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The fixed singularities in the complex angular momentum plane of the amplitude are obtained for potentials
which correspond to asymptotically free field theories. For potentials of the form — g(r)r~2, with g%(r)
decreasing logarithmically for r—0, one obtains an essential singularity with an accumulation of Regge poles.
A somewhat faster decrease with the square of the logarithm gives a special branch point. These singularities
replace the fixed cuts seen for g2(0) > 0, which corresponds to renormalizable theories with a finite fixed
point. The connection of our results with field-theory calculations is discussed. They are also considered from
the point of view of the general analytic properties of amplitudes satisfying two-particle and multiparticle ¢-
channel unitarity. In asymptotically free gauge theories, similar singularities may occur at j = 1.

I. INTRODUCTION

Within a framework where the structure and
interactions of hadrons are described by a theory
of elementary fields, it must be possible to also
compute the asymptotic behavior of scattering am-
plitudes on the basis of this field theory. Recent
advances in the handling of renormalizable theo-
ries give some hope for progress in this direction.
The limits of large transverse and longitudinal
momenta have been discussed extensively on the
basis of asymptotically free field theories, but
little has been done, so far, about the more in-
volved problem of high-energy limits with fixed
momentum transfer (Regge region).

1t is the purpose of this note to report' several
results about the [ -plane singularities of potential
scattering models which correspond to asymptot-

ically free field theories in an approximation where

multiparticle ¢ -channel unitarity is not completely
implemented. Potentials which behave like

a7\t
-7 In ” forr—0 (1.1)

are shown to give rise to an essential singularity
in the complex I plane which is an accumulation
point of Regge poles. They simulate the situation
for asymptotically free field theories in the ap-
proximation mentioned above.? We have a corre-
spondence which is analogous to the one between
the fixed I -plane branch points obtained with a
potential behaving like » =2 for » — 0 (scale-cova-
riant potential)® and the fixed cuts found in field
theories* which are renormalizable with finite
fixed points g, #0.°

Writing the potential in the form

-g%ryr 3, (1.2)

the expression (1.1) corresponds to g2(r) =~ [In@,/7)]™
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for » - 0. We show that the character of the fixed
l -plane singularity is highly sensitive to the rate
of decrease of g%(r). K

gz(r)=ﬁ<ln-£ﬂ->—2, >0 (1.3)

then there is no more an essential singularity at
I =-%. For B<i we find a soft branch point of
infinite order, while for 8> ; we have a branch
point with an accumulation of Regge poles at
l=-%. Furthermore, if g?(r) vanishes with a power
of v,

g¥r)=r~¢, €>0 (1.4)

the amplitude is known to be meromorphic,® and
there remains no particular fixed singularity.

We consider these fixed singularities in poten-
tial scattering and in field theories also from the
more general point of view of the analytic struc-
ture of scattering amplitudes in the (I,f) manifold.
It is shown that in potential scattering only soft
branch points, special essential branch points, or
essential singularities are possible as fixed sin-
gularities. The same is true for field theories as
long as two-particle states are emphasized and
there are no shielding cuts” present. The latter
are only possible in connection with multiparticle
t -channel thresholds.® They are usually not gen-
erated in renormalized Bethe-Salpeter calculations.
In the last section we discuss briefly the problem
of the influence of many-particle states in the ¢
channel upon the fixed singularities.

The interest in the fixed ! -plane singularities
of asymptotically free theories lies mainly in
their possible importance for the Pomeron and
hence for high-energy diffraction scattering. In
gauge-theory models of hadrons, such singularities
can appear at =+ 1, but they may be modified by
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the requirements of multiparticle ¢ -channel states
or s-channel unitarity and by the presence of spin.

II. RENORMALIZABLE THEORIES

Superrenormalizable field theories give rise to
Regge poles and Regge branch-point surfaces in
the complex angular momentum plane of the scat-
tering amplitude. On the other hand, it has been
known for a long time that theories which are only
renormalizable can have in addition fixed, soft
branch points in the I plane.?® At least, these
branch points are present within the framework
of a scale-invariant ladder approximation. This
effect is completely analogous to the situation in
Schrodinger theory with a potential which has a
short-distance behavior like 2, and which there-
fore scales in the same way as the kinetic term
in the limit » ~ 0.®> For the purpose of our later
discussions, it is convenient to give a brief de-
scription of this familiar case in a modern lan-

guage.®
Suppose we write
Vir)=-g*ryr=? (2.1
and assume that for » - 0
g*r)=~g(0)[1+0@), (2.2)

with g(0)# 0. In this limit, the effective potential

11+1) &%) 2.9)
72 r? ’

can be written in the form

@@ +1] 2.4

P ,
with

n(l) = - 3 [(1+3)*-g*(0)]*~2, (2.5)
The radial wave function behaves like

¥, r)~rn® forr-0. (2.6)
Since

6(2)=n,(1) -1 (2.7

is negative, we see that ), vanishes less fast in
the short-distance limit than the usual power 7*
obtained in the absence of the attractive » =2 poten-
tial. The continued partial-wave amplitude F (I %2
has fixed square-root branch points at

= - 3 [g%(0)]*~. (2.8)
They are on the real axis in the case of an attrac-
tive limiting potential with g%(0)> 0. It is impor-

tant to note that the branch points depend only upon
the limiting value g3(0). This is the potential ana-

log of a finite fixed point g2 which is characteris-
tic for renormalizable field theories. The field-
theoretical coupling constant g, defined at a cer-
tain subtraction point in the scaling momentum
variable, corresponds in potential scattering
to g(,), where 7, is an appropriately chosen radius.
In our potential model, the fixed cut is centered
around I= - %, while the analogous branch lines in
field theory are in a similar way associated with
points like 7= 0 (= - 2) for ¢* coupling in four
dimensions or /=1 for quantum electrodynamics.*
In the potential theory language, the branch points
(8) are transition points where the relevant part?

(1+3)*-£%0)
e (2.9)

of the effective potential for » — 0 is real and
changes sign. We have a stable system on one
side, and a collapsed one on the other. In field
theories, we generally cannot localize arbitrarily
close because of the possibility of particle produc-
tion. Hence we expect that the fixed-cut structure
of the amplitude is modified if multiparticle states
are properly included. Nevertheless, we presume
that there remains some remnant of this fixed-cut
structure.

III. ASYMPTOTICALLY FREE THEORIES

Let us now see what happens to the fixed cut
described in the previous section if the »~2 poten-
tial is switched off for » — 0. It all depends upon
the rate of decrease of g%(r). K we assume that

gir)=0@), (3.1

corresponding, for example, to a superposition of
Yukawa potentials, it is well known that no trace
of the fixed branch cut is left. The scattering
amplitude is meromorphic in the I plane. The
field theories corresponding to this case are super-
renovmalizable. Because of multiparticle ¢ -chan-
nel thresholds, the field-theoretical scattering
amplitude is Regge branch-point surfaces in addi-
tion to the pole surfaces. In potential scattering,
the meromorphic character of the amplitude®
F(l,k% is preserved as long as g%() vanishes with
a positive power of 7:

g¥r)=0@*), €>0. (3.2)

The situation is quite different if the scale-co-
variant =% potential is switched off only logarith-
mically. First we consider the case

-1
gz(f)ﬁ?(h%) , v>0 (3.3)



for r - 0. The radius 7, is an unimportant normal-
ization factor. We will see that this logarithmic
breaking of the scale covariance corresponds in
field theory to asymptotically free theories.

In order to obtain an exact statement, we choose
the explicit potential

V(r)=-<;2-“m-—if—z>e<%-r), (3.4)

which has a continuous derivative atr =» Ae ,
where it vanishes. This potential allows an exact
solution for k*=2ey/r?> 0. Forr<7,/Ve , the
wave function is given by

1 _ Y
i)y U( 2+1°

0,21+ 1)1nl;f’-> s (3.5
where Ula,b,z) is the Kummer function. Taking
the limit » - 0 for I+ — 3, we obtain the behavior

A21+1)
z[),(r)oc[(?.l+ 1)1n1;ﬂ]7 " (3.6)

We are only interested in the consequences of the
short-distance behavior of the potential (3.4).
Comparing the expression (3.6) with Egs. (2.5)
and (2.6), we see that §, still vanishes less fast
than the power 7!, but now only by a logarithmic
factor. We also find that the limits ~ ~ % and
r -0 are not interchangeable. The wave function
has an essential singularity at I= - 3.

Via the Jost function, we can calculate the S
matrix for the potential (3.4) at 2%=2eyr,"2, It
can be written in the form

S (A k2= 2ey7,"9)

_ HEROE)- () “HY (R0 (3
H)\".',.j_(m)- (é‘y)l 2H)\1 (V?_');)R (X, y)’ ’

where
_UQd=y/2x,1,))
R(A:Y)‘ U(—')’/ZX,O,A.) ) (3.8)
and A=1+3.

The limit I~ — 3 (A~ 0) of the ratio R of Kummer
functions in Eq. (3.8) is very delicate. We have
not been able to find it in the literature, but we
can calculate it with the help of a uniformly con-
vergent expansion of the Kummer functions
Ula,b,z) around z = 0 and for integer values of the
parameter b [see, for example, Eq. (9.237) of
Ref. 10].

The result is given by
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~ [ 22 J(V2y)cot(my/2)) + N (V2y)
ROy = <7> J,(V2y )eot(ry/2)) +N,(V2y)

A—0

(3.9)

From these equations we obtain for the S matrix
a limiting expression of the form

S <l’k2= 26*/) ~ AV cot{my/(21+1)] =C *(V2y)

702 l—»—-1/2 “cof{my/(21+1)] -C(W2y)
(3.10)
with
__ HAG) ()~ HA(x)d, (x)
Alx)=- H) () — HD(0y(x) (3.11)
and
C(x) = - HNolo) = FRGON, (x) (3.12)

T HI () ()= HP ()T (x)

Approximate calculations for other values of k2
have also been done and will be reported elsewhere
by one of us (D. H.).!* They support the results
obtained above for k%= 2ey7,2.

We see that there is an infinite number of Regge
poles which accumulate at I=—-%. Since we have
k%> 0, the poles are all complex and the elastic
unitarity condition is satisfied. Hence we have an
essential singularity at [= -} which is compatible
with two-particle unitarity. The intuitive reason
for the existence of this accumulation of Regge
poles is to be found in the slowness of the vanish-
ing of g(r) for » — 0. The relevant effective poten-
tial®

LV 280 o)y ( lnf;l) EET

is attractive down to the small radius

r=roexp|:-(lr—%)2] . (3.14)

In contrast, in the case g%(0)> 0, discussed in
Sec. I, the system collapses before a large num-
ber of resonances or bound states can be formed.

IV. FASTER APPROACH TO ASYMPTOTIC FREEDOM

Before we consider the relevance of these results
for asymptotically free field theories, let us
briefly discuss the case where g%(r) in Eq. (1.2)
vanishes slightly faster than with the first power
of Inr. We assume that

=g (m2) ", >0 (4.1)
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for r— 0. Again we can obtain an exact solution
with the specific potential

V)= -(W%)e (%—r), (4.2)

provided k2= Be%, 2. The wave function for ¥ <7,/e
is given by

/:
nor)er=v2 (s hme )

which does not depend upon the sign of the root
(1-48)*2, Forr—0, 1+ -, we have

B
P, ) 7 [1-m+"°] . (4.9

In contrast in Eq. (3.6) obtained for logarithmically
decreasing g%(r), we find here that the leading
term 7! is not modified, but is approached logar-
ithmically. In the superenormalizable case, where
g¥r)=r~¢, e€>0forr- 0, the corresponding ap-
proach is by a power of 7.

X The S matrix for k%= Be%,~? can be calculated as
XK(1-4 p)1/2/5 ( I+ E)lnl;"'> ) (4.3) befo:e. ?:isr;ven by peTe
s <)\ p2= Bez>=_ HPWE) 2K, 0)/K,(0) =1+ 1+ VBHE (VB)/HPWE) (4.5)
P )T HOVE) MK, W) /K,0) =X+ 3+ VBHD (VB)/HYWE)

where A =1+ % and
v=3(1-4p)H~. (4.6)

We note that the amplitude is independent of the
sign of the square root in Eq. (4.6) because of the
relation K, =K _,. Choosing the positive sign of
the root, we find in the limit A~ 0

\Kv'(k) ~ _ + 21/
XK, ) =0~ VT IS [T (14 v) /T (-9 F

(4.7)

We see that the amplitude generally has a branch
point at A=0 (corresponding to [= —3). Unless the
parameter 2y is rational, this branch point is of
infinite order. In particular for 8> ;, we obtain
v=ik, k= (48-1)*?>0, and we can have unlimited
oscillations as A= 0. The principal branch, which
defines the physical sheet of the amplitude with
respect to the branch point at A= 0, is defined by
the principal value of the logarithm in

(\)"% = exp(~-2v Imn); (4.8)

the corresponding cut runs along the negative real
A axis.

If the positive parameter 8 is restricted by <3,
the index v is real and we find no poles of the
S matrix, at least near A=0. However, for 8>3
and v=ik, the denominator in Eq. (4.5) is propor-
tional to

1+ 2K
S =i~ VEEPW B /HPE)
r'(1+ik) Y
_—mexp(— 2ikln 2>

(4.9)

for A= 0. Generally, it gives rise to an unlimited
number of poles as A approaches the point A=0
through complex points of the A plane.

—
Our calculations in this section show how sensi-
tively the character of the fixed singularity at
= -1 depends upon the rate of decrease of g%(r)
for = 0. These results may also be of importance
for field theory in connection with sums of ladder
graphs where the effective parameter is g*(%)
while g%(£) vanishes logarithmically as the scale
parameter £ tends to infinity.

V. GENERAL ANALYTIC PROPERTIES

We can consider the singular structures of the
scattering amplitudes obtained for our potential
models from the more general point of view of
the analytic properties of these amplitudes in the
(I,k%) manifold. We have found that, breaking the
scale covariance of the straight g2 ~2 potential,
the fixed cut disappears: As g%(r)—~ 0forr-0, it
contracts, so to speak, to the point /= —3. Some
kind of singularity, if any, remains there. We may
ask: What kind of singular structures can we have
at this fixed point in the [ plane?

I there are no branch-point surfaces in the (I,%?)
manifold which can act as shielding cuts and no
physical zero-mass particles, then the elastic
unitarity condition is very restrictive in selecting
the possible fixed singularities in the I plane.®'":!?
We can have either soft branch points, where the
amplitude remains bounded, or certain types of
branch points of infinite order and essential singu-
larities where the approaches to the singular point,
along which the amplitude becomes unbounded,
have the appropriate dependence upon the two-
particle threshold in order to comply with the
unitarity condition.!® Typically, in our examples
these approaches correspond to accumulations of
Regge poles which become complex above the
threshold.

Other fixed hard singularities would require



shielding cuts. But these are moving branch points
and they cannot be present in the I plane as long as
multiparticle ¢-channel (¢~ k® for potential scat-
tering) thresholds are included.® The reason is
that, without such thresholds, the branch-point
surfaces cannot be removed from the {-plane for
large values of Rel, where the amplitude is known
to be regular in the cut {-plane. These moving
branch points cannot disappear from the physical
sheet through the elastic cut, nor through left-
hand branch lines. Hence we conclude that, in
potential scattering, the singular structures re-
maining at I= -} for g(#)—~ 0 are either soft branch
points or essential singularities and special branch
points of the type described above. This is just
what we find in our examples. In particular, the
interesting essential singularity is connected with
an accumulation of Regge poles at I= —3. Every
Regge pole satisfies the elastic unitarity condition
and so does the essential singularity.

On the basis of these general considerations of
possible singularities, we can now discuss the
implication of asymptotically free field theories
of the results obtained in potential scattering. As
long as field-theoretical calculations do not take
into account multiparticle channels to the extent
that moving branch points for shielding can be
generated, and as long as no zero-mass particles
are present, we can have only certain special sin-
gularities at the position in the I plane where a
fixed cut collapses for g—~g,=0. These are the
types of singularities described above which are
able to comply by themselves with the unitarity
condition. The situation described above can be
found as a result of renormalized ladder calcula-
tions, where scale-breaking vertices and propaga-
gator corrections have been inserted. Although
ladder graphs contain not only two-particle, but
also multiparticle intermediate states, these are
generally not sufficient to generate the required
branch-point trajectories.

Of course, even with multiparticle states includ-
ed so that shielding cuts can in principle be gen-
erated, the field theory may well choose the type
of fixed singularity we have seen in our potential
models. These singularities comply by themselves
with two-particle ¢-channel unitarity. Our point
is only that with shielding cuts, other types of
fixed singularities become possible which are not
allowed in potential scattering. Also certain field
theories simply may not contain branch-point sur-
faces with the right properties for the shielding
mechanism.

In a field where the coupling g(£) vanishes loga-
rithmically as the scale parameter {—~ «, we may
have an analogy to our potential (3.3) giving rise
to an accumulation of Regge poles. An explicit
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example is the (¢°), theory (¢*-coupling theory in
six dimensions), which has been discussed by
Lovelace.? Here the coupling g? vanishes logarith-
mically in the high-momentum limit, and the re-
normalized ladder approximation leads to an am-
plitude which has an accumulation of Regge poles
atl=-1. In this theory the point /= -1 is the one
to which the highest fixed cut obtained with the
bare ladder sum contracts for gZ— 0; it is an ana-
log of the point /=~ % in our potential model. On
the other hand, (¢*),-coupling theory, which is
renormalizable but not asymptotically free, has
fixed branch points in the ! plane if one calculates
the amplitude points in the renormalized ladder
approximation. The highest fixed branch cut is
centered around the point /=0, and the right-hand
branch point depends only upon the finite fixed
point g, > 0 of the theory. As we have pointed out
in Sec. II, this theory should be associated with
the potential (1.2) for g(0)> 0.

VI. REMARKS AND SPECULATIONS

For quantum electrodynamics, it is well known
that, for example, the electron-electron scatter-
ing amplitude has a fixed branch point in the j
plane above j=1, as long as the calculation is
restricted to a summation of ladder diagrams.'*
The branch point results from ladders involving
photon-photon scattering diagrams, and its posi-
tion depends upon a?, corresponding to g% in our
notation. It is expected to be modified by the in-
clusion of a sufficiently complete set of multipar-
ticle t-channel states which allows for the genera-
tion of moving branch points. In any case, the
branch point above j=1 has to disappear from the
amplitude because of s-channel unitarity. In a
more intuitive fashion, it can be argued that
absorptive corrections will transform it into a
complex branch-point trajectory of the form
a(t)= 1+ constXVi near t= 0 which saturates the
Froissart bound. In fact, any bare amplitude
which requires complete absorption for the restor-
ation of s-channel unitarity gives rise to a trajec-
tory of this type.'®

While for ordinary renormalizable theories like
quantum electrodynamics a modification of the
fixed cuts in the j plane may be expected, and
certainly is required in the case of branch points
above j=1, it is an open question whether in as-
ymptotically free theories the fixed singularities
obtained on the level of two-particle ¢-channel
unitarity are altered by the inclusion of multipar-
ticle states. As we have pointed out in the last
section, the kind of fixed singularities one obtains
are typical for compliance with the elastic unitarity
condition, while the inclusion of multiparticle
states can make shielding cuts possible and hence
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other types of fixed singularities can occur. Never-
theless, this does not mean that the singularities
we have obtained must be changed; the situation
may be different for different theories. I an es-
sential singularity appears atj=1, it must also
comply with s-channel unitarity (Froissart bound).
Together with the reality properties of the ampli-
tude, this is a strong restriction. It may imply
some modification of the singularity by multipar-
ticle ¢-channel thresholds.

In asymptotically free gauge theories,® even
lowest-order calculations of the anomalous dimen
sions require more than two-particle states. It
must be left to future work to find the exact prop-
erties of fixed singularities in these theories. In
particular, also the influence of spin remains to
be explored in connection with the existence of
accumulation points.

Finally, we must mention the problem of the
actual calculation of the high-energy limit of had-
ron scattering amplitudes in terms of an under-
lying field theory. We may ask what remains of
these fixed singular structures we have discussed
if we consider now the j plane of the hadron-had-
ron scattering amplitude. If we try to approach
the problem from first principles via the elemen-
tary fields, the confinement of quarks and gluons
could become relevant. On the other hand, it may
be that the essential features of our simple poten-
tial calculations retain some meaning if applied
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directly to the hadron scattering amplitude. Mod-
els of hadrons constructed on the basis of asymp-
totically free non-Abelian gauge theories are not
expected to have physical zero-mass particles.
The vector mesons either acquire masses through
symmetry-breaking mechanisms, or they are
assumed to be permanently confined as, for in-
stance, in certain color gauge theories. Therefore,
the physical scattering amplitudes of hadrons
should satisfy the two-particle unitarity require-
ments we have used in our considerations. Still,
there remain the question of massive multiparticle
states and many other problems. We hope to come
back to these problems elsewhere.

Note added in proof. After completion of this
paper, we found two references which consider
potentials with a short-distance behavior like
7"2(Inr)"" for purposes other than ours. Only wave
functions and their limits for » -~ 0 are discussed.
The references are: J. M. Charap and N. Dombey,
Phys. Lett. 9, 210 (1964); H. Cornille and E. Pre-
dazzi, J. Math. Phys. 6, 1730 (1965).
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