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The effective potential of a non-Abelian supersymmetric theory with internal isospin symmetry is
considered. In the one-loop approximation, it is shown that the potential is finite without
renormalization, and that where it is not zero, it is complex. In two loops, as in one loop, it is shown
that the effective potential of the scalar fields alone vanishes identically. Implications of these results
are discussed with reference to possible spontaneous symmetry breaking.

I. INTRODUCTION

Progress in the construction of supersymmetric
Lagrangian field theories has reached the state
where such theories can be constructed possess-
ing a non-Abelian gauge symmetry.! However,
the requirement of fermion number conservation
and the consequent complexification of the fermion
fields forbids the presence of mass terms in the
Lagrangian. Hence, it would be useful if spon-
taneous symmetry breaking occurred so that
masses could be generated.? Up till now, no loop
corrections have been computed, but it has been
hoped® that they may induce breakdown of sym-
metry in the manner of Coleman and Weinberg.*

In this paper, the techniques recently developed®
to study the effective potential are used to evaluate
the effective potential for the supersymmetric
gauge theory of Ferrara and Zumino and of
Salam and Strathdee.' To reduce the number of
fields, the gauge group is taken to be SU(2), al-
though this can be generalized to SU(N).®

The effective potential is first calculated in the
one-loop approximation as a function of all the
spin-zero fields, and remarkably it is found to
be finite before renormalization. Even more
remarkable, it is zero at those points where it
is zero in the tree approximation, and elsewhere
it is complex.

The whole two-loop calculation is difficult be-
cause of nondiagonal propagators, but it has been
done as a function of just the scalar fields. It
vanishes. The complex region is expected to
stay, since some propagators will have imaginary
masses in that region.

II. THE MODEL AND TREE APPROXIMATION
TO THE EFFECTIVE POTENTIAL

The theory' we consider involves the vector
fields A}, the (complex) spinor fields x%, the
scalar fields A®, and the pseudoscalar fields
B* (k=1,2,3). All are in the adjoint represen-
tation of the internal-symmetry group, which we
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take to be SU(2).
The Lagrangian is

£= -3, +3(D, AP +3(D,B) +iXy,D"x
+ig€k1m5(_l(Ak - iBlz,ys)xm _%g2(€k1mAle)2’

where D,A*=0,A" + ge®'"A} A™ etc., and Bjorken-
Drell conventions are used.

This is the most general supersymmetric and
gauge-invariant model containing the given fields.
No mass terms or any other interactions are
permitted.

We proceed now to study the effective potential
of the theory to see if spontaneous symmetry
breaking can occur, allowing masses to be gen-
erated. So we shift the fields A* and B* as fol-
lows: A¥—~AF4+¢* B*~B*+¢*. We choose iso-
spin axes so that ¢ =(0, 0, ¢,) and 0=(0, 0, u,).
Then in the tree approximation, the contribution
to the effective potential is V (¢, 0) =3 g2¢,%0,%.

It is obvious that the smallest value of V, is
zero and this is the value of V, along the axes
of ¢, and 0,. Before coming to any conclusions,
we have to consider higher orders. We start by
considering the O(%) contribution.

III. O(%) CALCULATION OF THE EFFECTIVE
POTENTIAL

The effective potential to O(%) receives contri-
butions from a tree approximation counterterm as
well as from the spinor, vector, and scalar loops.
We work in the Landau gauge to avoid ghost con-
tributions in this order. (For some cases, the
calculations have been repeated using general
“V gauges.”®)

A. X loop
We write £, for the part of £(¢, 0;x, A, A, B)
quadratic in x. Then

Riml
X

‘cx =i§k7ua”xk+ig€ ((Pk—i(’k)’s)xm.
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The O(%) contribution to the potential is then

. d’k
v{X)(¢,0)=4ik J‘W In[ k2 = g3(¢,% +02)].

B. A, loop

We write 'c‘u for the part of £(¢, 0;x,A,, A, B)
quadratic in A, including gauge terms:

34 —'4(3Ak—auA 23 E(8%A,)
+%g2[Au2(¢32+02)"A‘uAum(q')'d’m"'olom)]:
where § -,

Thus, the O(%) contribution to the O(%) effective
potential is

VAR (¢, 0)

3ik dk
=- J.-(z—ﬂ);ln[ k% - k2392 +02) + g%, %0,%]

L f (2")41n[k2 2292 +0).
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C. 4 loop

Let £, be the part of £(¢, 0;x,A,,A, B) quad-
ratic in A. Then

=7 (8,A)° - 3 g%[A%* - (A+0)?],
which implies a contribution to the O(%) effective
potential of

Vi, 0)= ik fﬂm(kz- 292)
1 ’ o)t g .

D. B? and AB contribution

We have to include the contribution from the
nondiagonal AB terms as well as the BB terms.

If £, is the part of £(¢, 0;x,4,, A, B) quadratic
in B, and £, is the part involving AB terms,
then

£p=3(3,B) -3 g% B*¢* - (B*9)?],
Lap=—-8%[2¢40,A;B, - $,0,A,B,
~ ¢50,(A,B, +A,B,)],

which gives a contribution to the O(%) effective
potential of

V(. AB)(‘P; 0)" —ﬁ J (2 )4 ln[k4_ k2g2(¢32 +02) +g4¢32012]

o5 | G nl? - g7 k7 - g0 8 - g70%)

zh’ J(Z”)4ln{k8 ksg2(¢32+02)_

k4g 4(4¢32012 - 032012)

+R2g[ ¢520,2(0% + ¢?) + 40,°0.2 9] + 3¢ 8014‘1)34} .

Thus the total loop contribution to the O(%) potential is

5/5 4fi
Vo, 0=+ 3 [ Skt - go s ot - B [ LK

zﬁ fé;k)4 n[(kz (& 20 z%::) gzasz)]

qu B2g%(0,2 +02) + 249,20 2]
(2")4 -k (P + +87¢3°0,

zii J’(zn)“ In{k®- ESg2(0,2 +02) = kig4(4¢,%0,% - 0,20,2)

+R2g%[¢,20,2(0% + §,2) + 40,206,292 | +3g %0, * ¢, .

It is unnecessary to evaluate the integrals to
understand the structure of V,(¢, 0). It is easy to
see that V,(¢,v,=0,0,)=0and V,(0,0)=0. But
elsewhere it is complex, since the argument of
the last logarithm is a quartic polynomial in &2
which has all positive roots only if the coefficient
of k% is negative. Furthermore, it is easy to see
that V (¢, v) is finite by looking at the sum of the
squares and fourth powers of the masses. Hence,

—

only a finite counterterm is added to V,(¢, o) to
complete the O(%) calculation.

The results here to some extent have an analog
with the dilaton model studied by Drummond.”
There too the complex region could occupy almost
all space in the one-loop approximation. How-
ever, in our case, because no counterterms are
available to cancel off any ultraviolet divergence,
elsewhere V,(¢, 0) has to be finite.
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IV. O(2?)CALCULATION AND HIGHER ORDERS

The two-loop calculation of the effective poten-
tial to O(%#2), V,(¢,0,,0,), is made difficult by the
fact that in general the propagators are nondiago-
nal. This problem is less severe in the calcula-
tion of V,(¢,0), and this has been done. The
details are in the Appendix. The answer is iden-
tically zero.

This is a very interesting result in the light of
recent work on supersymmetric vacua by Zumino.®
He has shown that the physics of supersymmetry
lies in the absence of free zero-point energy for
a supermultiplet, and that in a supersymmetric
theory, the sum of vacuum graphs vanishes in
each order. Thus, it is assured that the two-
loop sum, with unshifted fields, vanishes. The
fact that it vanishes with some fields shifted also
is an indication of the extremely tight constraints
placed on the model.

Despite the zero measure of the real region, it
may be possible for the vacuum to lie in that
region, as happens in Ref. 7. However, in view
of the peculiar nature of the effective potential,
no firm statement can be made. Thus, mass
generation remains the most important problem
for supersymmetric gauge theories of the kind
examined. Some degree of soft breaking may be
inevitable.®
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APPENDIX

In this appendix we evaluate the effective poten-
tial in two loops as a function of the shifted value
¢ of the scalar field A*. We work in the Landau
gauge for simplicity. In the more general
“V gauges,”® the vector and scalar propagators
are nondiagonal.

According to Ref. 5, we have to sum the two-
loop vacuum graphs using the shifted fields. In
addition to vector, spinor, and spin-zero loops,
we have to include a ghost-loop contribution.

In the following calculation, no integrals are
explicitly evaluated since it is the purpose of the
exercise to show that the integrands sum to zero
via mutual cancellation. Hence, each graph is
expressed as a linear combination of the following
basic integrals:

fd"kd“l 1 1
@m)® (k+1)7 (k2 -g%¢?) (I*-g%¢%)’
! dikdl 1 1 1
2 @m® (k+1)* (k% -g29®) ()
K, - J‘d"ka“l 1 1
Y 8 (kz gzq)Z) (lz_g2\p2) ’

d*kd¥l 1 1
K= f @n® (k2=-g°¢%) @

d*kd®l 1
=gt¢* f @1 EXkZ- g 0?)2(I® - g297)

zj'd‘*kd“l 1
=89 ) Gy PR IR

. d%dl 1
=80 ) T@nF PR DR - 220

D g8 jd“kd“l 1
CE TR G PR - PP -7
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; 8 . 8
/’/ N '~ \\\ T
(e) \\\ j{,‘ () l‘\ﬂ /‘+(‘»£’,

(h)

FIG. 1. Two-loop graphs contributing to the effective
potential. A wavy line represents a vector propagator,
a dashed line represents a fermion, a solid line repre-
sents a scalar, a double solid line represents a pseudo-
scalar, and a solid-dashed double line represents a
ghost.
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D,=g°¢®
Xj d*kd*l
(2m)®

1
X [(k+l)2 — gz(Pz]kz(kz _gz(pZ)lez _gzq’z)’

D3 =g6¢5
d*kd*l
(2m®
y kel
((k+1)? = g29%](k?)2(k2 - g29%)2(I% - g2¢?),

dtkd‘l kel

D4=g6¢6

@2m° (R+1P12(1% - g2¢?) (k2 = g0®)(R®)’.

The contribution from each graph shown in
Fig. 1 is as follows:
Fig. 1(a) gives &1 K, -4 K,
Fig. 1(b) gives - 3K, - 6K,,
Fig. 1(c) gives - 6K,
Fig. 1(d) gives - 2K,,
Fig. 1(e) gives 16K, - 8g2¢%I, - 4g%9%1,,
Fig. 1(f) gives 8K, +8g2¢%I | +4g%¢%I ,,
Fig. 1(g) gives — 2g2¢%I, = g%¢%I,,
Fig. 1(h) gives 3K, = K, +2g20% , +g%¢%l,,
Fig. 1(i) gives 2K, - g2¢?%I,,
Fig. 1(j) gives =3 g2¢% | - § g2¢%, = 2K, + K,
+(C,-G,)/4-D, /2,
Fig. 1(k) givesa-K, ~ 2 K, +6g2¢% , +2g2¢%l,
+3[(C3=C,) +(D, +D,) +2D,],
Fig. 1(1) gives = K, +3g2%¢?%1,.
The sum of all these contributions vanishes
identically.
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