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Einstein-Cartan cosmologies with a magnetic field
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This note points out that the natural generalization of the Maxwell equations in spaces having torsion leads to

a breakdown of the gauge invariance and charge conservation principle. The equations are, however, taken in

a form so as to preserve gauge invariance; and the possibility of bounce is investigated in the presence of a

magnetic field for Bianchi type-I universes with p = 0 and p = p.

I. INTRODUCTION

In recent years, attempts have been made by
Trautman' and others (very readable reviews have
been given by Kuchowicz' and Hehl") to link up

spin with geometry by considering the affinities
to be nonsymmetric. The basic geometry is thus
non-Riemannian and the field equations are ob-
tained from a variational principle where the
metric tensor components and the affinities are
varied independently. The antisymmetric part of
the affinity is coupled with the intrinsic spin den-
sity of material particles and, in particular, van-
ishes in the absence of spin.

In the study of cosmological models with spin-
ning dust particles, it has been claimed by
Kopczynski, ' Trautman, ' Isham et aI. ,

' and Tafel'
that the new formalism, commonly called the
Einstein-Cartan theory, leads to a. spin-spin in-
teraction which opposes the usual gravitational
attraction of matter and thus may arrest the col-
lapse to singularities in cosmological models.
However, early workers like Trautman and

Isham et a/. have held that the spin-spin interac-
tion is effective only if the spins of the particles
are aligned. It has been suggested that alignment
might be brought about by a high-enough magnetic
field in the early phase of the universe. It then
seems imperative to study the role of magnetic
fields in this formalism —this, as far as the pres-
ent author is aware, has not been done so far.
(It has recently been argued by Hehl et al.' that
even in the absence of alignment, the spin inter-
actions may be present as there are some squared
terms involving the spin in the Einstein-Cartan
field equations. Even then it would be of interest
to investigate the early conditions of universes with
a magnetic field. ) Indeed, a magnetic field not

only contributes to the energy density but, as will
appear in the following sections, is also associated
with shear. Both of these would augment the
gravitational effect as is apparent from the expan-
sion equations deduced by the present author' and

by Stewart and Hajicek. " The present note shows

that even in the presence of a magnetic field, there
exist solutions where the collapse is halted by the

action of spin.

II. FIELD EQUATIONS AND THEIR INTEGRATION

As has been already pointed out by Hehl, ' the
Maxwell field does not couple to torsion. It is
easy to see that if it did couple to torsion, one

would have to sacrifice the charge conservation
principle. If one tries to obtain the electromag-
netic field equations from the variational principle
with the usual Lagrangian,

gF,F"'+J"A ) -g)' 'dx dx'dx'dx'=0,

with

F„,=A„)„—A„~„wA„., A, „=A„,

(where a vertical line indicates covariant differ-
entiation with the nonsymmetric affinity, a semi-
colon denotes the covariant derivative with the
Christoffel indices, and a comma denotes the or-
dinary partial derivative), one finds that the gauge
invariance is lost. The variational principle gives
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or, if Q 8 be the antisymmetric part of the af-
finity,
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so that

or
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Thus if J" is identified as the charge current vec-
tor. then in general the charge conservation prin-
ciple is not valid. It therefore seems more ap-
propriate to adopt the prescription that the elec-
tromagnetic field tensor is to be defined by
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g„„=-A„.„-A„.„=A„„-A,„
when we have the usual Maxwell's field equations,

P" (-8'}"'1

To have an idea of the influence of the magnetic
field we consider the Bianchi type-I line element

ds2 = c2dt2 e2+dx2 e2 dy2

A = BmGpR' (10)

and an arbitrary constant of integration has been
absorbed in the time variable. In view of Eq. (9)
and the definition of R, we get

first the case of dustP=O. From Eqs. (3) a.nd (4)
we get

(Ir) +g =AtR

where the constant A is given by

where Q, 6}, and g are functions of t alone. The
energy-momentum tensor for the fluid plus elec-
tromagnetic field is

T~„=(p+pc~)v~ v„-pb"„

3R At
R R'

~ 2At 3A
R3 R

(12)

4~''
where v" = (I/c)bo". In general, there will be an in-
teraction between the spins and the magnetic field
tending to bring about the alignment of spins.
However, for simplicity, we shall restrict our-
selves to the condition where the alignment has
already been brought about and so no torque is
exerted on the elementary magnetic dipoles. We
shall take the spin as well as the magnetic field
to be in the x direction, so that only 8» (=-S»}
and F» (= -F») of the spin tensor and the electro-
magnetic field tensor are nonvanishing.

The condition T"=0 gives g= 6} and the other
field equations are

Substituting from the above in Eq. (8) and using
relation (6) we get

d—(R') =~A+ Gc'b'e~ '~ (13)

Adding Eq. (2) and (3) and using relations (11) and

(12}and also remembering that P= 0, we get after
a little reduction

Equation (14) is essentially the expansion relation
deduced by Stewart and Hajicek" and a little later
by Tafel8.

24At RR —30R R —6R R

+R (2G S 6A t )+AR =0 . (14)

—,(8vP —B') = G,'+64v'8'G~

G—,(8vP+ B') = 8,' + 64' '8'G',

—,(8m pc'+ B') = G', —64m 'S'G',
c

(2)

(3)

(4)

8 v + —,'8' —v .„+2o' —((u, „+S,,)((u' + S"}
+ 4v(p+3p) = 0,

with the difference that in our case there is a
magnetic field but vanishing rotation (~;„=0).
Thus the Stewart-Hajicek equation becomes in this
case

where B is the intensity of the magnetic field and

8 is the spin density given by 8' =-,'S, ~
8' . We have

the conservation relations

64"8' =$'R-'

B2 = y2e-4&

d(pcaR3)+ 3p R~dR = 0,

(6)

where S and b are constants and R'=exp(P+2y).
G8 are the Einstein tensor components R8 ——2'R4&

for the line element (1}.
From Eqs. (2) and (3}we get

—[R'(g —g) ] = 2 Gc'B'R'
dt

so that with BWO, the shear is nonvanishing. To
proceed further, we require a relation between the
pressure and the energy density. We consider

2

6} U + —,'6I — . +2 ' —28'+4m p+3p+ —=0 ., O'. ; CX 4n

(15)

A straightforward calculation of v2 and B' from
Eqs. (8), (11), and (12) shows that Eqs. (14}and

(15) are identical. [In Eq. (15), G=c=1.]
We have not been able to integrate Eq. (14}in

complete generality. However, we note first two

cases where the solutions are already known.

(i) 8= 0, the Trautman -Kopczynski case. In
this case, Eq. (13) is readily integrated to give

$2G2 ~2
R = ~At 2+ at+

t+ 2n ' $'G' —,u'

where n is an arbitrary constant of integration
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related to the shear, a.nd another constant of inte-
gration has been determined by using Eq. (14}. In
this case the occurrence of a singularity is avoided
if O'S'&~a'. (Comps. re the discussion of Stewart
and Hajicek. ")

(ii) $=0. The solution in this case has been given
by Thorne in the form

Thus the minimum occurs a, t a volume which is
smaller than even that in the corresponding
Trautman case' of vanishing magnetic field. With
R„„„&1cm (the Trautman value), Eq. (24) gives

GN h'

':= &&.(e" +24)(e' a)-"'

R' = e + 4Pe'" —8p'e", (18)
N-10" (N being the number of baryons),

(25)

where

a""=—
3A.

1

6nGpR' '

3b2

(19)

(20)

Here of course there is always a singularity of
vanishing R'.

Finally, we present a pa, rticular solution in the
neighborhood of t =0 to exhibit the existence of
singularity-free solutions even in the presence of
magnetic fields. We take

e'= e-~=R', (21)

G2$2t 2

+ p
2

C
(22)

2SBG2
A.p. &(

C
(23)

Equations (13}and (14) are approximately satisfied
lf

p+(I = nR (26)

B,, &10" gauss. [The inequality (23) and Eq. (24)
set an upper bound to 5 vis-a-vis the spin $ and
the density p. However, for a given S, b varies
directly as p, (=R„„„'). So as R„;„decreases, b

decreases; but according to Eqs. (6) and (21), the
decrease of b is accompanied by an increase of
B. Thus the upper bound of 6 corresponds to a
lower bound of B ]The .lower bound of B far
exceeds the critical value -10" gauss at which one
would expect the field to show qua, ntum effects
(cf. Euler and Kockel"). However, our approxi-
mate solution is a very special one in the sense
that it has been obtained under condition (23). It
seems likely that other solutions exist where the
magnetic field does not attain so enormous a
value.

An explicit integration of the field equations in
terms of elementary functions is easily obtained
in case P =p. Such an equation of state may appear
unphysical. However, we present the solution be-
cause of its simplicity and because it gives us
some idea of the general state of affairs when the
pressure is nonvanishing. Equations (2) and (3)
now give

Gl/2
pS.

C
(24)

so that.

3R u
Thus the situation represented by Eqs. (21}and

(22) is realizable near R=R„,„=p'~', if there is a
magnetic field present satisfying the inequality
(23). At the minimum of R, both |i and P vanish,
but while e~ is a minimum e~ is a maximum and
the universe has a cigarlike form, the long axis
lying in the common direction of the spin and the
magnetic field. As time goes on, the term G S R
becomes small and the situation approaches the
case of Thorne as given in case (ii}above. The
expansion is still anisotropic although all the di-
rections are expanding. Still later when e~»P,
the solution approaches the isotropic Friedmann
universe.

For the solution given by Eqs. (21) and (22), we

have

2$2G2 2$2G

2n 3R
R R (28)

24~RR-~ 3PR-~R'

+ (2G'S' —6o.' —2q) 'R = 0, (29 }

where the constant Q is defined by

Q =8wGpR

Equation (29}ha. s the first integral,

(30)

—(R') =4o. +PtR ',
dt

(31)

with

where n is an arbitrary constant of integration.
Equation (14) is now replaced by
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P =- s' —sa' —Q, (32)

Thus &' has a minimum if P&0, which would cor-
respond to the spin dominating over the combined
gravitational influence and the shear. The integral
of Eq. (31) is, in this case,

4net —pt2i =A' (~
Q +2n)t —R'

with

p, '= /+4''
and A. is an arbitrary constant of integration which
determines the value of R at t=0. The minimum
of R occurs at

t=-4nR„„„P ',

Substituting from Eq. (31) in Eq. (8) we get

B = PR "(R' —4nR't —Pt ')

so that if J3 be nonvanishing we have

e~=R ~R —4nR t —Pt2~

4nR t pt

while if B=O, one has if P+0 (in the case /3=0,
R;„coincides with the singular state R = 0)

Re —4~A'f —Pt2 = 0

2 nip

g +2Q

In the case p(0, the integrals of Eq. (31) are

or

R' = (2n s p )t,

iRS —4nR't —Pt2j =A2exp, for P+ 4n2 = 08' —2o, t

4n, R' —2@t=A'exp ——tan '
p. t

for -p'= P+4a'&0 .

with

p, '=4m +P& 0 .

The asymptotic nature of these solutions near
R = 0 in the case of vanishing spin has been studied

by Thorne. "
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