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Gravitational energy-momentum on nonmaximal surfaces*
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Gravitational Cauchy data defined iteratively from an input set which is of pure linearized gauge form

representing a nonflat hypersurface appear to possess tachyonic energy-momentum P". We show that such

systems do behave correctly: P" is positive timelike, and vanishing of the energy implies flat space. Although

the P" begin at quartic order in the inputs, it is possible to exhibit explicitly the helicity-2 character of the

gravitational excitations on which both the energy and the flatness conditions depend.

The extreme nonlinearity of the gravitational
constraints complicates explicit evaluation of the
physical content of a given initial data set, parti-
cularly on an arbitrary spacelike surface. We

shall deal here with a Cauchy problem which ap-
parently has tachyonic character: vanishing ener-
gy, but not momentum. The data are defined iter-
atively in terms of an input which is "pure gauge"
at the linear level, representing a nonflat hyper-
surface. Owing to the non-Abelian gauge invar-
iance, however, this system does not describe
flat space. [A Yang-Mills analog is A;. =A. 8,.A',
where 4 is an expansion parameter; the magne-
tic field does not vanish to O(a').] It will be shown
that the undesirable momentum actually does va-
nish, and that the lowest-order energy is positive,
vanishing only for flat; space. It is also gratifying
that the energy, as well as the conditions for flat-
ness, are defined entirely in terms of a purely
transverse-traceless (helicity-2) field excita-
tion. These solutions are thus in full agreement
with the physically expected properties of gravita-
tional systems.

The gravitational initial data (g, , , &'~) satisfy the
four constraints'

-8v'y= y'[(LW)'--,'(v'o)'] -=p,

—28, [$ (LW);)] =+3/68;V o =—j(, (4)

while &~ and P' are just proportional,
to fdsr p and fd'vj'. To order 1, we
&", = (6,,V'- 8, 8, )o, which corresponds
gauge excitation of the field, since the
dazzi flat-space imbedding conditions

respec tively,
find P, =0,
to a pure
Gauss-Co-

v„(w, , —~g, ,v) —(j —m) =0

are satisfied, and of course P,"=-0 since j,' is a
gradient. Physically, we have a bumpy (v 40) hy
persurface in flat space-time to this order. To
order 2, however, space is no longer flat, for
while &", -=0, we find (a, =-o „o,, =o „)

where V' is the flat Laplacian and (LW);, —= W;,
+ W, , ——',6„.W, , (we have written an explicit V'
with o for future convenience, but there is no loss
of generality involved). The boundary conditions
required for P" to be well defined are' that
&f&-1+0(r ') and m'~-O(r ') in Cartesian frames
at infinity, and P and S',. will be defined as func-
tional power series in o by the constraints, Eq.
(1), which read

where all operations are with respect to the posi-
tive 3-metric g, j on the surface, and the &'j are
the conjugate densities describing extrinsic curva-
ture. The energy-momentum (M, P') are defined
in the usual way in terms of the linear parts of the
constraints. We shall consider for concreteness
a particular class of initial data here, but the re-
sults apply to more general ones which share the
property of having pure gauge parts to lowest or-
der in some expansion parameter. The data are
defined by

(6)

so that W,-j does not in general vanish to this order.
Because Q, is a divergence, ~, still vanishes. One
would expect from the fact that nontrivial excita-
tions start at O(2) that P ", being at least bilinear
in field excitations, would start at O(4). However,
if one computes &3', it does not vanish, unlike Q3,
and this leads to an apparently tachyonic situation
since ~3=—0, while

P,' — d'r @,8,.V'c

g;j =0'&)j,
= P'[(LW),

&
+ —', 6;,.V'o],

(2) does not manifestly vanish. Fortunately, closer
analysis of this nonlocal functional shows that j'
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is in fact itself a divergence:

8 d'r $,8,.V'o =8 cr,.V'Q,

only available TT tensor:

S' = WTT V2STT
&f 5 J (12)

[o,, e, (o,o,) +a, 'V'o, ]

0. ) . V 0+0 Vo

=0.

The angular momentum also vanishes because of
this property of j,. that it is of the form 8~V", V

symmetric.
We now come to quartic order, where the P"

should come into play; P,'=0 since m4' =0, but
there is a P4 which is no longer a total diver-
gence, ' leading to

r 5(II)2 LSi) 3 V'o) +2 LWj LRs

(9)

which can be reduced to

M- drS], ;; —V )S, , + o, S,, .. . 10)

where the first term is positive but nonlocal in the
o's and the second is local but nonpositive. How-
ever, a lengthy calculation shows that M, has the
remarkably simple form

d'r VS~ 'o-0,

where SI& is the transverse-traceless' projec-
tion of S,&, which is the hallmark of helicity 2.
Thus the quartic mass has appropriate dependence
on a TT excitation (itself quadratic in o).

Does M4=0 implythatspace is flat to the appro-
priate (quadratic) order'P To see this, consider
the relevant part, W," of Eq. (5), and define W, ,
=—W;,. —p5],$'». This tensor is clearly traceless,
since the trace of %'„ is the definition of the sca-
lar constraint in Eq. (1}. It is also transverse,
since the combination G„.=-R„-&5„R is identically
transverse, and the terms quadratic in r'j~ can be
shown to share this property by direct differentia-
tion. Therefore, W, &

is a pure TT tensor, and

may be shown explicitly to be proportional to the

The flatness conditions are just the requirement
tha. t the two quantities STT vanish. But M4=0 is
equivalent to STT=O, which completes the proof. 4

Note that S =0 does not require a = 0, since one
can have intrinsically curved surfaces (P, &0} ap-
propriately imbedded (v", &0) in flat space-time.

The above results are gratifying since proofs
of pos itive ene r gy' have always been complicated
by the nondefinite character of the combination
(&' &;, ——,&') when g, , &5;,, and this was the source
of our problems too, since for 71 =0 the "kinetic
energy" contribution is manifestly positive. Of
course, one can always (in principle) make a gauge
transformation for a.ny asymptotically flat system
to a surface & = 0; in our case this would corre-
spond to a first-order transformation to a nearby
maximal hypersurface with &j" =0. With this re-
gauging, both g„. and v'' would start at O(2) in o
on the new surface. But then one could apply the
known results of the linearized approximation to
these transformed data, tha. t for arbitrary weak
fields (g, , , &") satisfying the linearized constraints
the total P" reads

M~- d r 2VgTT,.) + m. . ) o 0

P d Srp TT+g TT
L

When M~ =0 the flatness conditions are satisfied
to linear order, and ML2- PL2) 0 for any asymp-
totically flat excitation. ' But the only quantity
availa, ble to constructg T or r I for the transformed
data in our case is of course S~, in agreement
with our explicit results.

We conclude that initial-value systems with m&0

do not clash with the required physical properties
of gravitational systems, particularly of P" and
the flat-state conditions, although a general ex-
plicit proof will not be easy to construct.

It is a pleasure to acknowledge particularly val-
uable discussions with T. Regge, C. Teitelboim,
and R. Wald, whose insistence that the apparent
paradoxes be solved without leaving the usual
framework was salutary. The troublesome and
therefore interesting initial data which caused this
investigation were first posed by N. 0 Murchadha.

~Work supported in part by the National Science Foun-
dation.

For the initial-value framework, definitions of P&, and
boundary conditions see R. Arnowitt, S. Deser, and
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2N. 0 Murchadha (private communication).
One may think of p4 as involving Coulomb interactions
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among p2's; since only the integrals of T &, but not
the T&' themselves, are (linear) gauge invariants in
the linearized theory, it is not surprising that M4, un-
like M» is nonzero.

4We suspect that this connection between M and W;, is
very general; if M=O is to imply flatness, there must
always exist a way of expressing M as a positive func-
tional of W;, . In our example, M4 fW„( V-)W;,d r.
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