
PHYSIC AL REVIEW 0 VOLUME 12, NUMBER 3 A UG UST 19 75

Coherent states with definite charge and isospin and cluster production
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A solvable unitary model of Auerbach et al. is generalized to take into account the isospin structure
of the pion and the leading-particle system. The coherent-state representation is used to discuss the

production of isnvector objects, such as pions and resonances (or clusters). Particular attention is paid
to productions when the isospin state of the ingoing and outgoing leading-particle system is fixed. The
isospin analysis of the pion-pion correlation is performed by assuming both the direct-pion-emission

mechanism and the cluster-emission mechanism. The slope of (no&„ is predicted to increase with

energy and is positive in the n'-p and p-B regions (about 3/4 and about 14/17, respectively).

I. INTRODUCTION

It is generally accepted today that a realistic
model of particle production in hadron collisions
at high energy should include quantum numbers,
such as charge, isospin, baryon number, strange-
ness, etc. , while at the same time satisfying the
constraints imposed by unitarity. Recently, sev-
eral solvable unitary models have been proposed
in the approximation of small transverse momenta
and small center-of-mass energy of secondaries.
They all belong to a class of models first pro-
posed by Auerbach, Aviv, Blankenbecler, and
Sugar' (AABS model).

In these models, incident hadrons are pictured
as propagating through the interaction region,
without making significant fractional changes in

their c.m. energies. A generalization of the
AABS model' which includes internal symmetries, '
such as charge and isospin, enables one to study
the correlation between pions in accord with iso-
spin and charge conservation. The isospin struc-
ture of the underlying dynamics can be studied by
measuring correlations between definite charge
combinations, such as + —,--, —0, etc. For
example, from charge conservation alone the cor-
relation parameter f, is negative' and fails to
fit the data if the independent emission of charged
pions is a dominant production mechanism.

On the other hand, if isospin conservation is
included, it alone gives strong positive correla-
tions for pairs of like pions (f, ) 0) and for
pairs of charged pions. It fai1.s to give a positive
correlation between a neutral and a charged pion
(f,,' &0). Experimentally, however, one finds a
strong positive correlation between 7t' and mc

pions.
The correlation between charged and neutral

pions has also been considered within the frame-
work of other theoretical models': (a) the inde-
pendent emission of resonances (or clusters)

II. AABS MODEL WITH ISOSPIN

In the AABS model, the scattering operator
(the S matrix) is diagonal in the rapidity differ-
ence Y-lns, and the relative impact parameter
B of the two incident hadrons. It can be written
in the explicitly unitary form

S(Y,B)= exp[i'( Y, 8)],
where the Hermitian operator y(Y, B) determines
the amplitude for emitting or absorbing a given

(2.1)

constrained by charge conservation and (b) the
statistical-like approach using a suitable functional
averaging procedure' for the pion field.

In this paper we use the coherent-state repre-
sentation ' ' to discuss the production of isovector
clusters in nucleon-nucleon scattering within the
AABS model. Clusters emitted in such a process
decay subsequently into pions outside the region of
interaction. The isospin-invariant coupling of
isovector clusters to a nucleon system is con-
structed. In Sec. II, we generalize the AABS
model' to take into account the isotopic spin of
pions and construct coherent states with definite
charge and isotopic spin. These coherent states
are then coupled to definite isospin states of in-
going and outgoing leading-particle systems. In
Sec. III, we confront the problem of dynamics.
The simple form of the input function ~, which
we consider, corresponds to scattering from a
gray disk with a constant radius and opacity that
grows logarithmically with energy. In Sec. IV,
we illustrate our technique by an example of Pp
-PP +pions scattering. Results for other cases
are tabulated. In Sec. V, we discuss a general
formalism for the independent emission of iso-
vector clusters and clusters which have more
complicated isospin structure. Effects on the
pion-pion correlation are indicated. In Sec. VI,
we briefly summarize and discuss our results.
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number of pions with each interaction. The scat-
tering operator S(Y,B) acts only in the space
spanned by pions. The only reference to the nu-
cleon system that remains is contained in the
diagonal variables Y and B. Qn the other hand,
inclusion of isospin requires S{Y,B) to be not only
an operator in the space spanned by pions but also
a matrix in the isospace of nucleons.

The creation and annihilation operators of physi-
cal pions are written in the spherical bases and
are normalized so that

[a.(q), a'. (q')] = 5..4v(»)'~(y- y')~"'{q r q'r), -

lw; Y, B;II,}=D,' (w; 1', B)IO). (2.9)

A(s, s)= f ss ( {s(s,s; s(l'. (2.11)

The scattering operator is now written as an inte-
gral

Normalization is such that

{0
I Dz (W; Y, B) I 0) = 5&,5z, exp[ ——,

' A( Y, B)],
(2. 10)

where

0, (3'=0, +, —. (2.2) s{s,i(= f s*s( la{s';; s, (s)( (, (2.12)

lw; Y, B&=D(w;Y, B)lo).
Here D(W; 1', B) is the unitary coherent-state
displacement operator

(2.4)

D(W; Y, B)=exp g dq W (Y, B;q)a,(q) -H.c. ,
a

{2.5)

where dq -=[4v(27{)'] 'dyd'qr. D(W; I', B) is uni-
tary in the sense that

D (W; Y, B)=D '(W; Y, B)=D( W; Y', B). -(2.6)

In the uncorrelated jet model, ' one expects the
isospin of all pions, regardless of their momenta,
to be coupled to form the total isospin. This is
achieved by considering coherent states with

W(Y, B; q) of the form

W{Y,B; q)=W(Y, B; q)n, (2.7)

where n is a unit vector independent of q giving the
direction of & in the isotopic-spin space.

Let us define

D (IV;Y, B)= „,f s'" Y{ ( )D{(s~;s,i},
(2.8)

Q D~z (W; Y, B)[D~~(W; Y, B)]t = I. .
3

The coherent state with the total isotopic spin I
and the z component I3 is then defined as

The four-momenta of pions are expressed in terms
of their rapidity y and transverse momenta q~.

The scattering operator S(Y,B) is best analyzed
in the so-called coherent-state representation, ' '
which provides a useful basis for parametrizing
the scattering operator. The coherent states
IW; Y, B) are defined as eigenstates of a, (q}

a (q)lw; Y, B) =w.(Y, B; q)lw; Y, B), (2.3)

where W, (1', B; q) denote arbitrary complex func-
tions of Y, B, and q. IW; Y, B) can also be written
in the form

(2. 13)

{nl TT, ) = Y (n),

where Yrr, (n) are the spherical harmonics. The
probability distribution of producing n, m', n m

and n, m' pions is

J
d'&dq, dq, dq. I{T'Tln. n n. ls(Y, B)l TT.) I'

=N(T'T,', TT,}P(n,n no, T'T,', TT,),
n=n, +n +no, (2.14)

where TT3 and TT, label the isospin states of the
outgoing and ingoing leading-two-particle system,
respectively. N(T'T,'; TT,) is the corresponding
normalization factor.

III. GRAY-DISK DYNAM1CS

In order to extract some simple properties of
the model described in Sec. II and to obtain some
detailed results for charged-particle multiplicity,
multiplicity distributions, and correlations, we
must choose an explicit form for the dynamical
function W(Y, B;q).' It must fall off rapidly with

q ~' and be a smooth function of y in the central
region I yl & Y/2, going to zero for y outside this
interval. As a result, A(Y, B}[Eq. (2.11)] will
grow linearly with Y. For simplicity, we assume
A(Y, B) to have the form

A(Y, B)= Ae(R-B), (3.1')

where

b, =aY+b, (3 2)

and a and b go to a constant value at high energies.

where ln) represents the isospin-state vector of
the leading-two-particle system. It has the prop-
erty that

{n
I
n' }= 5h (n -n'),
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R could, in principle, also depend on Y. This
form of A(Y, B}corresponds to scattering from a
gray disk with a constant radius. The pion-
emission strength parameter 6 is linear in Y,
which is expected from a multiperipheral model,
for example. It is evident that in this model the
total and elastic cross section go to constant val-
ues at high energies.

The multiplicity distribution simplifies consid-
erably and is now of the form

n

C . . .„ I T„TT,
n n n +' — ~p+ p

Here

(3.7)

(3.8)

P(n, n nc, T'T,', TT,)N(T'T;, TT, )

~n

f3+4 8 4 8p 0

where n = np+ n, + n and

N(T'T,', TT, ) =e g G(((4, )C "(T'T4 TT, )
E=p

(3.3)

(3.4)

is a modified spherical Bessel function of the first

The average number of emitted pions of a given
type is defined by

N(T'T,', TT,)(n {T'T,'; TT,))

= ae ~ Q G, (a)C,")(T'T,', TT, ) .

(3.9)

The two-body factorial moments are obtained
from

is the normalization factor.
The numerical coefficients C,". . . are definedo1' ' ' c'n

as

C, . . . , (T'T,', TT)=4 J 4,
' Y. , (")Y,„(")Y ( )

2
&&D'* (n) ~ ~ ~ D',* (n)

1

(3.5}

where D denote the familiar signer rotation ma-
trices. Note that

PPl = T3 —T3+g1+g + ~ ~ ~ + g

Iml -l-
I
T+ T'+nj .

(3.6)

Among g, ~ ~ g„, there are n, indices with g=+1,
n with g= —1, and np with g=o. The relation con-
necting C" and G, functions has the form

N(T'T,'; TT,)(n.n. —5.„n.)

=~2e ~Q G((a)C„(T'T~; TT~) ~

E

(3.10)

The total number of produced pions is simply re-
lated to the normalization factor N(T'T,', TT,) as

(n(T'7,', TT,)) =La~in[e~N(T'T3, TT,)] . (3.11}

According to Eq. (3.2}, d, in this model plays
the role of the energy parameter. At very high

energies, we can use the asymptotic expansion
(a-~) of G, (S),'which is

1
e G){44 )-x[1—l(l + 1)x+ ] I = —. (3.12)

From Eq. (3.12), the following asymptotic ex-
pressions are found for (n„) and f,"' functions:

(nc(T'T,', TT,))„„-~c(T'T,', TT, )+ 2 B,(T'T', ; TT,)+ ~ ~ ~,

fT (T T,' TT~) Y
6 (Ac AcA )+26(Bcc A Bc B A )+ ~

(3.13)

where

A, . . . , (T'T,'; TT,)Q C(' (T'T,', TT,) = Q C~'). . . (T'T,', TT,),
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IV. CASE T=T3=T'=T3=1 (n, )„=nn +P (4.4)
In order to illustrate the general properties of

the model, we shall confine our consideration to
the process PP-PP+pions. Other cases are listed
in Tables I and II.

The case T= T, = T'= T,'=0 is a particularly
simple one. It has already been treated by other
authors. '

A straightforward calculation yields

C!0~. . . (11;11)

I+(- I)"o (n, —1)!!(n +1)!
2 (2n +n, +3}!!

(4. I)

From this expression and Eq. (3.13}, we obtain the
following asymptotic expressions for ( n, (ll; 11)): n, (11 11) ym 2+ ~ ~ (4.6)

if multibody correlations are small. " a and P in
Eq. (4.4) are energy- and isospin-dependent
parameters. Data indicate that the correlation
between m' and m increases monotonically with
incident c.m. energy. The parameter e is an
increasing function and will probably approach a
constant limit at high energies.

To the leading order in 6, o. may be related to
f, and f, functions in the following way:

(T,TI TT )
f, (T'T,'~ TT~)

f, (T'T,', TT,)+(n (T'T,'; TT,))

(4.5)

The pion-independent-emission model thus gives

(n )--'s--'+
p 7 7

(n, ) =(n ) —'-, n ——,', +

(n) =g(n. ) —n- l.
(4.2)

In order to show the relationship between (4.5) and
(4.6), let us consider P(n ) and (n, )„. After a
slight amount of algebra using Eq. (4.1), we find
that

Notice that ( n ), ( n ), and (n ) do not satisfy the
relation and (4 7)

Pl + 8„= &p = 3 (4 3) (n, )„=da~lnF„(d),
which is often quoted in the literature. This result
is encountered in all cases when the isospin of the
initial and final leading-particle system is dif-
ferent from zero. Relation (4.3) holds exactly only
in the case T = T, = T'= T,' = 0.

From Table II, we see that the charged-pion-
neutral-pion correlation function fo (T'T,', TT, ) is
negative in all cases, regardless of the value of
the isospin (T'T,') of the outgoing leading-particle
system, if the independent emission of pions
dominates the production mechanism.

Many authors have pointed out that the study of
correlations among charged and neutral pions
offers information on the underlying isospin struc-
ture. Quantities on which experimental data exist
are the charged-pion-neutral-pion correlation
function f, and the associated average neutral
multiplicity (no)„. Experimentally, f, and

(a(n, )„ lan ) ~„=,= n are both positive. ' It is
expected that the dependence of (n, )„on n will
be approximately linear, i.e. ,

where

t 2

(4.8)
is a generalized hypergeometric function. " In
the Appendix, we show that E„(h) can be well
represented by the modified spherical Bessel
function as

2th +3

F„( d)- -,'[(n + 1)!]'—
Using (3.12) and the results given in the Appendix,
a correct asymptotic expansion (b, -~) of +„(4)
is obtained in the form

n + 2 (n + 2)(3n + 7)
24

(4.10)

TABLE I. Asymptotic expressions for average pion multiplicities.

7 (n~(11; 11))

4-2
3S--'2
3S--'2

7 (n. {1O;11))

3th- 2

22+1
2A-6

7(n g. -1;11))

6-3
36+5
3A-9

5&n (OO;11))

6-2
26+1
2A-4

3 (n. (OO; OO))

b, —1

6-1
4 —1
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TABLE II. Leading asymptotic terms of two-particle correlation moments.

00

0-

147f 2 '(ll; 11)

4' 2D

-262 +

ZP —32K

4'+310

147f2 '(10; 11)

86 —206
-462 + 106

2 6 —266

2 42+166

147f '(1 —1 11)

4' —104
-222 + 54

4 —346

4 +2gD

175f ' (00; 11)

82/ —126
-4b~ +64

2A —386

2L8+32D

45f 2 '(00; 00)

4A~ —2A

-2D2 +

l2 —8A

A2+7D

From (4.7) and (4.10}, it follows that

(n, )„-n.—2n —4+ ~ (4.11)

V. ISOVECTOR -CLUSTER EMISSION

which together with

1 2 1fo- g2 2 + ~ ~ ~

147

and 1, 32f--- z' 1 ——+ ~ ~ ~

147

(4.12)

shows the validity of the asymptotic relation (4.6).
It is evident that the behavior indicated by Eq.
(4.11) is in disagreement with present trends of
data. '

Another interesting quantity is the associated
two-body correlation function (f,")„~which has
been advocated by many authors' "as a possible
sensitive test of the underlying isospin structure.
It is believed that measurements of (f )„mo-
ments would allow better discrimination between
different isospin models for pion production.

In our pion-independent-emission model, the
factorial moments of the m distribution for a
given n are defined as

( no(no —1) ~ (no —k + 1))„
n

(4. 13)

(f,")„-—(n +2)'+ ~ ~ ~ (4. 14)

approaches a constant value at asymptotic ener-
gies.

Using the Mueller-Regge analysis, Weber" de-
rived a sum rule for f, ' functions in PP colli-
sions, which to O(s '") reads

If, =(f, +f2')l(f.' +f, ) —1.
We find the same result valid to O(1/n. '}, as can
be seen from Table II.

From Eq. (4.10), we see that we can write asymp-
totic ally

(n, (n, —1))„6'—4(n +2)L+2(n +2)'+ ~ ~ ~,

so that

Analysis of the preceding sections shows that
the independent emission of pions is not sufficient
to explain most of the experimental findings. Var-
ious suggestions to remedy this situation have
been offered. '" One of them is the independent
emission of clusters which decay into two or more
pions. The more pions in a cluster the larger the
correlation effect expected. The independent
emission of charged particles and clusters has
been discussed by different authors' using either
complete charge conservation or the Cerulus"
statistical approach. Here we shall discuss the in-
dependent emission of an arbitrary number of
various types of isovector clusters from an ex-
cited leading-particle system having the total iso-
spin T and the third component T,. We can
straightforwardly perform a generalization to
more complicated clusters, such as isotensor
ones. Clusters might be resonances. The known

prominent nonstrange isovector resonances up to
I„„,-1.3 GeV are m, p, B, A„etc." To each
"cluster type" we associate the corresponding
coherent-state displacement operator D(W, n; Y, B)
[see Eq. (2.5)]. The extension to include isotensor
clusters can be performed by replacing Z, n, c,(q}
in Eq. (2.5) by

2y+ 1
[D'(n) ~ c ' (q )]=

4 Q (- )"Y„(n)
3

yc z (q) . (5.1)

Here cI (q} is the creation operator of a cluster
3

having the total isospin I and the z component I,.
The independence of clusters of different type

means that D(&, ~ ~ ~ ) commute for different clus-
ters, that is,

[D(&, '''), D(&, )] =0 (etc'). (5.2)

Therefore, the independent emission of an arbi-
trary number of various types of clusters can be
described by the following coherent-state dis-
placement operator
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D(wn; Y, B)-II D(& n; Y, B) the emission of a cluster c is defined by

=D N, n;ra (5.3)
A(~B) = dq w{vs;q '

where the product and the sum run over all dif-
ferent types of clusters.

For definiteness, we shall consider only the iso-
vector clusters ~, p, B, and A, . It is quite simple
to include the simultaneous emission of either iso-
scalar clusters or more complicated isospin clus-
ters. The parameter specifying the strength for

= ~,e(R-B). {5 4)

A relatively laborious calculation using the

techniques developed in the preceding sections
gives the asymptotic values for pion multiplicity

(n, & and pion two-body correlation functions
f;" in the process PP-]()P+pions:

(s, )= — d. ,+ 66~ + 86s + 13()),+ 6, ——(26, + 56~ + 96s + 126, + 2A, ) + ~ ~ ~,1 1

(,)=( )= — 3z„+4(c, a.) ~ 10(a ~ 4,) ——[5a, ~ 9(a, a.) ~ !9(a a,)]I~1 1
(5.5)

2 1,2 2 5f 00
~

—
147

2- — (S -S +a -d, +a )' + — a 1-— +2a 3 —— + ~ ~ ~,

++ 1 , 32 i , 1f 2 =f 2
=

147 (&(( —&() + de —&, +&()) — d — (2 „Ap+A~6, +d phs+hp() +h), b()

2 5
+ — 3 ——(d, +a )+ ~ ~ ~8 b

f =f = — 2 ——(d, —d +n -a+a)o- -o+ 1 2
2 2 147 ~ f] P 8 (2 b

(5.6)

1
+ — Ap

5 23 1 2
3 ——+b, ~ 11 ——+ 7A, 1 —— +b, b 1 —— + ~ ~ ~

26 2A

=14' )"
)

(

31' , 2
~ —d p+ d s —h~ + 6() +—6 +—(b ~O p+ d ~d., + d p

d e + d
p

d ( + b~ 6()

2 12
(a +Z )+ 13 ——(d, +a ) + ~ ~ ~

p a B b 7

where & =&„+&~+&~+b,+6b and &,&b =-,'&A are
strength parameters of A, -decay modes.

It should be noticed that

1~ {a,+2a, +BaA+4a ) 1-—+ ~ ~ ~ (5.7)

Thus, if there is an average of (k) pions per
cluster, the net mean number (n& of pions pro-
duced in the final state is

(5.7')

where (f(t, & is the average number of clusters of

type c.
The results of these simple calculations imply

that clustering phenomena in the presence of a
direct-pion emission should become dominant
mechanisms at higher energies. We suggest the

following isovector cluster-emission picture':
At low energies, E,~ ~ 7 GeV, the independent
emission of pions should dominate. At higher
energies, the emission of p, B, A„etc., should
become a dominant mechanism.

Let us calculate the maximal value of the slope
parameter n of the (n, &„vs. n plot according to
the relation given by Eq. {4.5) for the m-p and p-B
cluster -combination mechanisms. We find
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-3(~., ) .. ~+
14

(+ps)max 17 +
(5.8)

These maximal values are obtained in the limits
-0, 6„-0, and b, z-A, 6„-0, 6„-0,

respectively. The predictions in Eq. (5.8) will be
in reasonable agreement with data (Fig. I) if the
6„-b,

~ regime starts at E, —25 Ge V and the
h~-h~ regime at E, -30 GeV. Above an inci-
dent c.m. energy of 7 GeV, the energy constraints
become less dominant, and any increase in o. re-
flects the effect of dynamical correlations.

It is also of interest to notice that in the 6, - h~
and h~ —b, ~ regions we find an approximate equal-
ity between

(n, ) = (n ) ~&n, ) =-,'(n). (5.9)

Analysis of this section shows that the cluster-
emission mechanism seems necessary to give
positive values of f,' and the positive slope of
(n, )„, thus indicating that the underlying dynam-
ics should contain attractive couplings between the

charged and neutral components of the pion field.

~ PP

It~2f
025

22

-Of-
I

20
I

30

Ecm. (6eV)

I

f0
I

50

VI. D1SCUSS1ON

In this work we have extended the AABS model,
for which the scattering operator satisfies exact
s-channel unitarity, to include internal symme-
tries, such as isospin. Isospin is included via
the coherent-state representation. Special atten-
tion is paid to the production w'hen the isospin state
of the ingoing and outgoing leading-particle sys-
tem is fixed.

The main points of the direct-pion emission are
the following.

(i) The total number of pions produced in such
a process has a Poisson-like distribution

~nP(n)=(¹ )
' —,[9"(¹}~ —,].

This behavior is typical of any model with un-
correlated-particle emission.

(ii) An average number of charged and neutral
pions does not satisfy the relation

2 ((n, )+ (n )) =(22.i =-,'&n)

if the leading-particle system has isospin differ-
ent from zero. This relation holds exactly only in

the case when T= T, = T'= 73=0.
(iii) A strong positive correlation for pairs of

like pions and for pairs of charged pions is found

(Table II).
(iv) The correlation among charged and neutral

pions is found negative. This negative value of J",
seems to be responsible for the negative slope of
(n, )„as a function of n

(n„)„-a —2n —4+ ~ ~ ~

The result is in disagreement with existing ex-
perimental data.

(v) The associated moment (f )„ in the pro-
cess PP- PP+pions approaches a constant value

(f") - —(n + 2)'+ ~

at high energy.
The conclusion is that qualitative agreement

with data cannot be reached by combining the
AABS model and an isospin-conserving hypothesis
if the direct-pion emission dominates the produc-
tion mechanism.

To circumvent these difficulties, we have ex-
tended the AABS model in such a way as to allow
the independent emission of resonances (or clus-
ters) as well. The cluster-emission picture we
follow is such that the direct-pion emission domi-
nates the low-energy region (E, „, -. 7 GeV). With
increasing energy, the m-p regime becomes a
dominant production mechanism (at E, —25 GeV).
At still higher energies, the p-8 regime starts to
dominate the production mechanism.

Interesting points to note here are the following.
{a) Average multiplicities of charged and neu-

tral pions satisfy the approximate asymptotic
equality

FIG. 1. a as a function of the available c.m. energy,
The solid curves are schematic pictures of the

dependence of u on E, if (2a„-AJ «(6, + dz) and

Id)I -&el «(&&+&s), respectively, as seems to be in-
dicated by the data.

( 22, ) = ( n j =
& n, ) = —,

'
& n )

in the 7T-p and p-B regions.
(b} The slope parameter o. of the (n, )„vs

n plot is positive and increases with energy,
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(n.p) ., - 4+

(~,s) ..——,", +

a, (a-b)'
k +, k being very large,
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and

lim —= A. = l.Qk

k~~ Ck
(A8)

APPENDIX

In this Appendix, we consider a suitable trans-
formation of the series

Then

c =+ c, =(Wz)-"'"' f„, ,( 2&a).
k=p

The correction term is obtained from

(A9)

I'(a+ k) z'f{'}=~(r(b.k)) k
(A 1)

(A10)

in order to obtain a form convenient for asymp-
totic expansion. We use Kummer's method for
transforming a convergent series into another
one. Let

The values of the parameters a, b, and z used in
this paper are

a=-,', b=n +-,', z={-,'a)'.

k=p

be a given convergent series and

(A2)

{A3)

A close examination of Eqs. (A9) and (A10) yields
the following asymptotic expansion of F„(6)used
in the text

2fl +3

F„ (c,}——,'[ (n + 1)!]'

be a given convergent series with a known sum c
such that

e d d
X —dp+ + +'''

2h b,

lim —= A. + 0.ok

~ Ck

Then

f = A.c+g 1 —A
—" a„.

P Qk

For our case, we choose

(A4)

(A5)

where

(2i+k)! (2N —2i —1)!i
('t} 2 ' (2' 2i)lt

(A11)

(A&2)

r(a +k) z"
[I'(b+k)]' k! '

We have evaluated the first few d„coefficients.
They are as follows:

so that

1"(2b —a + k ) k!

(A6) dp= I,
d, =N+1,

d, = —,'yr+ l)(3++4) .

(A13)
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