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Conditions for entropy extremum of self-bound relativistic systems of particles, in stationary axisymmetric
motion, are obtained under the following constraints: (i) The system is kept isolated in a geometrical sense,

implying that the total mass-energy and total angular momentum, defined by the asymptotic behavior of the
metric, are kept constant, (ii) the total number of particles is kept constant, and (iii) Einstein's constraint
equations are imposed on a spacelike hypersurface. It is shown that if the system is in mechanical equilibrium,

the total entropy is an extremum for all trial nonequilibrium configurations that satisfy the constraints and

respect the symmetry, if and only if {i)Einstein's dynamical equations are satisfied, (ii) the temperature and

the chemical free energy, as seen from infinity, are constant, and (iii) the system is rigidly rotating. The
proof does not depend on a particular functional expression for the mass or for the angular momentum;
consequently, no related Lagrange multipliers have been used.

I. INTRODUCTION

With relativistic systems of particles of one

type, having an axisymmetric configuration and
rotating in a stationary way, we mainly have in
mind relativistic rotating stars. One may also
think about rotating stellar clusters to which our
results are applicable as well. ' The system is
supposed to be in local thermodynamic equilibri-
um. Such systems are characterized, as a whole,
by four quantities: the total entropy S, the total
number of particles N, the total mass (or mass-
energy) M, and the total angular momentum J.

Contrary to what happens in classical thermo-
dynamics of homogeneous systems, S and N are
not on the same footing as M and J. Entropy and
particle number are related to locally defined
thermodynamic functions and are well-defined
functionals. Mass and angular momentum are de-
fined far away from the system, in fact at infin-
ity, and are related to the asymptotic form of the
metric. Thus, entropy and number of particles
have a proper thermodynamic definition while
mass and angular momentum are geometrically
well defined.

Evidently, integrals may be constructed in
terms of thermodynamic functions and of the
metric components whose value is equal to M or
J. This may be done in many different ways. How-
ever, if thermodynamic functions are present in
the integrands, the integrals cannot be equal to M
or J unless some of Einstein's equations are sat-
isfied.

In classical thermodynamics of uniform systems,
entropy and energy are complementary with re-
spect to equilibrium and stability conditions of
the system: To a maximum of entropy (5S =0,
O'S & 0} at fixed total energy, angular momentum,
and particle number correspond a minimum of

energy at fixed total entropy, angular momentum,
and particle number. In relativistic rotating stars
such a complementarity also exists, provided en-
ergy and angular momentum are properly defined
as integrals of matter and field functions. Thus,
the elegant energy extremum theorems of Hartle
and Sharp' and the generalized (and improved)
form due to Bardeen' may easily be cast into en-
tropy extremum theorems with corresponding con-
straints.

However, since S, N, M, and J are all defined
a priori one may as well analyze the conditions
for extremum of entropy without resort to any
particular functional expressions whose integrals
are equal to M and J. The way to keep the sys-
tem isolated consists of fixing the total number of
particles and restricting all trial nonequilibrium
configurations of matter and fields to be such that
the metric has an invariant asymptotic form in-
suring that M and J are kept constant. This ap-
proach is in no way complementary to any energy
extremum theorem. It is in essence the approach
of Tolman' in his analysis of thermodynamic
equilibrium conditions of general relativistic
fluids in static spherically symmetric states. It
has also something in common with the method
used by Cocke, who is explicitly concerned with
applying a variational principle to the entropy of
a spherically symmetric and static fluid. As far
as we know, this approach has never been used to
analyze rotating systems. This is the object of
the present work.

We have analyzed the conditions for extremum
of entropy of relativistic rotating self-bound sys-
tems by applying a variational principle to S, keep-
ing the system isolated in the sense we just de-
scribed. The main result may be stated as fol-
lows: If the system is kept isolated and satisfies
Einstein's constraint equations on some spacelike
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hypersurface, the total entropy of the system is
an extremum with matter in mechanical equilibri-
um if, and only if, Einstein's dynamical equa-
tions are satisfied, the temperature and the chemi-
cal free energy, both as measured from infinity,
are uniform, and the system is rigidly rotating.

Compared with the energy extremum theorems
of Hartle and Sharp' and of Bardeen' this is a
weaker result, because mechanical equilibrium
has to be imposed. It seems, however, that this
is all one can obtain without defining the energy
and the angular momentum twice: once at spatial
infinity and once as functionals whose values are
equal to the values defined at infinity.

In Sec. II we shall describe the physical and
mathematical background, while in Sec. III we

shall analyze various constraints we impose on
the system. The consequences of constrained
variational principle applied to the entropy are
developed in Sec. IV and the results as well as
comparison with previous work are discussed in
Sec. V.

u" =- v'/g =-(f,'+ nq')/g . (4)

In cylindrical coordinates, g '=u' while 0 ap-
pears as the angular velocity; both are (p, z}-de-
pendent only. With u" one may define a proper
volume element 'U and a proper volume V by in-
tegrating over any spacelike hypersurface Z ex-
tending to spatial infinity:

V= 'U -=u dZ}, .

We shall restrict the hypersurfaces Z to be in-
variant (intransitive) varieties" of the one-para-
meter group generated by q; in other words, we
shall impose the condition

around the axis of symmetry and their motion is
described by a, unit timelike field u (with uu&,
=1) which is everywhere in the local $-q plane.
Thus there exist two scalar functions g and 0,
whose Lie derivatives relative to g and q are zero
(a symmetry condition) and such that

q"dZ„=O. (6)

II. PHYSICAL AND MATHEMATICAL BACKGROUND

A. Geometrical background

Consider physical pseudo-Riemannian mani-
folds' which admit two Killing fields: a timelike
one, ' $ (x, tt, v, p, o =0, 1, 2, 3), and a spacelike
one, q~. Local "cylindrical coordinates" exist,
(x ) =—(x'=t, x'=—P, x'= p, x'-=z), in which g" =3,
and q = 5~. The metric is, in addition, invariant
under a (t, P) - (- t, —P) reversal, because it
turns out that these are the physically relevant
metrics. Spacetime is supposed to be asymptot-
ically flat, and at large asymptotic spatial dis-
tances, one can find coordinates (x )= (x = t,
x'—= x, x'—= y, x —= z) in which $ =3, , q"
= (0, —y, x, 0) and in which at fixed t and for
r = (x'+y'+z'}' '-~, the metric g„„tends to the
form'

Physical interpretations are most easy on hyper-
surfaces of "simultaneity" (t = const). Condition
(6) implies that the property of simultaneity will
not be affected by a rotation around the axis of
symmetry.

C. Local thermodynamics

We shall assume that local thermodynamic
equilibrium holds. Thus, a local entropy density
function s(x) exists which may be expressed as a
functional of two thermodynamic functions describ-
ing the system: the density of particles (or den-
sity of stars if we are dealing with a cluster)
n(x) and the "internal energy" density o(x). Both
have zero Lie derivatives in the E and q direc-
tions. Local temperature T(x) and local gravito-
chemical potential" p(x) are defined by the differ-
ential form of s(x), namely,

g"=1+ M/(2vr)+O(r '),
g"=q' J/(4vr')+O(r '),

g" = —6"+O(r ')

(1)

(2)

(3)

ds = (1/T)dc —(p, /T)dn,

while local pressure P(x) is given by the following
standard expression:

(g, t, m, n =1, 2, 3), where M and 8 are two num-

bers. In appropriate units" they represent the
mass and angular momentum, as sensed from in-
finity, of some bounded axisymmetric stationary
system of particles.

B. Kinematical background

The space contains such a system" of particles,
all of one type with mass m=1. They are rotating

P = p, n + 1's —0 . (8)

Local thermodynamic functions are associated
with global quantities; for instance, the total en-
tropy S is given by

s= j.~.

Up to this point, we have introduced 13 functions:
g„„Q, 0, and n.
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T"'= (o+p)u"u" —pg p"

is the energy tensor of the system. We shall be
interested in writing 5$ in terms of three scalars
P, y, u, and one tensor E""which are defined in
terms of $, 0, T, o, p, the Ricci tensor of the me-
tric R "", and the scalar curvature R:

P=(Tt) ', r ~P, o-=p/T

and

(12)

EPv —(RPll —gPIIR) TPv —GP!l TPP (13)

The factor P
' is the local temperature as seen

from infinity, (a/P) represents the local gravito-
chemical potential as seen from infinity, while
E"'=0 are, of course, Einstein's equations.
They are not imposed.

With these definitions, S may be written in the
following form, "the proof of which is not com-
pletely straightforward and is given in the Appen-
dix:

5S = P 5mt', —S) -y59- a6%

D. Functional variation of the total entropy

Consider a slightly different geometry, "g„,+ 6g»,
a different thermodynamic state of the system of
particles (or stars) o + 5o and n+5n, and a differ-
ent state of rotation 0+50. We shall restrict the
infinitesimal changes to those that preserve the
symmetry; this may be done by taking 5g"=5@ =0.

The change in total entropy, 6S, is calculated
with the help of (7) and (8}, which may be written
in the following equivalent form:

5(sd ) =(1/T)5(od )+(p/T)5d~ —(p/T)5(nd").
(10)

The total number of particles is given by

~= fm. (20)

5R P = (5g Po) 3RP~ + (D„5gP ) 3R

g pv (5 pa) g pv (D 5g pa)gpv'k

(22)

(23)

The second term on the right-hand side is com-
pletely antisymmetric in p, v, and X. With (22}
and (23) a new identity for 5S may be written,
which will be used below; it contains integrals
on the 2-dimensional boundary B of the system
of particles (i.e., the intersection of the world
tube of the matter with Z) in addition to Z inte-
grals:

5S = (PERP" —ygP")dZ „
B

Pl/

With (6), &becomes divergencelike, say of the
form 8„S~"'~ where

g)iwl —5(Dip(~i) ~{gpp(5ZLp) (51 && )ppip)v~l

(21)
and in which I'„",are the Christoffel symbols.
This BiP"l, according to (1), (2), and (3), goes
to zero at spatial infinity like ~ . Thus, as a
consequence of Stokes's theorem, the Z integral
of S is identically equal to zero.

Since (5 3R —2) and (58) are both divergencelike,
we shall write them, respectively, in the form
~, 5R ""

dZ& and 8 g ""dZ&. Both antisymmetric
tensor densities 3RiP"l and giP'l are linear and
homogeneous in (5g~) and [D~(5gP')]. We may
thus write them as follows, dropping the brackets
around the indices:

—P(v'5E„+ r v" E„„5g"")dZ~]

In this identity, "
3R =2a„(D ~j" )dZ~ =2)"R~dZ~,

g —= —a„(Di"q i) dZq = —q"R„dZg,

and

X-=nu'dZ, ,

while S is defined as

B—= 2(53R +v"gP"5R pd qZ) .

(14)

(15)

(16)

(18)

+ '

(5g P.)(3R~"a„P j P"'a, l )dZ„„
B

[o.551+ (pv'5E, + E~~5g p')dZ~] .

In this expression

E~~=- —v"Ep~+[SRp~,"a„P+Dp(KpP; a„P)]

[&p","a.r+—D p(0 Pp.
"' a. r)l

—= 2v E~+%~—g ~ .X.

(24)

(25)

l

�K=

M and 8=J.
E Z

{19)

The differential forms 9g and g are Komar's" con-
served forms for energy and angular momentum.
With the asymptotic conditions (1}-(3), it is easily
shown that

E. Coordinate invariance and related identities

For an arbitrary infinitesimal one-parameter
transformation of coordinates 5x~=a (x)5r, the
free scalar S is invariant. With (8) taken into
account, a straightforward calculation shows that
what remains of 5$ is as follows:
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0 = (5S/5r)

na~ O = (o + p ) S~ (1/T) + (1/T) S~ p .

If p, y, and 0. are uniform, which is the case
in thermodynamic equilibrium, (26) reduces to

D Eq=-D T), =0.

(27)

(28)

Equations (28) are those of mechanical equilibrium
of the system of particles. The fact that mechan-
ical equilibrium is implied by thermodynamic
equilibrium is a known property in Newtonian the-
ory and has also been exploited for relativistic
self-bound systems. ' Identity (26) is closely ana-
logous to the generalized Bianchi identities de-
duced from the action integral from which Ein-
stein's equations are derived. It is well known
that the condition for this action to be invariant
under arbitrary coordinate transformations
leads precisely to the condition (28) of mech-
anical equilibrium. The existence of the Bianchi-
like identities (26) will have important conse-
quences regarding the results of applying a varia-
tional principle to S, as we shall see.

—qszo. ] u ~dZ& .
(26)

The boundary contributions are identically equal
to zero because of (7) and no other term appears
besides those with Q dip This identity holds for
any change of coordinates 8", if the term in brack-
ets is identically equal to zero. This result may
also be obtained from the Gibbs-Duhem equality
derived from (7) and (8):

(v "5E~ + a E„„v 5g "")n ~

= v" (E~„n„)+ 2E„,n„) 5(g""-n "n')

-=p H„,5e"". (31)
So, one is left with a linear combination of only
six linearly independent terms since e"'n, =0.
With (29}and (30), 5S becomes a linear homo-
geneous functional of 5n and 6g"" only. The con-
straint equations have effectively been used to
eliminate two functions, o and 0, in terms of the
remaining eleven ones, n and g„„.

8. Conditions for isolation

We shall be interested in extremizing the en-
tropy with fixed mass, fixed angular momentum,
and fixed particle number. Consider first the con-
straints related to the asymptotic behavior of g„,.
According to (1) and (2), 5M= ET =0 implies only
that, at spatial infinity, 5/00 is O(r '} and 5g" is
O(r ). Such conditions of isolation are, however,
too weak and not very useful because S is defined
by an integral whose integrand is identically zero
outside the boundary B. We shall impose the
slightly stronger condition

(32)

on any closed 2-surface that does not cut the
boundary B but may be infinitesimally close to B.
If (32) holds, then according to (19)

5%=5 %= GER= 55R —S

III. CONSTRAINTS ON THE VARIATIONS
OF TOTAL ENTROPY

=0, (33)
A. Einstein's dynamical constraints

H„=-E~n„=o.
We thus impose (29) and

6H„=O.

(29)

(30)

When this is done, the terms in (14) that contain

E&, and 5E„, may be reduced as follows:

We shall now limit all trial configurations for

g„„, v, n, and 0 to satisfy Einstein's constraint
equations (or initial value equations). Initial val-
ue equations depend on the hypersurface Z. If n

is the local unit normal vector in the direction of
dZ~, the constraint equations are defined by

and similarly RI =0. Conditions (32) are thus suf-
ficient in order to insure that M and J are kept
constant.

We shall see below that (32) is also necessary
for S to be an extremum in the following sense.
As a result of applying a constrained variational
principle to S (see Sec. IV) we shall find that P,
y, and a are constants. Consequently, for arbi-
trary variations of g„, the variation of the entropy
will reduce to a boundary integral, the first one
on the right-hand side of (24). So S will be ex-
tremal only if (32) is satisfied. Conditions (32)
are thus also necessary conditions as far as I
and J are concerned.

In addition to fixed M and J we shall impose the
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condition that the total number of particles is
fixed; that is, according to (20),

5N = 5+=0.

IV. CONSTRAINED VARIATIONAL PRINCIPLE

AND EXTREMUM OF ENTROPY

A. The variational principle

(34)

q q -=(("u„}s~p+ (q"u „)sqy = 0 . (42)

tions contain eight variables: e~, P, and y. Two
equations are thus missing, say for P and y. One

way to obtain a complete set of equations is to im-
pose mechanical equilibrium [condition (28)].
Then, according to (41}and with (o+P}w 0 every-
where except perhaps on the boundary or on the
axis of symmetry (see footnote 12), one obtains

Consider all trial configurations that satisfy
Einstein's constraint equations (29) and (30). If
in addition the system is isolated [conditions (32)
and (34)], the total constrained variation of S re-
duces to the following form obtained from (24) and
(25):

6S- (bgP )(3)IP s P ) P s y)dZ

K~ —= „n(n3R ~ g~P,},
j.

Kpp p PHp, +n„(lfpp $ pp)

(36)

(3't)

Let us then apply to $ a variational principle.
For fixed g„, and arbitrary variations of n, the
entropy is extremal, 5$=0, if

(a —o.,}6%- (K„bn +K~be~)dZ,
E Z

(35)

where Q, is a constant Lagrange multiplier and
dZ~—= n„dZ, while

This represents only two independent equations
since P and y have zero Lie derivatives in the E

and g directions.
Equations (42) have some interesting implica-

tions. It turns out, "in the presence of stationary
heat flows, that the entropy production is positive
if the heat-flow vector is proportional to q„. It
follows that chemical equilibrium (38) and mech-
anical equilibrium (28) imply the absence of heat
flows in a rotating system. If the system does
not rotate (y =0) the absence of heat flow immedi-
ately implies that the system is also in thermody-
namic equilibrium: P = const. However, in a ro-
tating system, mechanical equilibrium and chemi-
cal equilibrium are not enough to insure thermo-
dynamic equilibrium or uniform P and y.

B. Entropy extremum theorem

In considering extremum properties we shall
drop condition (39) and adopt arbi trary variations
of g„,. The value of 5$ reduces now to a boundary
contribution; in fact, with (32), (35), (38), and

(40), one obtains
Q =QO=Qg, (38)

where an index B indicates the value on the bound-
ary. Next consider arbitrary variations of g»
such that

(39)

6S = (bg~)(3R"' s„p —g"," s„y)dZ„, . (43)

Ne shall see below that the only solutions of Eq.
(40) and Eq. (41) for P and y are

Then OS =0, if

K&=0 and K&, =0. (40)

P = P~= const,

y =y~= const. (45)

These ten equations are not independent since $ is
invariant under arbitrary coordinate transforma-
tions. They are related by a set of Bianchi-like
identities which may easily be written in terms of
K& and K~. A simple and useful form of these
identities has already been obtained in (26); if we
take account of (38), they become the following
equations:

&pDP'" =(&+p)[(Cu.)s p+(n"u„)s y] (41)

In terms of numbers of variables and number of
equations, the situation is now as follows: for a
given field n (i.e., a given Z+a coordinate sys-
tem} one has the ten equations (40) of which only
six are independent. These six independent equa-

This will imply [see (3 t) together with (25)] that
(40) reduces to Einstein's dynamical equations

E» =0 (with E„'=0) . (46)

It also implies that the entropy is extremal, 5S= 0,
for arbitrary constrained variations of the vari-
ables since nothing is left of the second member
of (43). Thus, if P and y are uniform, the follow-
ing theorem is established: For every trial con-
figuration of matter and fields that keeps the sys-
tem axisymmetric, satisfies Einstein's constraint
equations, (29) and (30), and for which the system
remains isolated in the sense of (32) and (34), the

entropy is an extremum for the matter in mechani-
cal equilibrium, Eq. (28), if, and only if, Ein-
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stein's dynamical equations (46) are satisfied,
temperature as seen from infinity is uniform,
Eq. (44), chemical free energy as seen from in-
finity is uniform, Eq. (36), and the system is rig-
idly rotating, Eq. (45).

It remains to be shown that P and y can only be
uniform.

C. Thermodynamic equilibrium

B,P+ (u, /u, ) B,y =0; (48}

there are two nontrivially satisfied equations in

the set K„=O. One may be written as follows:

g' ((y x B[(g(-g„)'t'] x B P —(-g„)'t' x B(gx B y) = 0 .
(49)

The second one, with the help of (48}, reduces to

B.(fg"B y) =0, (50}

in which f is the following positive-definite func-
tion:

f -=-g„e (u'/u, )(- detg„)' '. (51)

Equation (50) is an elliptic equation of the form

&y+ h'(x') B,y =0. (52)

If y has either a maximum or a minimum at some
interior point of our system, then according to
Hopf's theorem, i.e., the maximum principle, "y
is a constant. Thus the only nonuniform solutions
of (52), if they exist, have a maximum and a min-
imum on B. Consider a contour" C, the intersec-
tion of B with a hypersurface P = const. In order
to analyze the behavior of y on B, we shall take
near C, in the hypersurface /=const, coordin-
ates x' in such a way that the equation of C is"
given by x'=const. In these coordinates, y on the
contour C depends only on x'. Thus, according
to (48),

Away from the axis of rotation the metric may
be written as follows":

ds = (e"+ gag»}dt —2&kg»dt dP+g»dP~+g~ dx' dx

a, b=2, 3, (47)

in which U, g„(&0), v, and g,b depend only on

(x') =(x'—= p, x'—= z). The existence of this form of
the metric depends on the form of the velocity
field as given in (4) (nonconvective motion) and
on very reasonable and general topological pro-
perties of spacetime. Let us put together the
equations for P and y, namely (42) and K~ = 0
from (40), and write them in terms of the metric
(47). A tedious but straightforward calculation
leads to the following equations: From (42), and

since u, e 0 everywhere,

(fg "B,y)c = const. (53)

Ne would like to thank G. Horwitz with whom we

had useful discussions.

Since y assumes its maximum and its minimum

on B, and since fg" is everywhere negative, it
follows from (53) that B,y can only be zero on B
and thus y is uniform in the system and on the

boundary of the system According to (48), P is
then also uniform. This completes the proof of
the extremum theorem of the entropy.

Equation (49) has not been used in the proof. It
is a redundant one. It may, however, be inter-
esting to note that with (49) one does not need
Hopf's theorem if one supposes analyticity of y.
Also one does not need to go to Fermi coordinates
in order to prove that P and y are uniform. "

V. DISCUSSION

The entropy extremum theorem developed above
is distinctly different from the energy extremum
theorems and is not complementary to any of
them. Ne did not use any functional definition of
energy or angular momentum and relied only on
the geometrical definition of these quantities.
For this reason, the theorem is without equivalent
in the Newtonian limit where energy and angular
momentum are defined in terms of functionals and
where (just the opposite of what happens in Ein-
stein's theory of gravitation) the number of par-
ticles is defined by the asymptotic value of the
gravitational field.

The striking feature in proving that the extre-
mum of entropy leads to uniform temperature as
seen from infinity and to uniform angular veloc-
ity, without using Lagrange multipliers, is the
fact that no boundary conditions have been intro-
duced for P and y or their derivatives. Nor had
we to fix the values of constants of integration on
the basis of a regular behavior near the axis of
rotation. Analyticity of p and y is not even needed.

In this respect, Tolman's' proof of the uniform-
ity of P in static spherically symmetric systems
is a weak one, the more so that the full set of Ein-
stein's equations was taken into account. Tolman
obtained a differential equation for P(r) whose so-
lution is B„P(r)=const. In order to obtain uniform

P this derivative has to be equated to zero. This
amounts, as we saw in Sec. IV, to impose what
we are really trying to establish, that there is no
heat flow. As we noted previously, uniform tem-
perature as seen from infinity in spherically sym-
metric systems is a direct consequence of chemi-
cal equilibrium (n = as) and mechanical equilibri-
um [Eq. (28)].
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APPENDIX

Here we prove identity (14). From (13) we have

Or, after some rearrangements

u~(cr+p)u„5v" = ~(c+Sp)5v —2p5v"
Rx Zk+ 1 gXR+@X

=(T ——'5~ T') +(E~ —-'5~E)

in which

g =g PVg

and

yP -g PV Z' —
O 3p

p pv

(54)

(55)

(66)

-q "nn, + 2Ebv" -Ev 5v".

Now, (4) implies that

Q), V

hence

(61)

(62)

v~(o+SP) = m —2Q j"+v E-2v"E„, (57)

Contracting (54}with v" and successively using

(4), (ll), and (56) we obtain after some rearrange-
ments

Qf = p gg "u $5g~v+ u g5v (63)

Multiplying (11) by 25g„„and remembering that
5(-g)'~' = ,"g""—5g„„onegets

where —,'(8+p)u &u'5g„„= a T""5g„,+p5(-g)'i'. (64)

m =2R, E", j "=-R„"q'. (58)

5v =q 50.
Again, using (ll), (13), and (59) one obtains

u "(8+p)u„5v" = (T„"+ 5„"p}5v"

(59)

The conditions of the variations are such that
with (4) one has

Now multiply (63) by (v+p), use (64) and move

p5(-g)'~' to the left-hand side; the result is

(c P)56 PK5( -g)' ' =--, KT~'5g„„+ (o +P)u„5v";

(65)

with

=Rv5v' —25v R5v"-Ev5v'+5, p5v".

(60)

R ""5g~V = -RPV 5g""

and (13) one obtains

(66)

2 T""5g„„=a[R""5g —ag""R5g„„-E""5gg„]

= 2 [-R~„5g" -R5(-g)'~ —5E+g~„5E""]= a [-5R+g""5Rp„—5E+gq„5~"']

= 2 [/""5R„,+g„„5E""+5(8'-Sp)].

Inserting (67) into (65) and multiplying by u" one has

u [(&+$)5i; —pg5(-g)' '+3&5p] = u "(&+p)u„5v"+ a [g„„5E"'+g'""5R„,] v" + g v~5(8+3 p) .

From (57}

(67)

(68}

z(&+Sp)5v = —2v"5(o+Sp)+55m" —5(Qj ) —5(v'E„")+i~5( Ev).

Combine (69) with (61) and obtain

(c+p)u„5v" + 2 v 5(8+3p) =
& 5m —5(2Q j ) —25(v" E~)+5(v"E)—2p5v~+Q5 j ~+v"5E~ ——,

'
v~5E .

Defining

~x ——(5
"k ZAP 5R

[cf. (18)] and substituting (70) in the right-hand side of (68) one has

(69}

(70)

(71)

& [{&+p)5$-pl'5(-g)' '+3$5p]+ 2p5v = 5)~ —25(Qj )+Q5j~ —2 (v"5E,") (+v~5E)+v" E„5—&v"E"'5g „.
(72)

Because the following identity holds



12 ENTROPY EXTREMUM OF RELATIVISTIC SELF-BOUND. . . 963

6[(8+3p)v"] —2p5v'-u "[(&r+p)5g —pg6(-g}'"+3&5p]

=&5(ou")+ou 5&+3v"5p+3p5v —2p5v —u" 85& —u "p5&+v p5(-g)'i' —3 "5p
= (5(ou ~) +p6v~ -u ~p5) + v~p5(-g}'~' = g5(ou ~) + gp5u ~ + cpu ~5(-g)'~'

= f[5(cu )+p5u ]

or equivalently

u [(o+p)6$ -p&6(-g)'~'+3&5p]+2p5v =5[(o+3p)v ] —&[5(ou")+p5u ],
one obtains, on substituting (74) into (72),

&[5(ou )+p6u ] =5[(o+3p)v ]+6(20j )+25(v"E,")—5(v E) —S~ -05j"—v"5E~+ —v~E&"5g„, .

(73)

(74)

(75)

Pnt the variation of (57) in place of the first member of the right-hand side of (75) and rearrange to estab-
lish

g[5(ou )+p5u ] =5m —Q5j —X) —v"5E„+-v E""5g„„.

Now make nse of (10), divide by P, and rewrite (76), by using (12}, in the form

5(su") =P(5m —u ) —y5 j"—u5(nu ) —P(v"5E„+ p v~E""5g„„)dZ„,

(76)

(77}

which upon multiplication by dZ~, and with the definitions (15), (16), (17), and (18) for JR, 8, 31, and S,
respectively, yields

5(su dZ ) = p(5% —u) —@58—o.5X- p(v"5P~+ 2 v"E""6g„„)&Zq. (78)

Finally, by integrating (78} over Z and using (5) and (9), one obtains expression (14), which is an identity
equivalent to (10).

This is true, not because of formal analogies in the
equations of equilibrium, but because relativistic clus-
ters have a maximum of entropy for equilibrium con-
figurations. This may be proved by statistical-me-
chanics arguments. See G. Horwitz and J.Katz, un-
published.

2J. B. Hartle and D. H. Sharp, Astrophys. J. 147, 317
(1967).

3J. M. Bardeen, Astrophys. J. 162, 71 (1970).
In fact, as we shall see, weaker conditions may be im-
posede

R. C. Tolman and P. Ehrenfest, Phys. Rev. 36, 1791
(1930).

~W. J. Cocke, Ann. Inst. Henri Poincarb 2, 283 (1965).
In the process of varying S, trial configurations are not
equilibrium configurations.

S. %'. Hawking and G. F. R. Ellis, The Large Scale
Structure of Space-Time (Cambridge Univ. Press,
New York, 1973).

The metric g&„has signature -2; we shall denote
det(g») by g (& 0) and A(-g) by A for every quantity
A.
A. Papapetrou, Proc. R. Irish. Acad. 52, 11 (1948).
Units: c = A =8~6 =0=1 in standard notations.
For simplicity we shall consider simply connected
configurations; no empty blobs in the matter.

~3L. Eisenhart, Riemannian Geometry (Princeton Univ.
Press, Princeton, 1949).

~4Also called chemical free energy, see C. W. Misner,
K. S. Thorne, and J. A. Wheeler, Gravitation (Free-
man, San Francisco, 1973).

As will appear clearly in Sec. IVC [see (47)], the 10
components of the metric are not independent. They
will, however, be treated as such in our variation
calculation. For a justification of this procedure,
see Bardeen (Ref. 3), p. 77.

~ This identity is useful in studying not only entropy
extremum of rotating relativistic systems [G. Horwitz
and J. Katz, Ann. Phys. (N. Y.) 76, 301 (1973)], but also
their stability [J. Katz and G. Horwitz, Astrophys. J.
194, 439 (1974)]. In addition, the identity is useful in
establishing the connection between various energy or
entropy extremum theorems [J. Katz, J. Phys. A 5,
781 (1972).

~YSquare brackets around indices means antisymmetri-
zation; 8& represents an ordinary derivative relative
to x, while D~ is a covariant differentiation.
A. Komar, Phys. Rev. 113, 934 (1959).
J. Katz and G. Horwitz, in Modern Developments in
Thermodynamics, edited by B. Gal-Or (Wiley, New
York, 1973).
See B. Carter, in Black Holes, 1972 Les Houches
Lectures, edited by C. DeWitt and B. S. DeWitt (Gordon
and Breach, New York, 1973), pp. 159-166.
R. Courant and D. Hilbert, Methods of Mathematical
Physics (Interscience, New York, 1962), Vol. II.

22To be precise, the word contour means, in this work,
interior contour. Insisting on mathematical rigor de-
mands working with a curve infinitesimally displaced
from the contour C towards the interior of the system.

23Such coordinates always exist if the differentiability
class of C is at least the same as that of the manifold
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(C3). The coordinates may be further specialized to
Fermi coordinates. Strictly speaking, C has to be
univalent but one may always remove a point or use
two coordinate patches [see N. J. Hicks, ¹teson Dif-

ferential Geometry (Van Nostrand, Princeton, 1965)l.
24Had we known something about the behavior of the co-

efficients of B,p or 8,P in (49), we could have used this
information instead of one equation of the pair (28).


