resulting simulta-
neous equations can then be solved uniquely, first
for the coefficient on the S, level, then for those
on the S, level, and so on. Below are shown the
results up to the S, level (with er factored out):
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u a(02) u a(11) u a(0011) u a(12) u a(0012)
2' D 2' D 2' D(D —1) 2 D 2 D (D —1)

u a(03) -3u uv a(13) -3u uv a(0013)
24 D 2 3x2 D 2 3 x2 D(D —1)

15u uv a(04) -3u uv a(22) -3u uv a(0022)
28 3 x 210 D 28 210 D 28 211 D(D 1}

uv a(1102) -u uv a(23) -u 5uv a(0023)
3x2 D(D —1) 2 3x2 D 2' 3'x2' D(D —1)

-5u uv a(14) -5u uv a(0014) 7u uv a(05)
2 2' D 2' 3x2 D(D —1) 2' 3x 28 D

uv a(1103) uv a(2201) 5x 3 x 7u 19uv uv' a(06)
3x2' D(D —1) 3x2" D(D -1) 2" 5x2" 5x3'x2" D

-5'u 1 luv uv' a(24) -5'u 5uv uv' a(0024)
211 3x 212 32x 213 D 211 214 3x 218 D(D 1)

-5x7u 71uv uv' a(15) -5x7u 7x17uv uv' &~ a(0015)
2" 5x3x2" 5x3'x2" D 2" 5'x3x2" 5'x3'x28~ D(D —1)

-5u uv uv' a(33) -5u uv uv' a(0033)
210 211 33x 212 D 210 3x 211 34x 212 D(D 1}

11x 7uv uv' a(1104) 23uv uv' a(1203)
5x 3x 2'3 5x 2" D(D —1) 5x 32x 2" 5x 3x 2' D(D —1)

-19uv uv' a(2301) 13uv 11uv a(1302)
3'x 2" 3'x 2" D(D 1) 5x3'x 2" 5x3 x 2" D(D —1)

-uv uv' a(1122) -uv uv' a(001122)
3x 213 3'x 2" D(D 1) 3x 2" 3x 2" D(D —1)(D —2)

+ ~ ~ ~ (io)

where

u=—D —16, v=-D —8,

a(2y) —=a, ~ a 31

a(x,y,x,y,) =—2a(x,y, )a(x2y2) —a(x,y2)a(x2y, ) —a(x,x2)a(y, y2),

a(001122) = 2[a(00}a(1122)—a(01)a(0122) —a(02)a(0211)].

(11)

(12)

(13)

In the calculations (10), note the presence of factors 1/D, 1/(D —1), and 1/(D —2). These factors may
cause S(D} not to be finite. We will see presently a possible way of deleting these factors. Note also the
presence in calculations (10) of groupings of harmonic oscillators a(x,y,x~g and a(0011 22). In general,
let us define a(x,y, x„y„) in the following way:

N

a(x,y, ~ x„y„x„„y„„)= 2 4 —Q (S„,+ S, , + S„„+S„,) a(x„„y21„)a(glyl ~ ~ ~ ~21'),
(14}

where S, ,A, B,=A„B,8, S, ,A, B, =A, B,4, i.e. , S, , changes indices. One can easily show that (12) and (13}
agree with this definition. Also let us define

+a(+ y XN+ 1 yN+ 1)

N N

1+ S S 4 — (S,+S +S +S ) 5 6 a(2:y . xyj=l ~Ã+ 1' ' ~X+1'~'j f -1 X+12 g N+12&t &X+1 t &S+1 & 1+@+& i&N+j. 1~1 N~N

(i5)
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Then by induction one can show the following to be true:

a(x,y, ~ x„.y, x„y„)= a(x,y, ~ y,. x,. ~ ~ ~ x„y„), j = 1, 2, . . . , 1V

a(x,y, x,. 3, x„y» xNy„) = a(x,3, x»y» .x,. 3,. KNyN),

(x13 x y xN3N} (xD2 2yl xN3N} a(xlx2y132 x»yN}

j,K=1, 2, . . . , N

(16}

(17)

(18)

It follows from (16}, (17), and (18) that a(x,y, x„y„)vanishes if any three indices are equal. The com-
mutation relations turn out to be as follows:

[L„a(xyl, xNyN}1= Z (x,S.. . , + y, S, 2. —}a(x.y. "xNyN» (19)

N N

g [e(x. —2)x.S„„,+ 6(y. —2)y.S,]+ g (5„S, , + 6 „,S, ,)+ (D Ã+ 1)g

xa(x13 1 xNyN) (20}
(here it is to be understood that the destruction operator a„resulting from the application of S, , to a
product, is to stand to the right of all other operators in the product}, and

N

[a „a„a(x,y, xNy„)] = Q (5„S„„+6, S„)a(x,y, xNy„).
j= 1

(21)

H (xlylx2y2 xNyN } H (x y2x23 1 xN3 N } H(xlx2yD2 xN yN}

Let

Suppose we now write S(D}=erB(D}and express B as a linear combination of the operators a(x,y, x„y„),
N = 1, 2, 3, . . . . It seems reasonable to take coefficients having a structure similar to that of the operators
a(x,y, x„y„), so let us take coefficients H(x, y, ~ x„y„)having the following properties.

H(xly " x, y; "xKy» xNyN) H(xDl x»y» x'3' xNyN) H(xlyl yjx' x»3K xN3N}

a(x131 xN3N}B(D =1+2 ZH lyl'''x N (D 1) . . (D ~, I)
where

(22)

xy x =0@=0 Z Z
Using (19), (20), and (21) we see that (7) is satisfied provided

QS„„S,„[(x,+l)H(x, +l, y„x,y, x„y„)+(y,+1)H(x„y,+l, x, y, '' x„yN)-(x, y, )H(x,y,x,y, x„y„)]=0,
g=1

x, y~0, X=1,2, 3, . . . (23)

and (8) is satisfied provided that

(~12D —1)+H(1, 1) =0
and that

(24)

g S„„S,, [(x,+ 2)H(x, + 2, y„x y, x„y„)+(y, + 2)H(x„y, + 2, x, y, x„y„)-(x,+ y, )H(x,yx~2 x„y„)
j=1

+A, H(1, y„x2y, xNyN)+&, H(1, x„x,y,. x»y„)]

+ (~2D —1)H (x,y, x„y„)+ (N + 1)(N + 2)H(1, 1,x,y, x„y„)= 0,

x, y~0, %=1,2, 3, . . . . (25)

Using (24) and the sets of equations corresponding
to N = 1 and N = 2 in (23) and (25) one can easily
calculate all the H coefficients up to the S, level
and so duplicate the calculations (10) exactly.

The H coefficients can be shown in general to be
linear sums of uv" (u =D —16, v =D —8, —

n=0, 1, 2, . . .). The presence of factors 1/(D —1),
1/(D —2), etc. will thus cause B(D) to be not finite
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when D takes on positive integer values. To by-
pass this difficulty, consider the following pro-
cedure: Define

will be an off-mass-shell scalar state of momen-
tum q in a model in which the dimension of the
space-time is D.

B(D) =—d(d —1) ' (d -D)B(d) ~~ ~, (28)
CONCLUSION

where D is now taken to be specific positive inte-
ger corresponding to the number of dimensions of
the space-time. One finds

Q +(+lyl +N+ 13N+ 1) (~lyl +N+ 1yN+ l)1
g=. D xy

(27)

where

1)N-D
H(+lyl +N+13N+1)

(N D)( H(Nlyl +N+13N+1)'
jo

On the other hand, upon substituting (27) directly
into (7) and (8) one of course finds that the coef-
ficients H(N, ,y, . xNyN), N =D+1,D+ 2, D+3, . . . ,
still satisfy the set of equations N =D+ 1,D+ 2,
D+ 3, . . . of (23) and (25).

Thus, assuming that the sets of equations (23)
and (25) are solvable, we can take S(D) = e X(D)
as the off-mass-shell operator; i.e. , e B(D)~Oq)

Given the original assumptions concerning the
coefficients in S, we have obtained a unique solu-
tion to a dual current in an arbitrary number of
space-time dimensions up to the 6th level, and a
prescription for carrying the calculations to all
orders.

Unfortunately, we have not been able to find a
closed analytic expression for such a current.
However, the uniqueness of our solution is a
strong indication that such an expression exists.
Also, it is not clear how our solution relates to
the theorem of Collins and Friedman. 4 Our solu-
tion may be an evasion of their theorem.
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