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The massive scalar and Dirac fields quantized on a de Sitter background geometry prove to be exactly soluble

models in general-relativistic field theory. The Feynman Green's function is computed for both the scalar as'
Dirac fields. A dimensional regularization procedure applied in coordinate space facilitates the calculation of
their respective effective Lagrangians, which describe the vacuum corrections due to closed matter loops. The
model is found to be renormalizable. There is no creation of real particle pairs.

I. INTRODUCTION

It is well known that the quantum corrections
to a field theory may be summarized by adding
to the classical action functional S an effective
action W." The functional I' = S+S'contains all
the information to be extracted from the theory.
In general I may only be calculated in perturba-
tion theory; however, in certain cases of high
symmetry I' may be calculated in closed form.

In this paper we show how this approach can be
used to solve the problem of quantizing matter
fields in a given curved space-time. We present
exact solutions for I' for both Klein-Gordon and

Dirac fields coupled to a gravitational field of
constant curvature (de Sitter space). '

Inevitably divergences arise which must be
removed from the final answer in a coordinate-
invariant manner. This is accomplished by
applying the dimensional regularization procedure'
directly in coordinate space.

In Sec. II it is shown how the effective Lagran-
gian and hence the effective action may be cal-
cul.ated from a knowledge of the Feynman Green's
function. The effective Lagrangian is calculated
in closed form in Sec. III and the result is com-
pared with a perturbative treatment in Secs. IV
and V. The following results were found: (i)
The quadratic and quartic infinities from the
perturbative treatment arise also in the exact
solution and are absorbed by a renormalization
of the gravitational and cosmological. constants.
(ii) The logarithmic infinity which cannot be
absorbed by renormalization is ambiguous in the
exact theory. A closer examination of the per-
turbation theory reveals that it too is real, ly am-
biguous; the logarithmic infinity occurs with a
definite coefficient only if we require the effec-
tive Lagrangian to possess an expansion in in-
tegral powers of the curvature. In de Sitter space
this ambiguous term is of no consequence since
it does not contribute to the energy-momentum
tensor. Hence this particular model is renormal-

izable. (iii) The perturbation series is an asymp-
totic series which is valid for small curvature
(large mass), but does not converge. It therefore
provides no information about the large-curvature
behavior. (iv) Independently of the magnitude of
the curvature, there is no particle production in
the de Sitter model. (v) Dimensional regulari-
zation can be applied without recourse to Fourier
analysis.

Similar results are found for the Dirac equation
in Sec. VI. In Sec. VII we consider a special case
of the problem of quantizing in a coordinate system
covering only part of the space. This particular
case is of additional interest in that it allows a
comparison of x-space and P -space 4imensional
r egul arization.

II. THE GENERAL THEORY

For a scalar field (II with an actioa fuectional'

the vacuum-to-vacuum transition amplitude is
given by the functional integral

(Oout[Oin) =N ' ~(d[Q]e' i

where N is a normalization constant independent
of the metric. The effective Lagrangian C, (x)
is defined by

exp i
~

Z,dx =(Oout~ Oin).

These last two expressions are properly defined
only if there exist asymptotic regions.

By considering

5$(x)d[0) [0(x')e"'") =o

we see that the Feynman Green's function

12 965



966 P. CANDELAS AND D. J. RAINE

f J~[4]4(x)4(x')e""'
eiS [ttij

satisfies the equation

In a general field theory (2) would give 2, cor-
rectly to O(S) in an expansion in powers of Planck's
constant. In a linear field theory there are no
further terms and (2) is exact.

g'+(CI —m2)G(x, x') = —5 (x, x').

From the definition of 2, we see that

uN
dx, '2 = — dxg'+G(x, x) +—2 2 cV bm'

The second term on the right-hand side of this
equation is independent of the metric, so let us
discard it; then removing the x integration yields
the relation

g, i', = —g'+G(x, x). (2)

(2) is meaningful even in a space that is not
asymptotically flat. We shall assume that (2)
holds in general, and that lmZ, may be interpre-
ted as the rate of particle production from the
vacuum. It should be noted that these assumptions
are implicit in Schwinger's calculation. '

G(x, x} is a highly singular object in four dimen-
sions, but we may regularize it by working in n

dimensions (n complex) and analytically continu-
ing G(x, x) from a. region of the n plane in which
it is regular. The infinities of the theory then
appear as poles at n=4. Equation (1) does not
define G(x, x) uniquely since there remains the
freedom to add to G any solution of the homogen-
eous equation. We shall complete the specification
of G by appealing to generalizations of the analy-
tic properties that G enjoys in flat space, namely
that C' is analytic in the lower half m2 plane and in
the upper half (x -x')' plane.

III. THE GREEN'S FUNCTION IN THE DE SITTER MODEL

de Sitter space' is a maximally symmetric space
of constant (positive) curvature. It may be realiz-
ed in n dimensions as the hyperboloid of revolution

1

K
+ $ + ~ ~ ~ + ~n

in a Minkowski space of (n+1) dimensions with
metric

d'~2 = -d0„2+ d(,2+ ~ ~ ~ +dg„'.

The Riemann tensor in de Sitter space can be
simply expressed in terms of the metric as

f~asye =If(gaegsy gaygee)-

Using (" (g= 0, 1, ..., n —1} a.s coordinates on the
space, the metric takes the form

where q„„, = diag( —1, 1, ..., 1), e„=q„, $', and
&2=q„v(" E'. We note in passing, however, that
these coordinates cover only half the space; we
shall return to this point in connection with the
Fulling phenomenon in Sec. VII. An alternative
coordinate system may be introduced in which
the metric takes the form

1ds'= ~-d8'+cosh'HjdX, '+sin'y, [dX,'+sin'g, (dX, '+ )] j).

The complete hyperboloid is covered by the co-
ordinate range

—oo( 6) & oo

y Xn-i ~s Xn

Let us denote points of the hyperboloid by x, x',
etc. and the vectors corresponding to them in the
embedding space by $, $', etc. Thus, we may
define

o(x, x') =2(( —h')'.

Since de Sitter space is maximally symmetric,
G(x, x') depends on x and x' only through ey. The
biscalar a is defined as above rather than as the
world function, say, since there are points in
the space that cannot be joined by any geodesic.
It is easily verified that the derivatives of v sat-
isfy the identities
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o' a.„=a(2-Ka}

0. 8 =g ~(1-Kcr).

In view of these identities we have

d
( -m')E(v) = — o(Ko —2)d,

The fact that 9R is a second-order operator is a
distinctive feature of gravitation; in flat-space
field theories the analogous operator is usually
of first order. '

Integrating (8) by parts yields

0/2 6
= i ds e"'"Ilt (f(s)s " ')+in,

Jp

+n(Ko- I)'—+m' F(o)
dg (5) where 9R~ is the adjoint of 5R and b is given by

for an arbitrary function F.
In order to find a Qreen's function, we need

a representation of 5(x, x') in n dimensions on the
de Sitter hyperboloid. In flat space we have

f -ll l2 l 0/2S K l 0/24 (f 2-ll/2)d

2
e — e — s

ds

-[(n —2)Ks —i]f s ""e""~
I 2

'

dn+
5( i

)
f tS[s-x'I -isS2. (2m')"

with the limit e —0 understood. Performing the
integration yields

/

5( ) el(s —s )/44
(4se )"f'

Now a representation of 6(x, x') in the tangent space
to the hyperboloid is also a representation in the
hyperboloid. A suitable representation is there-
fore

f is required to satisfy

5}I (fs "")=0

l.es)

K 'f "~ (SKs —l)f ' + ' —— ——
1)lf f 0, (S)=

2 2

subject to the boundary condition f (0}=1. The
point s = 0 is an irregular singular point of (9),
so the single boundary condition determines the
solution uniquely as a hypergeometric function':

f (s) =2E,(2' + ia, —,
' —ia; —iKs)

~ G/2~

5(x x') =ie '"'/' g~2
(4ve}" ' (6)

1
=(iKs) ~2 ' @ —,'+ia, 1+2ia; . , (10)' iXS

In fact (6) has been chosen with a certain pre-
science. In order to complete the specification
of the Feynman Qreen's function we shall require
G to be analytic in the upper half o plane and in
the lower half m' plane. In view of the structure
of (6) and the above remarks let us seek a solution
to (1) of the form

with

m' (n —1)'
Q K 4

In the first instance let us take n real. Then
since the asymptotic solutions to (9) are s ~2",
we see that for n) I the integral in (7) converges
at infinity and

-in'/4
G(x, x') = —(4,„/, „f,f(s)e" ",

4 %)f 2 )l 2 (7) 4 0/2E

(47/e)" /2 '

where f (s) is to be chosen. This incorporates the
required analyticity property with respect to cr.

From (5} it is seen that this wiB be a solution
provided

Substituting (10) into (7) and performing the inte-
gration yields (see Appendix A)

/2~
= i „f,f (s) 5fi e' ' ",

S
(8}

iK" ' ' I'( ,'(n —1)+ia—)F(—'(n —1) —ia)
G(xl x ) (47/)S/2 I (l n)

where SR is the operator defined by

2
d' d 2 in

5g =Ks', —[(n —2)Ks —i] —+ m' ——.
dS 2S

n —1 . n —1 . n
X + — +$0.

2 ' 2 '2' 2
—Sa —' 1 ——(c + se)
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where the ie in the argument of 2E, denotes the
side of the cut on which the hypergeometric func-
tion is to be evaluated for cr & 0. There can exist
only two linearly independent solutions of (1) that
depend on x and x' only through o(x, x'). These
may be taken to be (11) and its complex conjugate.
From this observation it follows that (11) is the
unique maximally symmetric solution to (1}that
is analytic in the upper half o plane. [The prop-
erties of G(x, x') are examined further in Appendix
B.] For n&2 the limit o-0 in (11) is finite, and
we obtain

iK"" ' 1'(-,'(n —1) +in) I'(-,'(n —1) —ia}
(4v)"" I'(-,' + ia) F(-,' —ia )

G(x, x)- „K"(m')' " I, (~),
r=O

where

(15)

I, (co) = „e"f„(u).dQ

Q
(16)

From (9}we see that the f, (u} satisfy the recur-
rence relation

d 2d2
d f, (u—) = —u' „+f„,(u) + (2u' —2u) —f„,(u)

d
du " du dQ

It is convenient to rotate the contour of integra-
tion to the negative imaginary axis. Defining
u= —im's and ur =-,'(n —4) we have

x 1'(1 - ', n}. - (12) +[(2+u))(1+(u) + 2u —u2]f, ,(u). (17)

G(x, x) is analytic in n apart from simple poles.
It may, therefore, be extended throughout the
complex n plane. Expanding (12) about n =4 yields

i(m z —2K} 3iK
8vz(n —4) 16m

+ ln —+g(-, +in) +g(& —ia) y+-1i(m z —2K} K
16m 4m

With the stated initial conditions (14), the first
three functions f„are

f,(u) =1,

f,(u) =--', u'+u +(2+(u)(1+(u)u,

f,(u) =~zu'-Pu'+[-, '+,'-(2+~)(1+(u)]u'

+[-2+hz(2+(u)(1+~}]u'

+ z (3 +&@ )(2 + w )(1 + u&) m u2 .

+O(n —4), (13)

IV. THE PERTURBATION EXPANSION

To evaluate G(x, x') perturbatively we seek a
solution of (9) having the asymptotic form

f(s)-e ' ' Q, f„(im's),
m

(14}

with f,(0) = 1 and f, (0) = 0, for r & 0. This series
can be only an asymptotic series since by (10)
f(s) has a branch point at Ks =0.

Substituting (14) in (7) we obtain

- fn 7r/y

G(x, x') =
(4 p, z

where t)I(z) =(d/dz) ln 1'(z) and y = —g(1) is Euler's
constant.

Equation (16) defines I, (co) for Re+& —1. For ~
outside this region, I„(iv) is defined by analytic
continuation. I,(v) and I,(v) are found to have poles at
~=0 (n =4), but I2(a) is regular as ur -0. From
the form of (17) it follows that I„(0) is finite for
r «2. The Laurent expansions of I„ I„and I,
about ~ =0 are

1I,(&)=~ —(1-y)+O(u)),

2I,(~) = —„- —(&~+2r)+O(~),

I,( )= „+(„+„r)~+O(~').

Substituting in (15) and comparing the result with
the exact answer (13), we see that the perturbation
expansion yields the pole terms exactly.

V. RENORMALIZATION

In order to avoid problems of convergence as
s -~ we take m to have an infinitesimal imagin-
ary part. This expansion is essentially a special
case of the perturbation theory obtained by De%itt
for a general background metric. '

Having calculated the Green's function, we find
the effective Lagrangian from (2). Consider first
the asymptotic form of Z, for small K,

Kr ( 2)2-rr td

(18)
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The first two terms of this series are singular as
~-0 since I,(~) and I,(~) have poles at ~ =0. The
third term is also singular since the denominator
vanishes for ~ =0. For the moment let us re-
strict our attention to the first two terms, which
correspond precisely to pole terms in the exact
theory.

The Einstein Lagrangian is

g 1

16nG

c(~)EP+~g v (20)

1
gPv K YPv 7

with y„, being the metric tensor on the unit hyper-
boloid. Consequently the contribution of the arbi-
trary term (20) to the effective action is

with c(~) an arbitrary function of &u only. In terms
of the pseudospherical coordinates (3) can be
written

where R, the Ricci scalar, is related to the cur-
vature E of de Sitter space by

R = —n(n —1)K.

G is the Newtonian constant and A. is the cosmo-
logical constant. The Lagrangian corrected for
the effects of the quantum matter field is

Z =So+XI.

The quartic and quadratic divergences may be
absorbed by renormalization of ~ and G. To
accomplish this, define renormalized constants

by

&» = - (g '&) I»=.

c(~) J l "«dx," dx. ,

which is a pure number independent of K and m,
and so may be discarded. To illustrate the point
we may calculate the effective energy-momentum
tensor T~». Since T'„, must be maximally sym-
metric, T'„, = (I /n) g„„T'.

Employing the metric (3) we have

ag"' 1
BK =Kg

and therefore

eg, ag, eg~'
aK ag"' aK

1 (m')" I,(~)
2 (4»)~ 2+~

n(n-1) 9 ~ g, )
16mG~ BK

(19}
gIt/2 yI g |IV1

2K

g
I/'2 gI1

2K

n(n —1) 1 (m')"" I,(&u)

16»G 2 (4v)" I+~
The third term in (18) appears to be nonrenor-

malizable. However, if we turn to the exact
theory, using (12) and (2), we find that 2, has a
pole at (d =0 with residue

-2 4 . Jd '(m*-&&)

Here, therefore, the K' pole arises as an arbi-
trary "constant" of integration.

The discrepancy is resolved if we do not insist
that the perturbation series be an expansion in

integer powers of K. In that ease, on performing
the m' integration we are free to add a "constant"
of integration which, on dimensional grounds,
must have the form

This enables us to calculate TI from the explicit
form of 2I. It is clear that a term of the form
(20) will make no contribution.

On the other hand, c(~) can be chosen to cancel
the K' pole term in (18). If c(&u) = —I/~, we have

—M(m')" ——K~' -K'ln as &-0.

In the exact theory, from (12) and (2) we have

I+~-K
g 2, =

(4 ~,„I'( —1 —u)

I'(—'+in + ~}I'(-' —ia + }x dm I'(—, ia)N+-, —ia)~

~

~

Using (19), we obtain

n(n —1)K
1 6''G~
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Choosing the constant of integration to eliminate the pole at ~=0 in the term in brackets, and performing
the limit~ -0, we find

3E'&=
4 G

-~R
R

—,'m' —2Km' ln —,+-,'m' —3''+ dm' m' — g ~+in +g ~ -in (21)

In this case therefore, the theory is renormaliz-
able.

VI. THE DIRAC EQUATION

The action functional for a real (neutral} spinor
field may be taken to be

with H(x, x') transforming like the product y(x)y (x)
and 4(x, x') being a bispinor subject to the con-
dition

4(x, x) = unit matrix.

In view of the identities (4) satisfied by the deriv-
atives of cr, H can only depend on x and x' through
v and v.„. Therefore it must have the structure

Defining the Feynman Green's function for the
spinor field by

i fd[y]lI (x)ly (x')e'~~~'

fd[~]'
we find that the equations analogous to (I) and

(2) are

and

ig'~y[y"G. „(x,x')+mG(x, x')] = —5(x, x') (22)

H =A(a)+B(a)a

In order to solve (22) we shall also require a
knowledge of the derivatives of 4, so let us de-
fine Z„(x,x') by

4 .„(xx') =Z„(x,x')4(x, x').

Z„ is constrained by the integrability condition

84 q„—4..„q = —,'Bq, ~8y y 4

K= —
4 [y„y.]4,

to satisfy

(23)
KZ„.„-Z„.„+[Z„,Z, ] = ——[y„,y„]. (24)

The symbol tr refers to a trace taken over spinor
indices. G(x, x') is a bispinor, that is, it trans-
forms like the product y(x)y (x'). In view of this,
let us seek to solve (22) by the ansatz

G(x, x') = H(x, x')4 (x, x')y '(x'),

The simplestsolution of (24) is

ivy
2

with this choice (22) becomes an equation for A
and B which may be cast in the form

n —2), invZ
a~y A'+ m — i &K B + a.„a' B'+a'. B+ m+ A =ig &(x, x').

L

Using (6) this equation is seen to be equivalent to the pair

dA
K + [2m —i(n —2)vK]8=0,dz

(25)

(where we have set z =Ka/2). This equation is similar to the equation satisfied by the Green s function
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of Sec. III. A calculation precisely analogous to that of Sec. III establishes a more general result that
also covers (25); namely, that the solution of

d 'N
e(z -1) +[( a+b+I) e+( c- a-b —1)] + abw =e '"~' ' ' ' "e' ' ' 'e" '

z' dz (26)

for Rea, Reb, Re(c —a —b —1)& 0, that is analytic
in the region Imz ~ 0 except, perhaps, for z =0 is

I'( —1 —(u)(mz)"
2(4 )2+

u) = F2, (a, b; c; 1 —(e+ie)}.r(a)r(b)
I' c (27) r(-1 —~)(mz)" (2+ ~)2(3+2~)

(4w)" ~ 12

Comparing (25) with (26) and (27) we see that + 0+).

, (n —2) K"~ ' I'(a)r(b}
A(o) = — m- i vg

Ko
x2F~ a, Q;c;1—— (28)

As in Sec. V we take

g gl/2 n(n —1, ) K-g'~ ~+Z
16vG

and define renormalized constants by

with a =-,'(n —2)+im/vE, b =-,'n-i m/WK, and
c =-,'n.

Now since tr y = 0, we have

z, = —(g' &)lE=,

tr[yG(x, x)] =nA(0),

which is finite for n& 2. Thus by (23) and (28)

,~ Sg, mK" r(2+~+i p)r(2+a) —i P)
Sm (4~)2 r(1+2 p)r(1-i p)

n(n —1) & ~,p,
)16nG

n(n —1)
16vG

x r(- 1 —&u},

with p2 = mz/K. Expanding (29) asymptotically
about K= 0 and integrating we find

(28)
I'(-1 —~)(m')"" (2+~)2(3+2&')

(4 )2+ ul 12

In terms of the renormalized constants we obtain
a finite Lagrangian as co-0,

2m 2m
+

(4 }2
dm2(m +K) f 2+ ~ +g 2-~ (30)

Apart from numerical factors this is of the same
form as (21).

VII. THE FULLING PHENOMENON

Given an arbitrary space-time manifold it is
not possible, in general, to find a coordinate
system that wil, l. cover it entirely. With this in

mind we note that a slight relaxation of the ~n~-

lyticity conditions imposed on G may result in
the occurrence of the "Ful.ling phenomenon. '"
That is, a solution of (1) obtained in a coordinate
system that does not cover the whole space differs
from the solution that would be obtained in a co-
ordinate system that does. To see how this happens
let us seek to solve (1) in the coordinates of Sec.
III.

Without loss of generality we may take $'„=0
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(p, = 0, 1, ..., n —1); then, in an obvious notation, (1)
becomes

dz (n+ 1) n d mz

)
z(z —1),+ z —— —+ G(z)dr~ 2 2 de

Comparison with Eq. (26) reveals the solution as

G($) = „a»E,(a, b; -„ I -+z), (32)
eP"-' r(a)r(b)

with a = -,' (n —1) + —,
' i a, b = -,

'
(n —1) ——,

' i o
By virtue of the easily established relation

$' = o(2 -Ka)

and the formulas (valid for general a and b)

I'(a) I'(a + —,') = v w 2' "I'(2a)

and

I'( 'a)+I'(b + ~g)

(33)

x [ E,(2a, 2b; a b++-„(1z+f))

+zE, (2a, 2b; a + b + z', z (1- K))],

we may recast (32) in the form

W~-~ I (-,'(n —1)+in.) r(-,'(n —1)—i~)G(5)= (4,). I,( „)

n-1 . n-1 . n gv
2 ' 2 '2'2

The first term is identical with (11) and so rep-
resents the response of the field to a "charge"
at the point ( =0. The second term corresponds
to a "charge" located at the point antipodal to
g =0. In view of (33) we see that the occurrence
of this parasitic term is due to the fact that while
$' is only zero in the light cone of the origin, its

(S'-K$ "& &„z-nK) & -m')G($) = -b($). (31)

Maximal symmetry requires G($) to be a func-
tion of $' (which is a function of a). The purpose
of the analyticity condition is to define the way in
which analytic continuation is to be effected around
the singularity 0 =0. Since 2v-E~ for o small,
we might (mistakenly) assume that analyticity in
the upper half o plane is equivalent to analyticity
in the upper half $z plane. Writing (31) in terms
of the variable z =K)~ and using a representation
for 5($) analogous to (6), we find

"covariantization" o(2-Ko) has another zero
outside the coordinate patch when a =2/K; that
is, on the light cone of the point antipodal to the
origin. Thus the 6 convergent sequence that we
have employed represents in reality two "charges. "

We remark finally that (31) may also be solved
by Fourier transformation, and the integrals
evaluated using conventional P-space dimensional
regularization. The solution obtained is identical
to the one presented above in which the regulariza-
tion has been performed directly in coordinate
space.

VHI. DISCUSSION

Since Z in (21) and (30) is purely real, there
is no particle creation in de Sitter space. This
is surprising if we recall that pair creation in
de Sitter space is the gravitational analog of
Schwinger's calculation' of charged particle pro-
duction in a constant electric field. One might
expect pair creation to be important when K-m',
both by analogy with Schwinger's results, and
from the fact that this is the condition for the
Compton wavelength of the particle to be compar-
able with the radius of curvature. That this is the
case despite the nonexistence of a global time-
like Killing vector is surprising. We may com-
pare the plane monochromatic electromagnetic
wave where the stationary nature of the external
field seems to preclude the otherwise expected
pair creation. From another point of view, pair
production does not occur because the scalar
field is coupled to zero four-momentum gravitons.

It is, unfortunately, not cl.ear whether the re-
normalizability of the exact theory is a result of
the high symmetry of the model. or another indi-
cation of the failure of perturbation theory. One
explanation of how it comes about in the de Sitter
model is that the four-divergence which can be
neglected in the effective Lagrangian of the gene-
ral theory' is here 24A . That is, it is of the same
form as the terms that are usually retained. This
suggests that renormalizability is an idiosyncrasy
of the model.

It is an interesting feature of the model that
it has been possible to use dimensional regular-
ization in x space rather than P space. The high
symmetry allows a natural extension of the
de Sitter manifold to n dimensions (for integer n)
and an appropriate choice of a &-convergent se-
quence as a representation of the 6 function.
Again, it is not clear to what extent this can be
generalized to other background geometries.

Finally, one might note that all the cal.culations
could be carried through without the explicit use
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of particular coordinates. We have introduced
coordinates only for pedagogical reasons. Even
all.owing for the special symmetry, this is a
nontrivial observation.
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APPENDIX A

Consider Goldstein's integral"

r(a)r(b) +,(a, b;c;1-z)=
~

dt t' ' 'e '
zEO(c —a, c-b; —1/t), (Al)

with Rea, Reb, Rez & 0. If also Imz& 0, then the path of integration may be rotated to the negative imagin-
ary axis. With the substitution t =(iEs) ', (Al) becomes

I (a)r(b)' ' ~ (a b c ]. -z) =e«'&&&' ' ~~ sds' ' ~ 'e ~ «I g (c —a c —b -its)r(c) 1 0
0

(A2)

The right-hand side of this equation is an analytic function of z in the upper half z plane. It follows that
(A2) is valid throughout the region Imz & 0. This establishes (11).

APPENDIX B

In order to examine the properties of the Green's function we make use of the relation'

2F, (a, b; c; 1 —z)= zF, (a, b;a+b-c;z) + z' ',F,(c-a, c-b; c-a-b+1;z),I'(c)I'(c —a —b) I'(c)I'(a+ b —c)
I c-aI'c-b ' ' I'al b

Using the formula

I'(x)I'(1 —x) = «/sin«x

(Bl) may be cast in the form

(Bl)

I'(a) I'(b) 1 «

I'(c) +' ' ' ' I'(c -a)I"(c-b) sin«(c -a- b)

x ),E,(a, b; a+b- c+1;z)
I'(a) I'(b)

I' a+b —c+1

-z' '',E,(c —a, c —b; c-a-b+1;z). . . I'(c —a)I'(c —b)
I c-a-b+1

Letting c a+b- 1., we obtain

zE,(a, b; a+b —1; 1 —z)r(a)r(b)

1 1
" I'(a+r)I'(b+r)= —+ P z" [I nyz (++ra) + g(b+r) —g(1+r) —g(2+r)] .

r-"0



P. CANDELAS AND D. J. RAINE 12

Comparing this with (11}, and using the formulas

1= —-iTi5(z), ln(z+ie) =lnJzJ+iwe(-z)@+if

valid for z real, we find that in four dimensions

ReG(x, x')= d(z) —e(-z} (m' —2K)kE, (z+in, k-in; 2;z),

' G " "' =
16~ ). ' r(-,', n)r(-, n)

r(-,'+in+r)r( ,'-in+-r ) z" [ln J
z

J +i!(z+in+r) +i (-,' —in +r) —g(1+r) —g(2+r)J [,r! (r+ 1)!

where we have set z =ffv/2.
In order to obtain the limiting form of G(x, x') as K-0 we make use of the series expansions of the

hypergeometric functions and the formula

r(z+y)/r(z)-z" as z-~.
From (B2) we find

g r -1- +rso
lim G(x, x' }= m'"—

(4ii)"" sinii(1+ id) „,r! r(2+&v +y) 2 „,r! 1'(- u+r) 2

Noting that the sums in this expression are the power-series expansions of Bessel functions, we obtain
finally

m2 (i+ ~)/a
lim G(x, x') = k„- .

( )
[J„„((-2mkcr)'+)—e !"'"8, „((-2m o)'~k)J

—~e-~"' 2 m' {'+~'~'

which is precisely the Feynman function in Minkowski space-time as computed from

r dn&

Minkowski ( s } (2ii)n „P&+ Sn &
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