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A scalar potential which is linear in the radius is used to confine relativistic individual quark states.
Calculation results are compared with those of the “bag” model.

A new model for the structure of hadrons has
appeared® in which the constituent fields are con-
fined in a finite region called a “bag.” It is the
purpose of this comment to describe a simple mod-
el in which relativistic quark states are confined
by a central potential and to compare some results
with those of the ‘“bag” model.

Quarks are assumed to obey Dirac’s equation,
and if we replace the rest mass in his equation for
a free particle by k*» where k is a characteristic
wave number and 7 is the radius from a fixed
point we have (F=c=1)

Ey=(a,p)¢ +px*ry, (1)

where y is the four-component wave function for a
quark. Literally Eq. (1) describes the motion of a
particle having no rest mass in a scalar potential.?
It can be separated in spherical coordinates by the
standard method. The two functions of radius,

P, and P,, called the large and small components,
respectively, obey?

ag, j+1

(E =K*7)f, +=—+ ¥, =0,
dr r @)
j -1
(E + k27 )Y, -%p—”i?—lﬁa =0,

where, if [ be the orbital angular momentum in
Yas j =1 +1 when the total angular momentum is

I +% and j =—1 when the total is I-3. Owing to
the appearance of k%7 in these equations, they have
regular singular points in addition to the custom-
ary one at =0 (and the irregular one at » =»). The
second-order differential equations which one de-
rives for ¢, or ¥, or any linear combination of
them are then of the same general type (i.e., up

to elementary algebraic substitutions) as those for
spheroidal harmonics.* In brief® let us define

s=jl,

Pffl'se“h)"z'a(‘l’a _Hpb):Z b7k, 3)
)

Then, through Eq. (2) the p, obey a recursion re-
lation

(B+1)(k+s)(B+2s +1)py,, +EjbD
+(k+s+1)|[E2=2k%(k +8)]py-,=0. (4)

Now, the p, must be bounded so as k- =, Eq. (4)
shows that

BPper= 26%p,_y, @S k=0,

Therefore, the only acceptable series for P (i.e.,
for square integrable ¢, and ¢, ) must converge at
large n like the series

i:(n!)-Vz[ _ zl/zm,]n .

The ratio of successive p, is then negative and

epelivold)]

This condition plus the requirement that if i <0,
p; =0 is sufficient to determine the eigenvalues
for F as roots of an infinite continued fraction.*

It is pertinent to compare eigenvalues obtained in
this way with those of the nonrelativistic isotropic
harmonic os-illator of frequency w. They are
given by

E=(n+dw, (5)

where n=0,1,2,... and as n increases they become
increasingly degenerate. The eigenvalues E of
Eq. (1) are such that E2 obeys very nearly the
same equation as 2F’, with w replaced by «*.
There is a small spin-orbit splitting. The six low-
est eigenvalues for E%/k2 are shown in Fig. 1. The
corresponding numerical values are given in Ta-
ble I, where the quantum number » refers to the
nearest value that appears in the nonrelativistic
case, Eq. (5). From the symmetry of Eq. (4) one
sees that the negative eigenvalues for E have the
same absolute values as in Table I with reversed
signs of j. The eigenstates in this model are thus
nearly evenly spaced in EZ.

Approximate eigenfunctions for the lowest state
of positive energy may be obtained by applying the
variational principle to the expectation value of EZ.
Let
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X=KY;
then, to second degree polynomials, one finds
b, =(1+0.042 87x +0.004 57:2)e™* /2,

(6)
¥, = - (0.463 30 — 0.083 67x)e~* /2,

The expectation values for E and g with these func-
tions are 1.6193« and 0.7308, respectively, in ex-
cellent agreement with exact values.

We now assume the quarks to belong to SU(6) and
to have “color,” so we may approximate states of
the nucleons by putting three quarks in the ground
state, j =1, n=0. One can then compute® expecta-
tion values of magnetic moments and of g,/g, in
the beta decay of nucleons. The value of k is cho-
sen so that three times the lowest eigenvalue is
the mass of the proton, M. This gives

k=0.2058 M.
The complete (unnormalized) wave function is

b

¥ = =i (O;’V) ¢b 3

(M

with ¢, and ¢, as given in Eq. (6). Taking the av-
erage value of the magnetic moment for a proton,

0.2811

£ (aitrxa), |- 2281

e
"2'732<2'M>’

in good agreement with the observed 2.79. From

-2 -1 | 2 3
i
FIG. 1. Spectrum of E¥«? as function of j. The

horizontal lines at odd integers represent the nonrelativ-
istic values.

SU(6) the corresponding value for the neutron is
~Z2 of this, i.e., —1.821 instead of —1.91 nuclear
magnetons.

The static value for g,/g, from SU(6) is £, and
this is to be multiplied by (0,), which when calcu-
lated either using Eq. (7) or from the exact value
of (B) is 0.8206. This gives

84/8, =1.368,

to be compared with the observed value 1.26. It
seems remarkable that independent quark states
which are quantized about a fixed point should

lead to quite good agreement among numerical
values for energy, magnetic moments, and

ga/8y." The agreement is not quite so good for the
root-mean-square radius of charge distribution in
the proton. At a given instant the mean-square ra-
dius of a quark, (7?) about the center of “mass”
of all three, p=3(F, +T, +T,), is

(r %) =(¥|(F=7°) |¥)
=3(9]7* ¥
= 1,167,

(7 H/2=1.07 fermi,

in not very good agreement with the observed val-
ue of about 0.92 fermi.%+®

Corresponding numerical results are similar in
the “bag” model.”* The difference is that in that
model a fraction of the nucleon mass is represen-
ted in the volume energy of the “bag.” Consequent-
ly the contribution from the quark states is less
to the mass and therefore higher to the magnetic
moment of the nucleon. This, however, is com-
pensated by the quark states being more relativis-
tic than in the model presented in this note. This
is reflected in the fact that g,/g, (which is the av-
erage value of 20,) is much lower in the “bag”
model than in the present one.

I wish especially to express my appreciation to
Professor Low and Professor Feynman for their
helpful discussions on this subject.

TABLE 1. Eigenvalues of lowest states.

n j E%/k? 2E' [w E/k
0 1 2.6228 3 1.6195
1 -1 5.2629 5 2.2941
2 4.6079 5 2.1466
2 -2 7.3132 7 2.7043
1 6.7740 7 2.6027
3 6.6018 7 2.5694
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