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Scattering and absorption of electromagnetic waves by a Schwarzschiid black hole
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(Received 12 November 1974)

The scattering and absorption of electromagnetic waves by a spherically symmetric nonrotating black
hole is studied in the Schwarzschild background, by means of the known expansion of the modified
Debye potentials in partial waves. The power reflection coefficients and the phase shifts of the partial
waves are evaluated at both high and low frequencies. Then the scattering and absorption cross sections
of the black hole are determined. It is shown that the black hole is almost unable to absorb
electromagnetic waves when the wavelength of the radiation is greater than the Schwarzschild radius.

I. INTRODUCTION

Several papers have been recently published on
electromagnetic (em) wave propagation in a strong
gravitational field. One of the most interesting
problems of this kind is the problem of em wave
propagation in the presence of a black hole. This
problem has been investigated in a spherically
symmetric background' ' and in a Kerr back-
ground. " In both cases it is possible to write
decoupled and separable equations not only for
electromagnetic' "'but also for gravita-
tional'"'" test fields (namely for fields not affect-
ing the background).

For em fields in sourceless regions and in
spherical static gravitational fields, separation
was first obtained by Wheeler, by expanding the
quadripotential in terms of four-dimensional vec-
tor harmonics. ' This result has been generalized
to the case where sources are present by Ruffini,
Tiomno, and Vishveshwara. '

By introducing the modified Debye potentials,
Mo and Papas have obtained more general equa-
tions holding for a class of nonstatic spherical
gravitational fields and also for radially inhomo-
geneous media (in sourceless regions). ' De-
coupled equations may be obtained also in the
presence of both sources and radially inhomo-
geneous media. '

In this paper we treat the scattering and ab-
sorption of em waves by a Schwarzschild black
hole. We use the expansion of the modified Debye
potentials in partial waves and calculate the re-
flection coefficients of the partial waves. Then
we calculate the absorption cross section of the
black hole both at high frequencies and at low
frequencies.

At high frequencies our results confirm and ex-
tend the results already obtained by Mashhoon. "
As to the scattering cross section for small
angles, we prove that the expression given by
this author for high frequencies is valid also at

low frequencies. As to low-frequency reflection
coefficients, Matzner" considered scalar waves.
Price'" dealt with scalar, electromagnetic, and
gravitational radiation emitted by a collapsing
object, whereas the present paper deals withwaves
impinging onto the black hole.

In the sequel we use the geometrized mks sys-
tem, in which the light velocity c= 1, and in which
the mass is measured in meters, and the electric
and the magnetic permeability are pure numbers.

II. THE WAVE EQUATION FOR THE RADIAL
FUNCTION

I et us consider the Schwarzschild frame of
reference (t, r, 8, Q] with the metric

ds' = (1 —2M/r)dt' —(1 —2M/r) 'dr'

—r'(d8 +sin 8dp') .

Here M is the mass of the black hole and 2M is
the Schwarzschild radius.

In sourceless regions one can introduce two
scalar potentials U, V known as modified Debye
potentials, ' in terms of which the physical fields
E, B are given by

E = —V x[Vx (Vr)] — 1 —— —[Vx (Ur)],1
r BI,

8=vx[vx(Ur)]+u 1 — —[vx(Vr)] .2M
r at

Here E and B are locally measurable quantities"
for observers fixed at &, 0, P =const, & and p. de-
note the electric and magnetic permeability, re-
spectively, and V is the conventional del operator
in the spatial coordinates (r, 8, p) with length in-
terval

do'= (1 —2M/r) 'dr'+ r'(d8'+sin28 dg') .

The modified Debye potentials satisfy the equa-
tions
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and

a 11 2M ar U ] g2U y g gU1-— + sin6) —+ e —=0ar p, r ar prsin8 B8 88 sin8 a/~ I —2M/r at at

8 1 2M BrV 1 ~ . ~V 1 8'V v a BV
ar e r ar ersin8 B8 B8 sin8 ap' 1 2M/r at at

respectively.
Let us restrict ourselves to propagation in a

vacuum, e = p, =1. By writing

U 1= —4, (r)e' 'Y, (8, y),

where Y, (8, p) denotes the (I, m}th ordinary spheri-
cal harmonic, we obtain the following equation
for the radial function 4, in both cases:

d'0, , 2M l(i+1)
dyg2 y ~2

where

(6}

the turning points exist for all partial waves, that
is, for all values of /. When ru &~„ the turning
points exist only for high-l waves; more precisely,
they exist if I, is greater than the critical param-
eter 3, given by

t,(t, + 1) = 27(u M' .

The properties of the solutions of Eq. (1) depend
strongly on the existence or absence of the turning
points and on their distance.

rx+ = r+ 2M ln —1
2M (2)

2)if t(l+ 1)
(3)

The quantity

can also be interpreted as a wave number which
depends on the radial coordinate. It is real with
a minimum a.t &=3M, if the potential peak is
smaller than ( '. Otherwise there is a finite re-
gion where K, (r*) is an imaginary quantity. In
this case two values of & exist, say &, a.nd &„ for
which K, (r*) vanishes (a third zero of K, is nega-
tive, and therefore of no interest). They are
usua. lly called turning points. One finds

2 't(t+1) 't' gr cos-
(d, 3 3

2 l(l+1} '~'
q —2m

cos

where

q =arccosf —3~M(3/[l(t+ I)]J't')

and arccos denotes the principal value of the in-
verse trigonometric function, so that 2M - &, - &2.

When the (angular) frequency &u is smaller than
the critical frequency c, given by

Equation (1) has the same form as the Schrodinger
equation in one dimension for a particle of energy

in the potential

lll. THE POWER REFLECTION COEFFICIENTS
AT HIGH FREQUENCIES

With reference to Eq. (3), it can be noted that
U, (r~) vanishes as 1/r*' for r*-+~ (r- ~) and as
exp(r*) for r*--~ (r-2M+0}. At the same time,
the wave number K, (r*) tends to the constant. value
cu, Accordingly, for large values of &*, the solu-
tions of Eq. (1) can be written as the superposition
of waves of the type exp(i&or*) and exp(-i~r*).
However, the usual boundary condition re-
quires' '"'" that the wave be purely ingoing for

Thus the solution has the asymptotic be-
haviors

e, -A, exp(i~r*) (r+- -~), (8)

0, —exp(iu&r') +R, exp( i&or*) (r+--+~), (9)

where 8, is the amplitude reflection coefficient of
the potential barrier U, (r*) for the tth wave. Ob-
viously ~R, ~

is the power reflection coefficient.
At high frequencies (cu» ~,) R, can be deter-

mined by solving Eq. (1) by means of the WEB ap-
proximation, which in its recently developed
form" may be applied even in the case where real
turning points do not exist (t & t, ). In Appendix A
we prove that the WEB method is certainly re-
liable when the wavelength of radiation is much
less than the Schwarzschild radius R~ =2M, a,nd
/ is either greater or slightly smaller than l, .

Let us consider the case where the turning points
exist. The power reflection coefficient ~R, ~' is
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given by"

where

exp(28, )
1+exp(28, )

r2

8, = [U, (r*) i-o2)~2drr .
r

In Eq. (11) r,* and r2r denote the turning points for
the variable &*. The integral may be expressed
in terms of elliptic integrals,

8, =2io[r2(2r, +r,}] 'L2
2 +-,'r, r, K(k) — ' ' ' E(k) —2Mr, v(oi', k)+

(12)

where

r r 2 —i'2
~2 1 ~ Q2 2 1

r, ' r, (r, +2r, )

and K(k), E(k), and v(o, ', k) denote the complete
elliptic integrals of the first, second, and third
kinds, respectively. "

For L» L, one obtains

2 L(L+1) 'L'
9, =il(i+It~' ln ~ c, I, (13)

where C, is at most of the order of unity.
When L is slightly greater than L, we may set

(14)

The turning points are approximately given by

-3Ltf I. —' 1
L(L+1)

and Eq. (11}yields

27m'M2
8, = —[L(L+ 1)]~2 1—

2 L(L+ 1)
(15)

In the second case, l ~ L„ the power reflection
coefficient is still given by Eq. (10), but now 8,
has the form

wr
8 =i [io' —U (r*)]'/2dr (16)

r
1

In Eq. (16} r,*and r,'denote complex-conjugated
zeros of the wave number (Imr,*&0, Imr,*&0},
and the function U, (r*) is the analytic continuation
of U, (r*}in the complex plane. It is to be noted
that &,*and r2*are branch points of the wave num-
ber K,(r*). Consequently, it is a many-valued
function. %e choose its phase so that on the real
axis K, (r*) =K, (r*). Moreover, in Eq. (16}the

path of integration must not turn around the branch
points. As a result, 8, turns out to be (real and)
negative. Since L is slightly smaller than L„we
may use Eq. (14). The zeros of the wave number
are now given by

=3M 1+ —1—i L(L+1}
27m M'„

and Eq. (16) yields

M
8, = —[L(L+1}]~' 1—

2 L(L + 1 )

@ (r~) &-iwlr*-t)
U (t )y (~ )dg + either*l 2~ l l

co M ~103

-15 -10 10

io &e-e,i/e,
I

15

FIG. 1. The power reflection coefficient ~R, ~t vs
10'~l -l,)/t, .

Equation (1'L) coincides with Eq. (15). From Eqs.
(10), (15), and (I'I) it is clear that for L- I,
=3& ioM the reflection coefficient tends to —,'. It
turns out, however, that at high frequencies the
partial waves are almost completely reflected or
transmitted according to whether L~ l, or l ~ L,

(see Fig.l).
For example, at u& = 10 &o, one finds 1 —~R, ~2

= 10 ' and )R, [' = 10 ' for (I —I,)/I, = 10 ' and

(L, —L)/L, =10 ', respectively.
For L« l, the WEB approximation is not appli-

cable and we must use another technique for the
calculation of R, .

Equation (1) is equivalent to the integral equa-
tion"
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For r*-+~ we obtain

e, (r+) = —e ' " e' 'U, (& )4, (t )d& + e' "
2(d

waves. From Eq. (5) we obtain

4aM co M
i(i+I) i4

[i(i+1)]'"

(21)

(22)

Consequently,

(18)

It appears from Eq. (18) that the reflection coef-
ficient R, is proportional to the Fourier transform
of the infinitely differentiable function U, 4, . Ac-
cordingly, it tends to zero more rapidly than any

negative power of ~ when ~-~.
For L«L, the potential barrier may be treated

as a little perturbation, and the Born approxima-
tion may be used.

By setting

@)(h)=e' '

and recalling expression (3) for U, , Eq. (18)
yields

where O(x) denotes a quantity of order x.
In order to find an expression for R, at low fre-

quency, we have treated Eq. (1) by means of the
technique already used by Ipser and Fackerell in
investigations on gravitational waves. ""

The method consists of finding approximate solu-
tions of Eq. (1}separately in three regions, namely
on the left-hand side of the barrier &~ &„ in the
region where the potential peak dominates &,~ &

«r„and on the right-hand side of the peak &, «&
( ~, and then matching them by imposing the
usual continuity conditions.

In the region «&, the function U, (&") falls off
as exp(&*) for &*--~ and reduces to a. half over a
distance 4&*=M, much smaller than the wave-
length X =2m/~, since &u«~, . Consequently, the
function (8)

IR)I'=
4

l&(~M)I',

where

I(&uM)=2M e" ' 1 ——r
dx

exp{4i(~M )[x+In(x —I )]) —,
~on

x'

(20)

0, = 1+ier* . (23)

represents a good approximation to the solution of
Eq. (1}not only for r*- —~, that is, r-2M, but
in the whole region 2M «~ r, .

From Eqs. (2) and (21) it is clear that r,*
=2M In/4&v'M'/[I(l+ I)]), so that for r = r, we have

Equation (20) makes evident the dependence of R,
on L. It has already been noted that R, tends to
zero very rapidly when cu-~.

For &, ««&, where the potential peak dominates,
we can neglect the term ~' in the expression of
K, '. With such an approximation, Eq. (1) takes
the form, in terms of the variable r,

IV. THE POWER REFLECTION COEFF ICIENTS
AT LOW FREQUENCIES

)(r-2M},'+2M ' —l(i+I)4, =0.d'4, d4
(24)

As already noted, for cu «~„where cu, is given

by Eq. (6), real turning points exist for all partial
)

This is a hypergeometric equation. Two indepen-
dent solutions of it are (see Appendix B)

(~) r r 1

2M ' M 2(2i+1)

4'2) (r) = Q
——1
v 1

2M ' M 2(2l+1)

Pt+i ——1 -Pt z
——1

——1 -Q
(25)

where P, is the Legendre polynomial and Q, is the
Legendre function of the second kind.

For &-2M, 4, "(&) and 4,2)(r) behave like

r espectively.
From Eqs. (23}and (26) we infer that at r=r„

the function exp(i~~*) fits smoothly onto

0,"1—1 1(1~ 1) —1)2M

~ --—'ln —1
2M

(26)

111, = (1+2is)M )4'[" —4i(AM%'(i2)

or also, by neglecting terms of the order of ~M,
onto the function 4,". For &)) +y Eq (1) may be
replaced by
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d'4', , l(l+1)
(2'I )

where J,+1/2 and J, &2 denote Bessel cylindrical
functions of the first kind, and CA, CB denote two
constant coefficients. For ~r*«l we may retain
the first term of the expansions and write

(~rg)1+I

(2l 1), ,

It is well known that this equation has the solutions

( A) lT(d r*
l A 2 I +I/2(

-~~rg-1/2
l B 2

method described in Appendix C one finds ~hat the
approximations introduced yield an error propor-
tional to &uM in the expression (33) of T, .

It may be interesting to note that one arrives
at the same expression of the power transmission
coefficient 7', of the barrier in the case where the
radiation is emitted by a collapsing object, so that
the partial waves are purely outgoing radial waves

rg ~ 15812

V. THE ABSORPTION CROSS SECTION

The knowledge of the power reflection and trans-
mission coefficient allows us to evaluate the ab-
sorption cross section a,,b,

4'!! ' = Cs(21 1)!!(&ur—*) ' .
(28) cr b, =

2 2l+1 2 — R, — R,

In order to ma, tch the function (25) with the func-
tions (28}, we note that, as appears from the
derivation, Eq. (24) may be used up to such values
of r or r* so that

~r=r+ «[l(l+ I)]'~' = l .

, Q(21 1+)(T, + T~r) .
2(d

Here ~R, ~' and ~R, ~' are the reflection coefficients
of the U waves and Vwaves. In our problem R,

R) =R(, T) = T) = T), and

Accordingly, for

I,coM « ur = m r* « I, (29)

(which is satisfied since we have assumed!dM
«1) we can use the asymptotic expression of the
functions (25), namely

(2 l )! r '+ '

(I —1)!(l+ 1)! 2M
(30)

o„, = —,Q(2l+1)T,
l =1

In the high-frequency limit, we can set

0 for l&L, ,

T, =1 for I&I,,
in Eq. (34), and find"

0~„' =27~M' .

(34 }

(35)

(2 l)! (2l + 1)!!
(l + 1)!(I—1)!

Thus the suitable solution up to r*-~ is

(31)

!,) (l+1)!(l- 1}! 2M
2(2l+1)! r

It appears that 4', ' and 4, ' are monotonically in-
creasing and monotonically decreasing functions
of r, respectively. Hence, 4," becomes less and

less important when r increases, and may be
neglected. By matching the solutions in the re-
gion (29) we find

T, = ~~(2( M)4 .

One finds

(36)

This is a, quantity of the same order as the geo-
metrical cross section. This result may also be
obtained by pointing out that light rays do or do
not go down the black hole according to whether
the impact parameter is less than or greater than
the critical parameter p = 3~M.

Consider now low frequencies, such that cuM «1.
Since T, tends to zero as (d"", the main contribu-
tion to onb, comes from the first partial wave for
which

-W&r&-~2
+g = &A ~j.g2(~r*)

2
{32) cr „. „,= ~3m. (2M)'co' . (37)

As for r*-~ we have 4!,"!- C„sin(&or* —hr/2),
and we find that the power transmission coeffi-
cient T, =1 —~R, ~

' is given by

(l+ 1)!(l —1)!
(2f)!(21+I)!!

Of course, these calculations give only the leading
terms in the expansions of the coefficients. By a

It appears that the absorption cross section van-
ishes for ~-0 as the squared frequency. The
black hole is almost unable to absorb em radia-
tion at ~ « ~„or at wavelengths ~ much greater
than the Schwarzschild radius R~= 2M. By recal-
ling Eq. (35) we can write

2 (-}
+nb~ 81 "

) +nb~
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For example, if ~ =10 R~, we have

&a, —5X10 40~„."„,)

As far as we know, Eq. (37) constitutes a result
that has not been previously published. Let us
now examine the case A =M.

The transmission coefficients at only a few val-
ues of l are expected to be close to unity when cu

is a little greater than ~, . If we set, for a rough
estimate, T, =1, T, =0, (la 1), and ~ =~, we
obtain

On the other hand, all the transmission coeffi-
cients are much less than unity when ~ is less
(but not much less} than u„ thus

G„, b,. &&0
„. b,.
( )

from the 'Coulomb" ones only by a constant. "'"
This may be shown by starting from the form of
the radial equation given by Mo and Papas. ' The
function

satisfies the equation

l(I + I ) M 2r —3M
(1 —2M/r}' r(r —2M) r' (r —2M)'

or also, by neglecting the terms in & ' and & '
and provided that l» eM, the equation

4M&a' l(l + 1)f "r)+ ~+ r2 I

From this Coulomb approximation we obtain"'"

0, = -argF (I+ 1+2f &uM) + 2u&M In(4~M),

Hence ~, or something not very different from
~, is the cutoff frequency for the absorption of
em waves by a Schwarzschild black hole.

where I' is the Euler gamma function.
For l-~

l
6, = -2coM ln (41)

VI. THE PHASE SHIFTS

The power reflection coefficients do not allow
one to compute the scattering cross section. It is
necessary to evaluate the complex-amplitude re-
flection coefficients, mainly their phases in de-
pendence on l.

Let us define" the phase shifts 6, by means of
the asymptotic expression of 4, valid for v*-+~,

This expression differs from (40) by the l-inde-
pendent term ~M. This term does not change the
interference pattern of high-l waves, but may be
important if one considers even low values of l,
for which (40}does not hold.

Vll. THE SCATTERING CROSS SECTION

1T
4' = sin cur~ —l —+6,

2
(38}

The simplest expression for the scattering
cross section of a black hole can be deduced from
the equation given by Mo and Papas, '

1T

6, = (I+ ) —+ lim, .'K, ($)dg —u)r*~ .J.
In this expression the neglected terms are at
most of the order of l ' (see Appendix A}.
The integral JK, ($)dg may be expressed in terms
of incomplete elliptic integrals of the first, sec-
ond, and third kinds, "but the limit appearing in
Eq. (39) cannot be expressed in a closed form. "
Here we give only an asymptotic formula valid
for high-l waves,

(39)

5, = -2aM In(l/4+M}-~M. (40)

We can note that, for l —~, the p'- ~ se shifts differ

For the evaluation of 6, the analysis of the pre-
ceding sections is not sufficient. For this purpose,
however, the WKB method may be used at all fre-
quencies, provided that I ~1 (see Appendix A).
We restrict ourselves to the case where the turn-
ing points exist, and, moreover, the imaginary
part of 6, may be neglected (so that ~&, ~' = 1 and
the scattering is elastic}. The WKB standard
formula" yields

4(u' i, , I I+ I)
~ 2 oo 2

[e " ' v (8) + e ""iT (8)]

where 5, and g, are the phase shifts of the U

waves and the Vwaves, respectively, and

P', (cos8)
sin8

1T,(8)=
d

P', (cos8) .

Here I", are associated Legendre functions.
In our case 5, =q, , accordingly, the scattering

cross section turns out to be independent of P:
oo 2

o(8)=, Q e "'~[w, (8)+ ( T)]84&v', , I(I+ 1)

(42)

When one deals with long-range potentials, at
small scattering angles the main contribution to
o(8) comes from high-l waves. For such values
of I, we can use Eq. (40), and, at small 8, we
can write
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rrr(8)+ T, (8)
(l(I+ 1)

—
r

In this way Eq. (42) takes the form of the usual
scattering cross section for scalar waves. In

particular, the Rutherford law holds, according
to which

o(8) =16M'8 4 (43)

for small 6. Mashhoon presents it in his wave
treatment of the high-frequency scattering. " The
present derivation, however, is valid at every
frequency. In other words, we conclude that Eq.
(43) is acceptable even for reM«1.

VIII. CONCLUDING REMARKS

It has been shown in Sec. V that, as far as the
em energy absorption is concerned, a black hole
behaves in substantially different ways, depending
upon whether the wavelength A. is larger or smaller
than the radius R~ =2M of the black hole. For
A. & 2M the usual picture of the black hole as a
trap for radiation appears to be rather inadequate,
as already stated by Matzner. "

The case of higher-spin fields, e.g. , the gravita-
tional radiation, is analogous to the case of elec-
tromagnetic waves, but only the partial waves
exist with I » 2. Fackerell found that the trans-
mission coefficient for /» 2 vanishes for cu-0 as
co"". Note the close analogy with our results.

The cutoff frequency for em energy absorption
is expected to be a very low frequency. In the case
of black holes formed by the collapse of a neutron
star, their mass M is expected to be greater than
a critical mass" of the order of the solar mass
M, =1.5&10' m. Accordingly, the cutoff wave-
length A. =2M corresponds to a frequency smaller
than 100 kHz, which is a very low frequency in-
deed, as far as radio astronomy is concerned. We
can pose the question of whether the presence of
black holes in the universe alters the black-body
thermal radiation and produces an excess of low
fr equencie s.

To this end, let us consider a volume L,' where
N black holes exist.

Let E, =pL' be the energy contained in L' and E
be the electromagnetic energy absorbed by these
black holes during the time t, at some wavelength
less than the average radius of the black holes.
For a rough evaluation we set E =Npo„. b,. t. Here
p is the energy density at the above-mentioned
wavelength and o,. b, is the average absorption cross
section. Since the mass comprised in the black
holes is at most some percent of the whole mass
of the universe, "and the mass density is about
10 'e g/cm'=10 ' mks geometrized units, we ob-
tain
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APPENDIX A

The present analysis has the purpose of estab-
lishing an upper bound to the error we introduce
in the calculation of ~Rr~' and T, by using the
WKB approximation.

Let us consider the quantity

dydeeC

(AI)

where the integration path c (Figs. 2 or 3) goes
from -~ to +~ along the real axis. The semi-
circles are included in it in order to avoid the
singularities of the function K, '~'d'Kr ' '/dr*',
that is, the zeros of K, .

It may be proved that"

p, if l) l
2

dIRrl le I~lr, e r if f&l, .
Z

For a rough evaluation of p, in the case of Fig. 2

Jl Im r'

c,

C2

C3

64

F2 C5

Re r'

FIG. 2. The integration path of the p integral in the
case where l» l, .

E/E, &10 "Mf.

An upper bound to ~ is the average age of the black
holes, which is at most of the order of the age of
the universe, 10"years =10"m. Even if 3I were
much greater than the critical mass of the neutron
stars, E/E, would turn out to be enormously less
than unity. We conclude that the alteration of the
black-body spectrum due to the low-frequency
small absorption of the black holes is practically
unappreciable.



940 R. FABBRI 12

we set ji lm r'

E, '=~' on C, and C„ (A2)

K, ' = —U, (r*) on C, ,

(A4)
Re r'

Expressions (A4) require the radii R, and R, of
C] and C, to be small enough:

R, s M, R, S f/(u .

In the case of Fig. 3 we set

g2g 2

=3M

on the semicircle, with the condition ~&* —rg(
~ M, and k, '=co' on the rest of the integration
path. In both cases one finds

p. =(~M) ' .

Hence,

FIG. 3. The integration path of the p integral in the
case where l = E, .

for l&l, ,

n(R p Igl for l&l

A similar technique can be used for the phase
shifts. We note that the WEB approximation is a
good approximation in the region 2M«r« f/~
when l»1, because there the wave number changes
slowly. Accordingly, the %KB approximation
holds onboth sides of r,*, and we may consider
the connection formula"

t r 2(1+o,)
4', (r,*)= )K, (r,*)( ' 'exp IK~(g))4 +A exp — )K, (g)jdg -K,&, ~, cos Ki(t)dt —

4
+~,r*

2 2 2

Here &,* is a point on the left of r22' and r* is a
point on the right of &2~; moreover,

g„o2~ p(r*, r*),

where P, are the Legendre polynomials. Let

r(= ——1.
M

By differentiating 4,' and recalling the relation

u(rf, r*)= K "'(t) „K "(&) idtl .

The integration path must not turn around the
singular point &,*. If r,*=o.'r,* with n&1 but not
too small, one finds

1
~ (ye rk)0

for all r* and all frequencies. Thus the WKB
standard equation (40) introduces an error at
most of the order 1/l in the calculation of 6, .

APPENDIX B

Consider the functions

I +I I -1 (2[+ ] )P (( )
db d(

we obtain

dC, '~ (+1 dP,
ch' 2M dE

d'4~" 1 dP d'P,
d&' 2M' dt d$'

Qn the other hand, we have

(l+1)P„,($) —(2l+1QP, ($)+ fP, , (&) =0,

fP, ,(g)+(4 —1) ' —l)P, ($) =0,

which allow us to write Eq. (Bl}in the form

(B2)

(83)

(B4)

r
2(2l+1) ' ' M ' ' M

(Bl}

)+1 F2 —1 dP,
2 ' 2f(l+1) d$

By introducing (B3), (B4), and (86), Eq. (24) be-
comes
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(1 —$'), '+2) „'—l(I+1)P, ($) =0 .

This is just the Legendre equation. Thus 212I"(r)
actually obeys Eq. (24). Similar remarks apply to

and then

(2M) (2M) I, I, 1 —2M/ (C2)

r r
2MQl M

1
— r

2(2l+I) '" M

since Q, also obey the relations (B2) and (B5).

APPENDIX C

We restrict ourselves to the case where /=1.
The equation

(C1)

The last term on the right-hand side of (C2) con-
stitutes a first correction to 4,. We find

= (&dM ln2MM)
ro ro

Thus the static solution 0," can be used up to &,*
with an error of the order of (~M In&uM)'. In the
same way one could show that 4 =4',' and 4 =e' "

can be used up to &,* with errors of order (A)M}2.

Accordingly, we can write the connection formula

e' " - (I+2i~M)4~" —4i~M4'"

can be solved by an iterative method. Let us con-
sider the actual solution of (Cl) which satisfies the
boundary conditions

d4', r 2M

0

where &o is a point internal to the potential bar-
rier, e.g. , r, =3M, and r,*=r,+2M In(r, /2M —1).
As a first approximation, we take the static solu-
tion

by neglecting terms of the order of (&uM)' .
On the contrary, 2122" cannot be used up to r,*

= W/&u. The correction

2M „, „1-2m

ver, ' $ M
6M

is of the same order (&uM)
' as 4,"(&,). But we

can use the iterative method again by introducing

and introduce this function on the right-hand side
of Eq. (C1). Integrating up to r,*= 2Mln(2' M')
yields

on the right-hand side of (Cl}.
After lengthy but straightforward calculations,

we obtain the even-power series

d~* „+-r+ 2M

2M r 1-2M ~ where

( I )22+ 2 (2 M $22-2 2

2k(2k —1)(2k —2) ~ ~ ~ 4 x3 ~0 +8+~. ,~ „[2k(2k —1)]M[(2k —2)(2k —3)]5 ~ [4x3]&

and terms of the order of (&uM) ' for r= r2 have
been neglected.

This approximation is equivalent to replacing
Eq. (Cl) with the equation

(g) F(d &
)

j./2
Z „(2Mr} . (C4}

d'4 2
y'

whose solutions are

Owing to the parity of the series (C3), we can write

C,(r) =CC', "&(r) .

The constant C is easily found to be given by C
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= 3/(2(uM)'.
From what proceeds it follows that we intro-

duced an error of the order of ~M in the calcula-
tion of the transmission coefficient.

For l&1, 4", is a polynomial. However, only
the highest power term is important for &= r, .
By iterations this term generates a series propor-
tional to 4,", with an error proportional to ~M.

*Work performed at the Istituto de Ricerca sulle Onde
Elettromagnetiche of CNR, Florence, Italy.
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