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Employing several linear SU(3) cr models developed by Schechter, Ueda, and collaborators, we study the
effects of various possible chiral-symmetry-breaking terms in the Lagrangian belonging to the (3, 3») (3»,
3) (8, 8) representations of SU(3) X SU(3). In this approach the pseudoscalar mesons (m, K, q, q') and
scalar mesons (C, K, cr, cF') are assigned to (3, 3») fP (3», 3) and the model is used to describe the scalar and

pseudoscalar mass spectra, scalar meson decays,

q'~yern,

and the mm and m K scattering lengths. Inclusion in

the Lagrangian of isospin-violating terms and an effective nonleptonic weak interaction allows treatment of
electromagnetic and weak e6ects as well. %'e find that a form of chiral symmetry breaking suggested by
Okubo is at least as successful as the Gell-Mann —Oakes —Renner (3, 3») (3», 3) form. The scheme of Sirlin
and &einstein is also satisfactory. Pure (8, 8) symmetry breaking is unacceptable within the context of the
present model.

I. INTRODUCTION

The possible role of chiral SU(3)&&SU(3) symme-
try' in elementary particle physics has been the
focus of considerable attention. Since it is ob-
viously not an exact symmetry of nature (e.g. ,
the axial-vector currents are not conserved),
some of the most interesting questions, as in
the case of SU(3), deal with the way in which
chiral symmetry is broken. An attractive and
popular idea" is that the underlying strong La-
grangian is approximately SU(3}&&SU(3)-symme-
tric, but that, in the chiral-symmetric limit, the
vacuum is not invariant under chiral transforma-
tions, i.e., the symmetry is spontaneously broken.
We are then not committed to the existence of par-
ity doublets in the particle spectrum as would be
the case for a chiral-invariant vacuum. The mass-
less bosons associated with spontaneous symme-
try breakdown ' are, in this case, the octet of
pseudoscalar mesons, which acquire mass through
the explicit chiral-symmetry-breaking terms in
the Lagrangian. It is with these latter terms that
the present investigation is concerned.

With regard to the transformation properties of
the symmetry-breaking term, the simplest
choice' ' is to assign it to the (3, 3*)8(3*,3) re-
presentation of SU(3) x SU(3). Then, the symme-
try-breaking Ha, miltonian density Xs~ takes the
form

tive that c,jc,= —v 2, implying that SU(2) && SU(2)
symmetry is better than SU(3). This would ex-
plain the small mass of the pion compared to all
other hadrons. '

Though it has been employed in many investiga-
tions, there have been no definitive tests of the
QMQR model. The study by Kim and von Hippel'
of cr terms in meson-baryon scattering seemed to
provide a positive test, but their analysis has
recently been called into question. ' In addition,
the large value of the mN o term found by Cheng
and Dashen' '" may not be compatible with the
GMOR model if chiral symmetry breaking is as-
sumed to be small, and if scale-invariance '" con-
siderations are ignored.

For these reasons and others, alternative
schemes of SU(3)x SU(3) breaking have been con-
sidered. The most popular takes X» as belong-
ing to the (8, 8) representation. " However, if
one adopts the point of view that the smallness
of the pion mass directly reflects the approxi-
mate SU(2) & SU(2) invariance of the strong Ham-
iltonian, then this assignment must be rejected
in favor of one in which the dominant part of X»
has the form of Eq. (1.1) with" c= —W2. In fact,
an interesting possibility is that the (3, 3~)p(3*,3)
part of Xs~ is SU(2}xSU(2)-invariant and that
small admixtures of other representations break
SU(2) x SU(2). We would then have

X» CO@ o C888
Xsg = —Co(tCO —&2 QB) +Xs~ (1.2)

where the u, (i =0, 1, . . . , 8) are nine scalar den-
sity operators belonging to the (3, 3*)$(3*,3) re-
presentation. While it was originally thought' that
c,/c, would be small, ensuring that SU(3) would
be a better symmetry than SU(3)x SU(3), argu-
ments were given by Gell-Mann, Qakes, and
Renner' (GMOR) for the very appealing alterna-

where Xs~ is a small SU(2)x SU(2}-breaking part
of Xss, its SU(3) x SU(3)-breaking properties being
a Priori unspecified.

A model of this type was first discussed by
Okubo, "who argued that if the only SU(3)-break-
ing part of Xs~ belongs to (3, 3*)(3*, 3), thenXs~
must have the structure given in Eq. (1.2), where
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3C~z is now restricted to be SU(3}-invariant. " A

Hamiltonian of the form in Eq. (1.2) has also been
considered by Sirlin and Weinstein, "who chose
3C,'z to belong to (8, 8), but allowed it to break
SU(3). It was shown that the model could accom-
modate a large value of the mN o term as well as
a large value of the I =0 S-wave mn scattering
length a„ for which there may be some evidence. "

The object of the present investigation is to
study the proposal of Sirlin and Weinstein and
compare it with the GMOR model. For this pur-
pose we employ a linear SU(3) o modei2' which
has been developed and used extensively by
Schechter and Ueda and their cpllabpratprs ' '
in a number of applications. This model is
based on a Lagrangian which is constructed out
of SU(3) nonets of pseudoscalar (z, K, q, q') and
scalar (z, z, o, o') fields assigned to the (3, 3~)
$(3*,3) representation of SU(3) x SU(3). In their
calculations, Schechter et al. worked to lowest
order in the interaction terms of the Lagrangian;
higher-order corrections (loops) were ignored.
Their Lagrangian contains terms which are
SU(3) x SU(3)-invariant and others which break
this symmetry and SU(3). Schechter et al. as-
sumed (3, 3~)$(3",3) symmetry breaking" in their
work; we will extend this to include (8, 8) sym-
metry breaking as well.

With regard to the SU(3)x SU(3)-invariant terms
in the Lagrangian there are two cases of interest.
The first, in which the chiral-invariant part Vp

is allowed to be an arbitrary, nonderivative func-
tion of the basic fields, is the case assumed in
most of the work of Schechter et al. However,
the interesting special case in which V, is re-
stricted by renormalizability considerations was
alsp studied. 6' We will refer tp these twp cases
as the general model and the renormalizable mod-
el, respectively.

Spontaneous breakdown is accommodated in the
o models by treating the Lagrangians semiclas-
sically to find the equilibrium point of the sys-
tem (i.e., by locating the extremum of the "poten-
tial" terms in the Lagrangian). The physical
fields are defined as the displacement of the orig-
inal fields from their equilibrium values.

Although, in the general model, the form of Vp

is left unspecified, it turns out that many physi-
cal quantities can be determined solely from a
knowledge of the symmetry-breaking term V».
However, a complete description is impossible
without the imposition of further restrictions.
Such restrictions were found" to be available
from scale-invariance" arguments.

To get more information out of the general mod-
el, Schechter et al. postulated that Vp is scale-in-
variant. The possibility that the terms in the La-

grangian which break chiral SU(3}xSU(3) are the

only operator terms which break scale invariance
has been seriously considered by several auth-
ors." The alternative to this" calls for the pres-
ence in the Lagrangian of operator terms which
are chiral-invariant but which break scale invari-
ance. We will find, in fact, that the renormaliz-
able model conforms to this latter possibility.

The symmetry-breaking term V» was taken by
Schechter et al. to have its simplest, nontrivial
form, namely, a linear" combination of the sca-
lar fields of the model. If a combination of the o.

and o' fields is chosen, this is equivalent to the
model of Eq. (1.1). With this choice of Vzz the
model was used"" to describe the strong mass
spectrum, scalar -meson decays (c- 2z, z -Kz,
etc. ) and the decay q'-qmw.

If the I =1 z field is included in Vzz [this is
equivalent to adding a u, term to Eq. (1.1)i, iso-
spin violation is introduced. Terms of this type
may arise from higher-order electromagnetic
tadpole contributions. The Lagrangian, thus ex-
tended, was employed"' to discuss electromag-
netic mass shifts and the q 3m decay.

Finally, with the addition of an effective non-
leptonic weak-interaction term in the Lagrangian,
the decays K-2m and K-Sm were studied. "

It was found from these investigations that the
GMOR scheme, with c,/c, =-v2 in Eq. (1.1), was
favored. Our program will be to repeat the cal-
culations of Schechter et al. using

K» ——cpQp c8Q8 —Qpzp —d8z (1.3)

for the isospin-conserving part of the symmetry-
breaking interaction; z, and z, are the SU(3) sing-
let and I=0 octet members of the (8, 8) representa-
tion. To deal with isospin-violating effects, we
will add a, combination of u, and z, to Eq. (1.3).
The effective nonleptonic interaction of Goswami
et a/."will be used to describe the K 2m and
K-3m decays.

As mentioned above, special attention will be
paid to the Sirlin-Weinstein hypothesis, "which
has

Xgs = —co(uo —v2 uz) —dozo —dsz8 .

We will be especially interested in the Okubo

case, "which is taken here to mean

3Csz = —co(uo —W2 u, ) —d,z,

(although the GMOR Hamiltonian belongs to the
Okubo class). The models represented by Eqs.
(1.3)-(1.5) will be investigated for both the gen-
eral and renormaliz3ble forms of V,. In addition,
the results corresponding to several other special
cases of Eq. (1.3) will be described.

In performing calculations with the model, we
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will include only the lowest-order nontrivial con-
tributions to a particular quantity or process (i.e.,
we will work in the tree approximation). In the
renormalizable model, at least, there is appar-
ently some justification" for this procedure.

The numerical predictions presented below will,
in general, be the result of a best fit to certain of
the experimentally better-determined quantities.
For example, our inputs generally include the
pion, kaon, and q masses as well as the pion and
kaon decay constants, f„and f». The symmetry-
breaking parameters can be determined from the
value of pseudoscalar masses. In addition, the
o mass, and sometimes the o' mass and 0-o' mix-
ing angle, must be used as input to calculate cer-
tain decay parameters. When isospin-violating
effects are being considered, additional inputs
(such as the»'-»' mass difference and the K'
and K' masses) are required to determine the
additional parameters.

We will defer the detailed discussion of our
results until later. Several general conclusions
should be mentioned at this point, however. Of
the possible symmetry-breaking schemes con-
tained in Eq. (1.3) (such as c,u, +d,z„d,z„etc.)
we can rule out, in the context of the present mod-
el, all but those of GMOR [Eq. (1.1}], Sirlin and
Weinstein [Eq. (1.4)], and Okubo [Eq. (1.5)]. In
particular, pure (8, 8) symmetry breaking leads
to unacceptable predictions.

While it is difficult to choose between the
schemes of Sirlin and Weinstein and of Okubo,
since the former has an additional parameter, it
appears that, in the present o-model calculation,
the Qkubo form of symmetry breaking works at
least as well as the GMOR form does.

Since the basic scalar and pseudoscalar fields
are assigned to (3, 3*)$(3*,3) and the symmetry-
breaking terms have components in (8, 8), it is
impossible to have PCAC (partial conservation of
axial-vector current) [or PCVC (partial conserva-
tion of vector current)] satisfied as an operator
identity. This is in contrast with most previous
work with o models. We could have built oper-
ator PCAC into the present model by assigning
the basic fields to appropriate combinations of
(3, 3*)e(3*,3) and (8, 8). However, this would
have committed us to the existence of many other,
unobserved mesons.

We do not feel that the present assignments of
mesons and symmetry-breaking terms necessarily
affect any of the good predictions of the soft-me-
son current-algebra method. In fact, we find that
most of the symmetry-breaking choices considered
here favor a rather small admixture of (8, 8).
Thus, if indeed maximum smoothness in off-mass-
shell extrapolations requires operator PCAC to

be satisfied, the present models should have rea-
sonably smooth off-mass-shell extrapolation.

The paper is organized as follows: In Sec. 0
we present a review and summary of the main
features of the linear SU(3) xSU(3) o model in
both its general and renormalizable forms; the
structure of the symmetry-breaking terms is
analyzed in Sec. III with special emphasis on the
(8, 8) contributions; in Secs. IV-VI the respective
predictions of the model for strong, electromag-
netic, and weak quantities or processes are de-
rived; the details of the numerical analysis are
given in Sec. VII, followed by our conclusions in
Sec. VIII.

II. A SUMMARY OF THE THEORY

In this section we will give a brief description
of the basic concepts involved in both the general
linear SU(3) o model" "and its renormalizable
version. " This will include a summary of the
major formulas that will be employed throughout
this paper. The general formalism involves eigh-
teen basic fields, M-, and M', (a, b = 1, 2, 3), which
transform according to the (3, 3*) and (3*,3) re-
presentations of SU(3) x SU(3), respectively. The
upper (lower) indices denote the 3 (3*}represen-
tation of SU(3) and the barred (unbarred) indices
denote the right- (left-) hand space of chiral SU(3)
x SU(3).

We may define the Hermiticity relation

(M—,) = M'a
(2.1)

and the transformation of the fields under parity
as

PM-, (x, t)P '= M, (-x, t). (2 2)

These relations allow us to decompose the fields
as

M-, =S,+i Q„
M, =S, —tp, ,

(2.3)

(2.4)

We consider a Lagrangian density of the form

2= —;Tr(S„M» M t) —V, —V»- V „„, (2 5)

where V, is a nonderivative, chiral SU(3)x SU(3)-
invariant function built from M and M . V» is an
explicit symmetry-breaking form which can be

where the Hermitian matrices $', and p', represent
nonets of scalar (z, », o, o') and pseudoscalar
(w, K, q, q'} fields, respectively. For matrix nota-
tion we identify

M-, (M)~,

M'. - (M')„.
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chosen to belong to any representation of chiral
SU(3)x SU(3). V„„is the weak-interaction La-
grangian. The structure of V» and V„„will be
specified in Sec. III.

The stable ground state of the system must now
be determined. ' ' To do this we treat the Lagran-
gian semiclassically'~3 and determine the equili-
brium point by imposing the extremum conditions
on the "potential" V= V +Vs~:

8Vo ~V»

We can also choose

(S',),=5', a, (no sum).

(2.8)

(2.9)

BV &V

8S,' aS

(2.6)

Qj =Q2=Q ~ (2.10)

Isotopic-spin invariance of the ground state re-
quires

where (), indicates that the enclosed expression is
to be evaluated at the equilibrium point. The
physical fields are then taken to be

4 = 4 -(4)o
S =S —(S)o.

Parity conservation requires that

We also define the quantity

(d = Qg/Q, (2.11)

which is a measure of the SU(3) noninvariance of
the ground state.

The Lagrangian density is now expanded about
the ground state in terms of the physical fields to
give

a, b, c,d, e,f

~ V3
gb d f 8 V4

Jwd wf

sSQs ygs p 0 Ac 4B 4( Q s ygsylgs yfs yh Aa Ac 4e 4g
a c e 0 f&~ ace g0 (2.12)

A. General model

lt can be shown" that any nonderivative SU(3)
x SU(3)-invariant form for V, can be expressed
as a function of the chiral invariants

I,—= Tr(MM t),
I, = Tr(MM tMMt),

I, = Tr(MM'MM'MM'),

I, =—6(detM+ detM t) .

(2.13)

In the general model Vo is considered to be an

(s' V/8 ys p), may be identified with the matrix
of pseudoscalar-meson masses squared and
(O'V/SSS pep), with the SPP coupling constants.
Similar identifications can be made with the
other terms appearing in the expansion.

So far we have not specified any properties of

V, other than that it is SU(3) x SU(3)-invariant.
We will now describe the two models for V, used
in our analysis.

arbitrary function of I„.. . , I,. We introduce the
following definitions for future use:

(2.14)

$2 V
(2.15)

From E|l. (2.12) we see that in order to calcu-
late masses, coupling constants, etc. we need to
know second and higher derivatives of V, with re-
spect to the relevant fields. Since, in the general
model, V, is arbitrary, these derivatives cannot
be calculated directly. However, they can be de-
termined" from derivatives of V», which is not
arbitrary in our approach.

The requirement that V, be a chiral invariant
and obey the equilibrium conditions allows us to
relate the derivatives of Vo to those of V~» when
evaluated at the equilibrium point. W'e are inter-
ested in the following relations2':
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8 Vo f&a /8Vsa ~Vss
(&a —et') eSaeSe =&a~e ( eSg

—
eSs

b f 0 b 0 a 0
(2.16)

2V
(2.17)

where V4 is arbitrary, and

s"s'I aa'ay'ag = ' aa'aa' 'a aa'„aS; ' ay'aj;)

$2 V 82 8V

0
(2.18)

The last term contributes only when all fields are isoscalar, and we will not use this equation in that case.
We will also need"

~y
8' Vp ~a 8'V0

+5a S~~e~geSe +~a S~we~sSSg +5m
~'V0

elfslfsSo o

a' 8V,
0

(2.18}

Again the last term contributes only when all
fields are isoscalar, a case we will not consider.

In the above equations based on chiral invari-
ance we do not obtain any useful information if
all fields involved are isoscalar (except for a re-
lation between the q and q' masses which can be
obtained by eliminating V,).

We can impose more constraints on these quan-
tities if we require that V, also be invariant under
scale transformations. "'" Thus, V breaks
scale invariance as well as SU(3)X SU(3). This
requirement gives us the basic relation

At first glance these constraints and others in-
volving higher-order derivatives of V, seem to
imply restrictions on many classes of coupling
constants. Closer examination shows that they
are useful only to relate the o' and o' masses and
the coupling constants involving only isoscalar
fields. For coupling constants involving other
fields no additional information other than that
implied by the relation between the o and o' mass-
es is obtained.

B. Renormalizable model
~V0 BV0 (2.20)

e2V, aV»
8$8S 8Sb

(b =1, 2, 3)

(2.21)

This equation can then be differentiated and eval-
uated at the equilibrium point to give the require-
ments

We now discuss the special case in which the
n1odel is taken to be renormalizable. " This im-
plies that no term in V, (or in V„) can be higher
than fourth degree in the fields Q and S. Specifical-
ly, in terms of the invariants defined in Eq. (2.13),
the expression for V, is restricted to have the
form

and Vp = aI1+bI,'+ cI2+ dI4 . (2.23)

83V k / 9 V
sS elf sssyh ) (s yf s yk

{2.22) Noting the definitions given in Eqs. {2.14) and
(2.15) we find (in the isospin-symmetric limit)
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and

V„=2b.

Therefore

V, = a+ 2b(2a' + a,'),
V, =e,

V =0

V4 =d,

(2.24)

where uo and u, are the scalar SU(3) singlet and
I =0 octet members of the (3, 3»}+(3*,3) repre-
sentation of SU(3}xSU(3), and &0 and z, are the
scalar members of (8, 8) with the same respective
SU(3) assignments.

First we consider the (3, 3»)8 (3», 3) part.
Following Schechter and Ueda"' ' we identify
appropriate combinations of the scaLar fields,
Si, with u, and u, . Then (with repeated Greek
indices summed from 1 to 3)

V, = [V, —V»o.'(2 + &u') J I, + " I,' + V2 I, + V I
(2.25)

Naturally all the relations developed in the gen-
eral model are applicable in this case.

and

u, = ~ (5,'+52~ —2S', ).

(3.3)

(3.4)

III. FORM OF THE SYMMETRY-BREAKING
AND WEAK-INTERACTION TERMS

Thus,

Vs = Vs '+ Vs. '+ Vg'8 (3.1)

We will assume that the (nonweak) symmetry-
breaking. part of the Lagrangian has the decompo-
sition

a
C(po C8g8 Co I

v3

—c, ~ (SI+S,'—2S', ) (3.5)

A. The isospin-conserving part

We assume that the isospin- (and parity-) con-
serving part of V» has the form given in Eq.
(1.3), which, to reiterate, is

SB 0 0 8 8 0 0 8 8& (3 2)

where Vs'~ and V,~' are chosen to belong to the
combination of SU(3) x SU(3) representations
(3, 3»)+ (3», 3)+ (8, 8) and where I =0 a,nd I =1
denote the isospin content of the particular terms.
The isospin-conserving term V»' is, of course,
necessary for a realistic description of strong
phenomena. Its structure, in terms of the basic
fields Q and ~, will be given below in Sec. IIIA.
The isospin-violating terms VsB' and V,"8 are
required for a treatment of electromagnetic
phenomena and will be discussed in Sec. III 8. The
weak-interaction term V„„will be described in
Sec, III C.

= —gob~ -g3S» (3.8)

where

g, = (W2c, +c)1
0 6

(3."t)

(3.8}

Thus, for a form that transforms as (8, 8} we
must remove the singlet contributions in the right-
hand (barred) space and the left-hand (mbarred)
space. Writing this product in terms of M's gives

Next, we analyze the (8, 8) contribution in more
detail. The simplest expression transforming
as (8, 8) is a bilinear combination of the M's.
Taking the direct product of (3, 3*) and (3*,3) one
has

(3, 3*)8 (3 *, 3) = (8, 8)+ (8, 1)8 (1, 8) + (1, 1).
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Tf-, q = M~ M~ - s 5q M —M~ —s 5~ M~ M

where

(3.10)

where the representations generated by each term
are indicated. Hence, for the (8, 8) part, we
must consider the tensor

d z +d,z, =-hp"„+h,E'„

where

ho= ~ (v2do+d, )
1

0

and

( &)i/2d

(3.16)

(3.17}

T~ =T-, 0 (3.11) From Eq. (3.13)
by construction. We are interested in the even-
parity nonet in the usual decomposition:

8 @ 8 = 27+ 10+10+Sg + Sg+ 1.

This nonet has the form

(3.12)
and

Es= —Ts"-T— + T=s s c( cxs Q.D (3.18)

We can now identify

(3.13) Using Eqs. (2.3) and (3.10) we can translate these
expressions into 5's and y's and obtain

1
Q ~3 Q (3.14)

and

E =(S"„S~+Q "$8)—i (Sz S„+p8 p } (3.19)

(E', +E22 —2E', ). (3.15)

E = (S'5~"+ P y, ) —2(S'S„+P P„)
+ (S:S8+V".Vs) , (S-BS'.+ 474'.) (3 2o}

Paralleling the (3, 3*}(3*, 3) case we write Consequentl. y, the complete form of Vs.„ is

VsB = goS„"-g~S3 —ho[(S~58 + Q„Q8) - —,
'

(Sa S„+@8 0„}j

-I, [f(S'.S;+0'.0;) -2(S,'S."+0', 4.") (+".SsS0+48) . (SB—S'+080'.)1

where the g's and h's are defined by Eqs. (3.7) and (3.17), respectively.

(3.21)

B. Isospin-violating part

The isospin-violating (parity-conserving) part
of the Lagrangian ' ~ will be used to describe
electromagnetic mass shifts, the decay q-3m,
and corrections to the K-2m decays (including
an attempt to account for the decay K'-n'w').
The term Vs~' is assumed to have the form

analysis analogous to that in Sec. IIIA above we
can express V,„' in terms of the basic fields as

Vss' = -a'i(Si-S2)

2(S.'S,'—S'.S.') —2(e.'el —e.'~!)—
+3(Si-S2)SS+3(ei-42)43),

I=1sBssss~ (3.22) where
where us and zs are the I =1, Is =0, even-parity
members of the (3, 3*)6(3*,3) and (8, 8) represen-
tations of SU(3) X SU(3), respectively. This part
of the Lagrangian may be considered to arise
from an electromagnetic tadpole mechanism,
schematically represented in Fig. 1. From an

S,

and
g, -=c,/W2

(3.24)

The term Vs~~ is introduced to account for the
effect of ordinary single-photon exchange, as
pictured in Fig. 2, on the pion and kaon masses.

S,i)Ii S,p
FIG. 1. Electromagnetic tadpole diagram.

mK m K m'K

FIG. 2. Single-photon-exchange contribution to m and
E electromagnetic self-masses.
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It has the form

VsB = d ~4g4p+dzlg43. (3.25)

V„„=—~ XTr(J„J"U),G (3.26)

where G =1.026x10 'm~ ' is the universal Fermi
constant, X is a normalization parameter, and U

is the matrix

0 0

U= 0 0 1

0 1

(3.27)

J„ is the weak hadronic current constructed from
the Noether currents of the Lagrangian without

(3.28)

C. The weak interaction

In order to describe the weak nonleptonic decays
of E mesons into two and three pions, K -2m and
A"-3m, respectively, we include in the Lagrangian
a weak interaction of the current-current type.
The nonleptonic part of this weak interaction is
assumed to be the

~
4S~ =1 member of an SU(3)

octet and is taken to be "

IV. STRONG-INTERACTION CALCULATIONS

In this section we apply the model to the des-
cription of purely strong effects including the
meson mass spectrum, strong decays, and mm

and ~K scattering lengths. We will thus begin
by neglecting all symmetry-breaking terms in the
Lagrangian except for Vs„, which is given in

Eq. (3.21). We will take o.', = o(2 = (» [corresponding
to an SU(2)-invariant ground state].

Calculations based on the general model of the
chiral-symmetric part V, are given in Sec. IVA.
The additional results obtainable from the re-
normalizable model are presented in Sec. IVB
with the details of these calculations given in

Appendix B.

A. The general model

J. Mass spectrum

From the expansion of the Lagrangian in Eq.
(2.12) one sees that the scalar and pseudoscalar
meson masses are given, to lowest order, by
second derivatives of the Lagrangian with respect
to the scalar and pseudoscalar fields. We will
begin by considering the pseudoscalar mass
spectrum. Using Eq. (2.17) and Table I one finds
for the pion (here and in the following the par-
ticle symbol will also stand for its mass)

and (3.29)

~2 0 (4.1)

where

n, o o

u= 0 aa 0

0 a,

gy2gyl gyag@1
(4.2)

-4 ~ =, h (5 3 l ~h) (—,'ll, ~ll, l. (4.$(

If we define the pion and kaon decay constants

f, and f» in the usual way,

[(2»)'2(u, ]~(0~ s„A,"'
)
((') =f,m„'

Thus

» =~ +2 ho(2+ us)+4h~.

Also

(4.4)

and

[(2(() 2((( ]'h(0)S„A,"~[K') =f m 2,

then, to lowest order, the model gives

f„=2m,

f» = c( + c(3.

To sum up, the full Lagrangian density to be
employed in the following can be written as

2 = g Tr(&„gs "Q) y —,
' Tr(e„SS"S)—Vo- Vs»

(3.30)

(3.31)

(3.32)

(2g„+g, )/&+ 4h, (2+(a&)+ 3 h, (4- &u)

1 +(d

Turning now to the g-p' system, the q-q' mixing
angl. e 6)~ is defined by

(4.6)

(3.33) We can identify
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TABLE I. Expressions for the derivatives of Vsq with respect to the scalar and pseudoscalar fields, evaluated at the
equilibrium point. We write the expressions as ()O=a&go+atg&+atbo+a4b&+asg&+a&h&. All derivatives not listed are
zero at the equilibrium point.

Equilibrium point derivative

aVs8

8Vsn

8Vsyc

as 3
3

a~~sv 8 Vsg
as~GS ' 8$ 8$

8 VSH

8 Vs~ 8 Vss
8S~aS3 0' /~8@ 33

(
8 Vsp 8 Vs8
BStBSt '

Bgttsgt

8 Vs8 8 Vs~
BSttBS3 O' Bg&BQ

(
8 Vsg 8 Vsn

as,'as', , '
ay3'aq

8 Vs/ 8 Vs/

as,'as' '
ay', aq
8 Vs)f

as38s 0' 8$(8+

8 Vsg 8 Vsg

as,38S, away'

a& Q3

—,(2, +3n, +3~3)2

2-3 (3n &+2n2+3n3)

2-3 (3n &+3n2+2n3)

4
3

-~9 (4n )+ en2)

-- (en& + 4n2)
2

4
9 3

8
9

8
9

io

2
9

2
9

a5

2
3 (2n&+3n3)

—
3 {2n + 3n 3)

2(n, -n, )

4
3

a&~8&i 0 8&28&a 0

+b 'g +0 t)

82

2 270 +6/ +Qg1 2 2 2 2 P2

8&ia&2 0

8 q', ay', , 8@,'ay,',
= —&2 ah (q' —q"),

(4.7)

(4.8)

(4 8)

(A similar identification can be made for the
scalar mesons, o and o', with the appropriate
combinations of Bs denoted by a' and b'. )

Using these relations, Eq. (2.17}, and Table I,
we can now write

p 2 $2~2 + g2qf 28 V

alla y2 2 0

= ~ +hp~ -12V4n„

and

d

~3
~
~ ~3

~~ 2 2 2 I 2
t

2 V = 2a2q2+ 2b2q" (4.10)

(
82 V —2&2~2+ 2y2~1 2

(g, +g, } 4h„12V,o.

CR3 (A)

(4.12)

where

and

1—(cosBs —v 2 sin&p).v'6

1a= ~(sinB~+W2 cos&~)

(4.11)

82 V = —v 2 ah(q' —q")
8$ dp

= —2 h —12 V~@.

The above expressions can be used to relate g',
6~, and V, to q and the symmetry-breaking para-
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meters of Vs~ . These relations can be obtained
from the more general analysis of Appendix A, in
which the & -g-g' system is analyzed in the iso-
spin-violating case.

The only scalar meson mass which can be cal-
culated in a straightforward fashion is that of the

Using the above techniques leads to

&S3dS

others by isospin invariance. ) We have

(1 + 2&v) (a ~ —a'~) cos 28 z — (&u —4)(cr' —o' ~)s in 28 ~v'2

= p+3(u +Il'') (4.14)

and

(e —4)(c —&r'')cos 28~ + v 2 (1+2+)(c —c")sin28~

= q —3~(o'+ ll"), (4.15)

—g, /a+ —', h, (4+~} (4.13)
where

This mass is obtained using only the chiral in-
variance of Vo. For information about the o and
v' masses we must invoke scale invariance. ~3

Using Eq. (2.21) we can get two independent equa-
tions involving a, a', and the scalar mixing angle
8~ (the third equation obtained is related to the

p = -6[3g,/n+ 3+h,(5+3(u)+sth, ],

q = 6 [3(g,+g, )/o. +a, h, (3+Id) -&h, u)].
(4.16)

If we choose a value for a, we can solve these
equations for o' and 6}s. In particular, we have
for 0

6(~q —2p)+ —(2p'+ q')
6[6(2+ ld') o' - (~q —2p}]

and for tan26}s

v 2 [(1+2~)q - (~ —4)p -6(~ -1)(~+2}(&'+&"}]
tan26s =

2(1+2~)p+ (~ —4)q - 3(~' - 8&d —2)(o'+ c")

(4.17)

(4.18)

At this stage the e meson mass cannot be cal-
culated. As we will. see in Sec. V, it can be de-
termined in terms of the isospin-violating para-
meters if a, W u, . It can also be determined in the
renormal. izable model.

Our predictions for scalar and pseudoscalar
meson masses in the various symmetry-breaking
schemes of interest are shown for the general
models without and with scale invariance of Vo

in Tables II and III, respectively. Underlined
entries throughout the tables denote quantities
used as input. For the computations given in the

tables, m, K, and sometimes g andy' are always
used as input to determine the symmetry-breaking
parameters that are not fixed. A detailed discus-
sion of the numerical analysis for all of our re-
sults is deferred until Sec. VII. Since the v mass
(and, in the case of the general model without
scale invariance, the o' mass and 8~) cannot be
predicted, it (they) must be chosen for the subse-
quent calculations. Note that we have considered
two possible assignments for the g', at 958 MeV
and at 1450 MeV.

2. Strong deenys

We will first discuss the scalar meson decays into two pseudoscalar mesons. These are governed, to

lowest order, by the S QQ couplings which may be written in isospin-invariant form as"

+(3IPQ) = gyre TC Tff '& +g~ ~ gE 'II7} +gq~ ~ie 'Ill} +kg ~~IlII ' ll + g g ~~0 ll 'll
I 2 &KK

1 I
+ &oKK++I +go'K7K+ ~++ ~ RKKffE ' + g KKg ~+C'KKy}'

1 1 I 1 I I 0.1
+ ~ ga7}7}~~+~ +o'7}q+ m+ ~ go7}'7}' 1 n + & Co'y'7}' + n n +ao7}TJ' &'qn +go'Tjq' (4.19)
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Inspection of Eq. (2.12) shows that these couplings may be determined from the appropriate third deriv-
atives of the Lagrangian. Thus, for the ~En coupling one finds

d3V

~'V

(4.20)

(4.21)

Vsa

BSUPdg

Thus, from Eq. (2.18) and Table I

Q + Q, 8S38Sl

(4.22}

(4.23)

3 — 1 3 0 ~l ~20 1 3 0 ~l 42 o

Q+Q3
[z' —»' —(-~h )]. (4.24)

Hence
1

gKK7f =
Q+ Q 3(»' —8++h. ).

3
(4.25) (o'~-K~)(a'+&2b')++(3h, +h, ) +a2(W2/3)(6h, -h, )b'

This can be expressed in terms of other masses
by using the mass formulas. For example

1
g„», = — (K' - »'+ + h, ).

Q Q3
(4.26)

In summary, the other SQQ coupling constants
obtained using chiral invariance are

(b-&2a)(»'-rP)-a(3h„+ h, )b+ 2(v 2/3)(6h, -h,}a
Q+Q3

(4.27)

(a+ v 2b)(»~-q'~)- f(3h„+h, )a-2(v 2/3)(6h„-h, )b

(4.28)

g,« --( 'e- K'- ~h) (/u+u), (4.29)

g„„=.[(e' -q')b -4(h, +h, )b +2&2h,a] /u, (4.30)

g, „„,=[(e' —q")a —4(h, +h, )a —2&2h, b]/u, (4.31)

g „=[(o —» }b'+4(h +h~)b' —2W2hoa']/u, (4.32)

g,„=[(a'~ —»~)a' + 4(ho+h, )a'+ 2W2hob'] /u, (4.33)

(o -K~)(b' W2 )+a+( h3„+,h-b'-}2(W2 3/)(6 hh, '}a
ga KK'

3

(4.34)

and

(4.35)

where

—sin2&~( 3h, +~9h, ),
(4.36)

and

X (3)' (1 —tu)cos&~ — (2 + u)sins'2 l/2 1
3

Y' = (—,)'h(I —u)sin&» + (2+ u)coast.X l/a 1
3

(4.37)

Thus, we still need to specify either g, „„.or
g, « . Our predictions for the allowed scalar
meson decays in the two versions of the general
model are shown in Tables II and III for the var-
ious symmetry-breaking schemes of interest.
These results will be discussed in Sec. VII.

The final strong decay we will discuss is g'-qn a.
The lowest-order contributions to this process are

Again, the above coupling constants can all be
calculated using only the chiral invariance of

V, . As g«„and g, «both involve three iso-
scalars, we do not obtain any useful information
from chiral invariance and we must impose scale
invariance on Vo once more. Using Eq. (2.22) one
can derive the relation

2 10&2
xg, «+ Yg, « = — cos26~ h3
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shown in Fig. 3. In addition to SQQ couplings,
which were dealt with above, the decay amplitude
depends on the four-point g'pre vertex. If we
define the four-point couplings of pseudoscalars
to be

( ~ 7T0, 0

+2g'E) EKr'n +' (4.38)

then for g„~' we have, using Eqs. (2.18) and (2.19)
and Table I, FIG. 3. Contributions to g' —gx'~ decay.

g(~)
Bq'dye(P 8$

(4.39)

, ((2v2 cos28~ —sin2&p)[e'- &(rl'+q") —4(h, +h, )] +(2v 2 sin28~+cos2&~)(2v2 h, )j

1 (+ —(b g, „„+ag, „„).
Q

(4.40)

The decay amplitude calculated according to the diagrams of Fig. 3 is

2(q~(p) q(q)+&+(k }+&-(k )) p4) orrg nOn g'wo~g nor ' g~wnga~n' gc~n8ewn'
u2-(p-q)~ o"—(p-q)~ e'-(p —k, )2 e' —(p —k )~

' (4.41)

If we impose sca, le invariance on Vo we can get
.enough information to calculate the width for this
decay. Let us first go to the g' rest frame with
ko = k and write, to first order,

(4.42)

where T„ is the q kinetic energy. Then

can be obtained from the scale invariance relation,
Eq. (4.36}. If we choose a value of the e mass
(a tentative value" will usually be 970 MeV) and

a value of o [thus determining o' and 8~ from Eqs.
(4.1'I} and (4.18)], we can predict a decay width

usin

1
I (rl'-0» )=

64(3 4115)9g 0
dk'+dk'I TI'.

(4.48)

and

2A„„g
—V —7}'g

(4.43) Our results for the width in the general model are
given in Table III. The prediction is based on
Rittenberg's value" of 0, = -0.11.

3. nn and nK scattering lengths

(4.44)

T ~1+Cy,
where

(4.45)

The Dalitz-plot parametrization for the matrix
element is of the form

We will now investigate the v~ and nK S-wave
scattering lengths. For the n'm scattering lengths
we consider the amplitude for the s-channel proc-
ess w'w~ —s'w' (i, j, k, I=1,2, 3). The lowest-order
contributions to ng scattering from the model
Lagrangian are shown in Fig. 4. The contributing
four-pion vertex, defined in Eq. (4.38), is found

to be

+2' T
(4.46) g(4) & V

g @2'ply y2g yl (4.49)

with Q=g'-q-2n. (4.47) = —,[2b"(8+ 2a"o" —w'+ 4(h, + h, )] . (4.50)
The experimental value" of 8 can be used to

furnish one condition on the amplitude. Another The S-wave scattering lengths a, are defined by
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CF, 0

FIG. 4. Contributions to 7r~ scattering.

T' ~s =4m'
32(3.14159)w

(4.51)

FIG. 5. Contributions to n.K scattering.

Evaluating the I =0 and I = 2 ampl. itudes corre-
sponding to the diagrams in Fig. 4 we obtain

3 2
2 1f g7t'% 4

Explicit evaluation of the diagrams in Fig. 5 gives

A(s=(w+K)~, t =0, u =(w —K}')

4) 1 2 1 1
gw & Reww w2 (w K}2

+ 2
( K)2

and

3 2

and

go'IrIfgaEE ga'mn'Ro'EE
'2 (4.59)

T'(s =4w', t =u=0) =gt,''—
(4.53)

B(s=(w+K)', t =0, u=(K-w)')

Following a similar program for the mE scat-
tering lengths we consider the amplitude for the
s-channel process w K-w K which may be written
in the form

2 g&EF 2
(w K}2 ~2 (w+K)2

' ( )

The predictions of the r~ and mK S-wave scat-
tering lengths for the general models are shown
in Tables II and III.

T =Ab, , +a —,
' [r„r,]. . (4.54)

+K' —w'-K'+4(2tt, +It, )]. (4.56}

The amplitudes of definite s-channel isospin
are given by

T ~ =A+2@

and

T =A -B. (4.57)

The mE S-wave scattering lengths are defined in
the usual manner:

-1
8(3.14159}(w+K)

The contributions to these ampl. itudes are shown
in Fig. 5. The relevant four-point coupling con-
stant [see Eq. (4.38)] is found to be

a v
(4.55)

1
2a(o. + tw, )

x [2b' a +2a'~a' —2u2 a'b'(a —a' )

B. Renormalizable model

We will now point out the additional predictions
which can be obtained from the renormalizable
model. . The calculational details are left to Ap-
pendix B.

1. Mass spectrum

We, of course, obtain the same expressions for
the pseudoscalar meson masses in terms of the
parameters of V,~' as were found in Sec. IVA
for the general model. . These masses are again
used as input to determine the symmetry-break-
ing parameters.

With respect to the scalar meson masses, the
a' (o) mass and the a-a' mixing angle tIs can be
obtained once the a (o') mass is specified (see
Appendix B). This is similar to the situation in
the general model with a scale-invariant Vo. In
addition, the E mass can be determined in the
renormal. izable model. We have

x T (s =(w+K}2, t =0, u =(K- w) ). (4.58} BS OS' 8S~8$i (4.61)
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and from the form of Vo given in Eq. (2.25) one
gets

s j, =2V, +12V2n -12V~&3(
QI2 V

and thus, with the help of Table I, we find

=2V, +12V2n —12V4e~+ —,'ho+ 9 h3. (4.62)

It is shown in Appendix 8 how the parameters of
Vo can be determined. Our results for the re-
normalizable model are shown in Table IV.

2. Strong decays

$3 V
agape'' (4.63)

= 16ab V, (ab'+v 2a,a')

and

—24' 2 V~[b'(b' —a') —a'ab)

gs V
Rg QQ g( Igqg~l 0

(4.64)

(4.65)

Previously we had to resort to scale invariance
and input the slope parameter to find the decay
width for g'-g«. This was necessary as both

g«„and g, „„ involve only I =0 fields. We can
now evaluate these coupling constants directly and
evaluate both I'(q'-rlww) and the slope parameter 8.

First, we calculate the coupling constants. From
the form of Vo, Eq. (2.25), they can be evaluated
directly and we find, using previous techniques,

predictions are given in Table IV.
An analysis of all the results obtained in this

section will be given in Sec. VII.

V. ELECTROMAGNETIC CALCULATIONS

We will now discuss electromagnetic corrections
to some of the results presented above. For this
purpose we will add to the Lagrangian of Sec. IV
the isospin-violating terms -V~ and -V~ given
by Eqs. (3.23) and (3.25), respectively. Also, in
the following a, will not be equal to ~„ thus re-
sulting in an SU(2)-noninvariant ground state

We will consider mass splitting within the m, K,
and w isospin multiplets as well as electromag-
netic mixing between the I= 0 and I = 1 members in
both the pseudoscalar and scalar nonets. The
m'-q-g' system is analyzed in Appendix A, where

ep Vg and the m -q and w'-q' mixing angles
P, and g„respectively, are determined in terms
of V;„and q. The ~'-o and ~'-v' mixing angles
X y and g„respectively, are determined for the
renormalizable model in Appendix 9. For the
purposes of Sec. VI, where we study violation of
the D I= & rule in the K-2m decays, we will also
calculate the changes in the ~Km coupling constants
due to isospin violation. In addition, a value for
the e mass can be obtained in the general model
in terms of the isospin-violating parameters,
since a, x~, . Finally, we predict the width and

slope of the decay g- n'w n' in the renormalizable
model. The general model will be covered below
in Sec. VA and the renormalizable model in Sec.
VB.

= 16ab V,(aa' —&2 n, b' }

-24&2 V,[a'(b'-a')+b'ab). (4.66)

A. The general model

1. Muss splitting

With these couplings and the & mass determined
above, we can evaluate the ampl. itudes A and B
of Eqs. (4.43) and (4.44) and thus determine both
the slope and width of the g'-qnn decay. These

The techniques used in Sec. IV for calculating
masses are applicable here. Using Eqs. (2.16),
(2.17), (3.21), (3.23), and (3.25) and Table I we find

2[g, +2h, (a, + a, + a, )+2h, (a, + a, )]
2

(5.1)

2g, +g, + 4h, (a, + a, + a, ) + h, (a3, + 3a, -a, ) +g, - Bh, (4a, + 5a, ) (5.2)

2g, +g, + 4h, (n, + a, + a, ) + -', h, (3a, + a, —n, ) -g, + -',h, (4a, + 5n, ) (5 3)
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TABLE IV. Tree-diagram calculations in the renormalizable model for various combinations of (3, 3*)g (3*,3)
g (8, 8) chiral symmetry breaking. We have Vs& = -cpu p

—csus -dpzp -dszs and gp = (W2 cp+cs)/&6. We set f„=135MeV
and fix ~, K, and g at 135, 495.8, and 548 MeV, respectively, in the strong-interaction calculations. Other quan-
tities used as input are underlined. At the end of the table we present the best results of the electromagnetic calcula-
tions for the cases dp

-—ds —-0 and gp ——ds =p. The mass of e, calculated from Eq. (5.6), is 958 MeV for d3 =0 and 970
MeV for ds = -0.0062 x .

dp =ds =0 ds =O dp =o gp =ds =o gp =dp =0 gp =0 gp =0.3 gp = p, 5 gp

Cp (7( )

C, (7()
dp (&~)

ds (

cs /cp

g' (MeV)

ep (deg)
K (MeV)
e (MeV)
a (MeV)
g' (MeV)

0& (deg)

r(q'- q~~) (MeV)

8
r(x Kr) (MeV)
r(e —g7() (MeV)
r(cr —~n) (MeV)
I (0' 7t'7)) (MeV)
r(~ -KK) (MeV)

a, (~ ')
a, (m ')
aii) (7(' i)

a„, (7(. ')

(10s sec ')

a&-n2 (m)

d~ (r)
c3 (n )

d) (n'2)

P& (deg)
(I)3 (deg)

x& (deg)

x3 (deg)

r(q —It'7( 7( ) (eV)
P

Z' (K+ —~+ n')

T(Ki m' n' )

n& —n& (7t)

d~ (7(2)

C3 (2)
d3 (7t' )

g& (deg)

$3 (deg)

x~ (deg)

x3 (deg)

r(g-~'I( 7t ) (eV)
P

T (K+ 7r+7I )

T(Kg 7r'm )

1.66
10.65

-13.83
0.0
0.0

-1.30

988
0.7

967
952
640.0

1123
123

5.4
-0.03

565
169
709

5
506

0.170
-0.038
0.157

-0.049

-0.0148
0.21

-0.527
0.0

1.1
-0.1

1.1
-1.5

114
-0.477

0.011

-0.0147
Q.21

-0.551
-0.0062

1.1
-0.1

1.0
-1.5

119
-0.477

0.0111

1.66
7.23

-13.83
0.93
0.0

-1.91

958.0
0.8

967
952
620.0

1123
123

5.5
-0.03

565
170
784

2

538

0.454
0.050
0.175

-0.031

28.8

1.66
10.38

-12.44
0.0
0.43

-1.20

958.0
1.9

947
921
500.0

1032
112

6.0
-0.19

505
148
226
150
158

0.031
-0.081

0.167
-0.041

2.2

1.66
9,78

-13~ 83
0.24
0.0

-v2

981
0.8

967
952
640.0

1126
124

5.4
-O.Q3

565
169
505

2
534

0.235
-0.018

0.161
-0.045

9.3

-0.0148
0.21

-0.527
0.0

1 ~ 1
-0.1

1.1
-1.5

116
-0.477

0.011

-0.0147
0.21

-0.551
-0.0062

1.1
-0.1

1.1
-1.5

121
-0.477

0.0111

1.56
10.52

-14.88
0.0

-0.50
-W2

1067
-0.9

1055
1039
450.0

1129
110

3.1
-0.45

877
273
240
361
336

0.462
0.026
0 ~ 148

-0.053

62.6

1.56
8.30

-11.74
0.48
0.49

-W2

958.0
0.6

1004
956
660.0

1128
118

3.9
-0.01

687
201
756
44

530

0.118
-0.055

0.162
-0.041

3.6

1.56
8 ' 72

-11.59
0.35
0.53
1 033

958.0
0.7

1001
952
640.0

1115
117

3.9
-0.02

678
198
648

72
460

0.072
-0.070

0.160
-0.043

2.2

1.56
4.78

-7.98
1.29
1.66

-1.67

1450.0
9.8

939
1196
550.0
864
100

81.9
0.85

483
460
319
180

0

-0.032
-P.107

0.180
-0.029

1.4

1.56
3.19

-8.19
1,75
1.60

-2.57

1450.0
9.8

943
1204
700.0
909
119

1.9
1.0

493
472
901
~Q

0

0.09Q
-0.062

0.190
-0.019

3.0
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-g, +-',h, (o.,+So.,+ a, )+g, —&h, (4n, + a, )
1 3

(5.4)

-g, + -,'h, (SQ, + Q, + Qq) -g, + gh, (4Q, + Q, )
2 3

(5.5)

2[g, ~h, (n, + n, + Sn, )]+-
CZ —Q21

(5.6)

Note that m, '- w,
' =d„.

%e now turn our attention to the combination
o., -z2. Since a, -o.2AO, we can calculate the E'

mass in terms of the isospin-violating parameters
g„h„and a, -a, using Eq. (2.16). As an esti-
mate of the magnitude of a, —a, when a, wa„we
will consider the value of Schechter and Ueda""

the one-photon emission and absorption contribu-
tion and, to be consistent, we then set m, = m, ."
(Consequently, in this calculation, we set d, =dr
= 0.) We use this vertex in our calculation of the
decay rates for the processes K'- m'7l' and E'

n'm in Sec. VI.
Using our standard techniques we obtain

Z'-Z
o., —n, = a (&u -1) (5.7) gro„,,= (w,' -m'+-', ha+ 3 h, ),02+ Q3

(5 6)

2. Coupling constants

In our estimate of the first-order electromag-
netic corrections to the KKm vertex, we neglect

A+~-= (v,' -v'+'-, h, --', h, ),
Q~+ Q3

and

(5.9)

gr+„-,0 = ~' [1+VY $,(b -Ma)+ ~g, (a+ Mb)] — ' [$,(Mb -a)+ g, (Ma+ b)]
(x.' -w') 4vTI.

VY Qq+ Q~ Q~+ Q3

+ h, [1-$,(a+2M2b)+g, (b -2Ma)]+ h, .2M 10M
3 Q|+ Qp 3 C~+ Q~

(5.10)

B. Renormalizable model

j. q~ 3m

Ne will now apply the renormalizable model to
the decay

= 7r-0;0

(a)

~M
gO

(b)

q(p) -m'(q, )+ w (q )+m'(q, ) . (5.11)

The decay amplitude is calculated to first order in
the isospin-violating interaction V~~ of Eq. (3.23).
The contributions to the amplitude are illustrated
in Fig. 6.

The terms of the total Lagrangian which are
relevant to the calculation are the strong cou-
pling s

(c)

g~~~'gZ ' 7T+ pg~gg(T7T ~ 7F + agyig~& 7T ' X (5.12)
FIG. 6. Contributions to Z Yf+x ~ decay. EM denotes

an effective electromagnetic vertex.
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and the isospin-violating couplings

fb2obcw 'g+f~~b(T w 7/+f~p2» Ew+'w

, f. ~z... ,. f.-.;.g.,
(q. -p)' -&' (q P)'- (5.16)

+f, ,~(w w'w'+e'w w')+f'„",» ~rlw'w w'-. (5.13)

The strong couplings are given by Eqs. (4.30),
(4.32), and (4.33). The relevant isospin-violating
couplings are given in Appendix B [Eqs. (B24}-
(B32)].

Using Eqs. (5.12) and (5.13) the contributions to
the decay amplitude T(2)(p)- w'(q, )w (q )w'(q, )),
are found to be

' gt4)
6(d) ~ 7)r+rM y (5.17)

where the subscripts on the T's refer to the par-
ticular diagram in Fig. 6 according to which the
contribution was calculated.

In the q rest frame, with q', =q', we may write,
to first order,

T &
tfeerfar&&b

&
Za'rrfb'ron (5 14)

(q. P}'~'--+ (q. P)'-a-" '
T(2) w'w wb) =A+BT,o, (5.18)

, f,b. -Z...
2(b)

(q p)2 e2 (5.15}
where T is the n kinetic energy. From Eqs.
(5.14)-(5.17) we then have

=f22&&b ~ +
(w q)2 o2 +fbi''2 ~ +

(w ~)2 cn + afe 2+2o-

and

lt'}I,b'+)(,a'+p, 5+g,a f,o„, 2(w'-5(7w+2ri' e)2-
222

II (2
+

(w ri)2 e2 [(w ri}2 e2]2 2»M

fn~bnlb22 fb bn8are
&

f@&+' f 2 '+"2
ll [(2) w)2 o 2]2 [(w (7)2 a 2]2 822 [(2} w)2 e2]2

(5.19)

(5.20)

The Dalitz-plot parameterization of the amplitude
is of the form

T~l+Py,
where

(5.21)

with

3T~p-Q (5.22)

Q = g -3n'. (5.23)

Our calculated value of P is related to the ampli-
tudes A and B via

1
1+ (3/Q)(A/8)

' (5.24)

VI. WEAK-INTERACTION CALCULATIONS

We will now describe the calculation of various
weak-interaction processes, including the K- 2m

Owing to the large slope, we cannot realistically
neglect the B term in our calculation of the partial
width of 2i - w' w w'. Consequently, we take ( T ('
=A2+2ABT p from Eq. (5.18) and evaluate the
partial width using the formula analogous to Eq.
(4.48).

E, -K.E, = (6.1)

From the structure of the weak interaction in
Eq. (3.26), the form of the currents in Eqs. (3.28)
and (3.29) and the form of the electromagnetic
w -2I-2I' mixing in Eq. (Al), the relevant parts of
the two- and three-point weak vertices are

and K-Sn' decays. We include some of the pos-
sible first-order electromagnetic effects in our
treatment of the K-2m decays.

The general form of the weak amplitudes, in
terms of masses and coupling constants, will be
the same in both the general and renormalizable
models. The predictions will differ in the two
models because of differences in certain masses
and coupl. inII;s.

Following Goswami, Schechter, and Ueda" we
now calculate the K- 2n amplitudes to first order in
the weakinteraction. We neglect, as do Goswami
et al. , the one-photon emission and absorption contri-
butions and hence, to be consistent, we then set
m, = mp in our estimate of the electromagnetic cor-
rections. The diagrams relevant to E,'- m'm are
given in Fig. V. Those for K'- n'7t' are shown in
Fig. 8. Here,
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K+

0
v+

FIG. 7. Contributions to E& 7t'7t decay. The dot
denotes a weak-interaction vertex.

FIG. 8. Contributions to K' —~+~ decay. The dot
denotes a weak-interaction vertex.

2„k(&Q) =l' &(n, -n, ) ~2
'+ a((),(b+Ma(d)+ ap, (a-vYb(d) B„v'B'()&'-Z').GX, 2n, + e,

+ (a, + o.,)(a, -a&)(B,(& B"v'-B„)&'B"v )+ ~ ~ ~ (6 2)

and

2 „((P')=GX — — ' ' +a/, [M b+(3- &d)a]+ ai()[vYa-( 3- ()d b] B„v'(K,B v')(2n, + a, )

—(n, + a, )K B~v B"v'+ p(a, + a, )B„K (B~v v'+ B~w'v )
~

+iGX (v 8,(&')O'K'(n, +a,)+ B,v'(v O'K'} — ~ ' -ag, (Ma(d+b)+a/, (M2b&d-a)(2a, + a, )
3

+ 9„( '9'x )' *+ l'riii), (b ~ PE ) ~ lra ),( —i/i (i)JI, (6 3)

where ((), and g, are given by Eqs. (A57) and (A58), respectively. a and b are defined in Eq. (4.11).
Evaluating the contributions to EP, - v'v according to the diagrams of Fig. 7 and using Eq. (5.8) for

ggo„- + gives

T(K, -v'v )= —GX(n, + n, ) Ko-v -v ' ' 1+ '
2+ 3

A similar calculation for K,- v'v using Fqs. (5.9) and (5.10) for gz,)(, and g~.„-,o and the diagrams in

Fig. 8 gives

(6.4)

T(K'-v'v') =i (K,' v')fa, --a, -4ai(), [vYb+ (3-&u)a]-4ag, [Ma —(3-&d)b]]

+iGX ' ' ' '+a/, [b+ ~2(da]+ng, [a-M2&db]«' 1+ 'a, -n, 2a, +a, &(h, -h, )"
al+ $3 M2 Ko r'

+i (n, +n,), 2
' ' '~ [1+))2 $,(b-)i2 a)+)t2 $,(a+ Mb)]—K+ Q3+ Q~

4' h, [(i),(-Mb -a) + $,(vY a+ b))

' [1-i(,(a+ 2~b) + $,(b -2~«)]+ h, ~ . (6.5)

We proceed now to the calculation of the K- 3m amplitude and again follow Goswami, Schechter, and

Ueda. " In this part the electromagnetic corrections are ignored and the various amplitudes are related

by the 4I= —,
' rule. We shall calculate, to first order in the weak interaction, the amplitude for the decay

K'(p)- (q'v} «(+q )+)&'(q'). (6.6)

The lowest-order diagrams for this process are shown in Fig. 9. The relevant parts of the weak Lagran-

gian, calculated as above, are

z.„((i*)=lraxii'(), )(B.,-s"x -~ii„, a"x' ~ H (6.7)
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Zw(sy')=Gxa —e„«0 ~ (w e~w'+ ~w
Oe"w 0)+ ~ (e~w w'+2e"wowo) +~«0(e„w e"w'+~&e woe"wo}

+ (1+&d}e„E [b'(woe "o)+a'(woe~o'}]+ e w'[(b' vY-a')(K e "o)+(a'+ Mb')(K e"o')]

+ Hec + '+ +

(«' and b' are defined analogously to a and b [E&l. (4.11)]for ew} and

&~& (&P') = GX[2(w'e„w )e'w'+ (w e,w')e"w']K'+ H.c.+ ~ ~ ~ .
The contributions corresponding to the diagrams of Fig. 9 are

T,&,&

———GX(K -3p qo),

7r2

T,&b&
——-GXo&'(1+ &d} 2 T(K'(p) —w'(q'}w (q )Id'(q )),

(6.8)

(6.9}

(6.10a)

(6.10t&)

r2
T,&, &

= M2GX&&&'(1+ &d}~,T(EP(p) —w (q )w'(q')K'(q')), (6.10c)

T,&„&
= GXa'(1+ &d) T(w'(p) —w'(q')w (q )w'(q')),

E
(6.10d)

+2q qT „=GX g„, -Lq +q
(6.10e)

T =GX&r "' [(1+&d)b'(IP -2p q') —(vYa' 'b)( 'w- 2-pq')]
&&& f & o 2

(p q&&)2

+ „'",[(1+&d)a'(IP-2p q&&)+(a'+vYb')(w'-2p q')]o" -(p —q')' (6.101)

The expressions for the off-shell wm and mE scat-
tering amplitudes can be calculated from Figs. 4
and 5 using the three- and four-point couplings
determined in Sec. IV. One finds

T(w'(P~ —w'(q')w-(q-) w'(q') )
2 2

iP-q ~
— &P-q ~ -0

TN'(p) —w (q )w'(q')K'(q ))1, 1 1~g&&K& (p qo)2 «2 (p q )2 «2

(6.12)

and

T(K'(P) -w'(q')w (q )IP(q'))

(C) gxzr garr8arCX g'a rrga XTf

(p -q )' «' (p -q')' -o' -(p q')' -o"'-
(6.13)

Ko

(a)

(c)

(e)

pro

(cI)

We determine the value of the parameter X from
the K', - m'm decay rate and calculate the decay
rate of K~ —w' w w using the analog of E&l. (4.48).
The results are listed in Tables II-IV for the var-

FIG. 9. Contributions to Ko —n+x 7)
0 decay. The dot

denotes a weak-interaction vertex. The crosshatched
boxes denote off-shell ~x or mE scattering amplitudes.
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ious models. The predicted ratios of the K+-g'm'
to Kj K 7l amplitudes are given in Table IV.

VI I. THE NUMERICAL ANALYSIS AND DISCUSSION
OF RESULTS

During the course of this work various types of
(3,3")&~~ (3*,3) +(8, 8) symmetry breaking were in-
vestigated. Tables II, III, and IV summarize the
most interesting results for the models used. Ne
now discuss these results and the assumptions
that went into the numerical analysis.

%e begin by considering the values of the ~, K,
g, and q' masses employed to determine the basic
parameters (co, c„do, d, ) in our strong-interac-
tion calculations. As we do not expect a shift in
the m mass to lowest order in the electromagnetic
interaction, we identify the pion mass m with the
m' mass. %e use this as our basic mass unit.

Both the K' and K' masses will shift to lowest
order in the electromagnetic interaction. Thus,
we average the K' and K' masses to obtain the
kaon mass for the strong-interaction calculations.
Naturally, the parameters are sensitive to the
value of K chosen, but the effect is not severe for
small changes in the value of K.

The q mass is used in our determination of the
g-q' system as discussed in Appendix A. De-
pending on the type of symmetry breaking being
considered, g' is either calculated or fitted. The
value of q' can be quite sensitive to that of g. For
example, with (3, 3*)63 (3*,3) symmetry breaking
one gets a value of 1019 MeV for q' when g= 548
MeV. If we set g= 543 MeV, then the q' mass
shifts to 960 MeV. Nevertheless, we use g = 548
MeV throughout our calculations. In summary we
use v=v, =135 MeV, K= z(E,+IC,) =495.8 MeV, and

q = 548 MeV.
Let us next consider the values of a and n3.

With a value of 135 MeV for f, we have a =0.5w

from Eq. (3.31). This value is employed through-

out the calculations. The value of o., is then de-
termined by frlf, from Eqs. (3.31) and (3.32).
For fr/f, = 1.28 we have a, = 0.78m. As there is
still some uncertainty in this value, fr/f„ is al-
lowed to be as large as 1.33. This corresponds
to o,, =0.83m.

Since the variable a(;, appears throughout all
our calculations, we must consider the sensitivity
of our results to the value of fr/f, . As an example,
consider again the (3, 3*)6 (3*,3) case. With

frlf, = 1.28 (and r}= 548 Me V) we have rl' = 1019
MeV. If we setfr/f, =1.4, we then have q'=958
MeV. (Naturally this result is dependent on the
value of %used). This latter value of fr/f, is
close to those values chosen by Chan and Hay-
maker, "who input m', r}, 'g", f„and frlf, for
their tree solution to the GMOR model. They ex-
ploited the insensitivity of SP on (essentially}
fxlf, with the other inputs fixed to obtain acceptable
results for the scalar meson masses. A value of
fr/f, =1.4 is probably too large; thus, in general,
we prefer to set frlf, = 1.28 and deviate from this
choice only when a change clearly improves the
calculations as a whole.

Tables EI, III, and IV contain all the interesting
combinations of (3, 3*)fB(3*,3}8(8,8} symmetry
breaking except the case which involves only (8, 8)
terms. This latter case gives an unphysical solu-
tion for g' and is consequently rejected. As an
indication of the magnitude of the (8, 8) contribu-
tion relative to other types of symmetry breaking, we

compare the size of the (3, 3~) 8 (3*,3) and the
(8, 8} terms in the evaluation of IP. These values
are given in Table V. In all acceptable cases (ex-
cept the g, =-1.5 case} note that the (8, 8) contribu-
tion is much smaller than that of the (3, 3*) (3*,3)
part.

%'ith some types of symmetry breaking the pa-
rarneter solutions are not unique. The rejected
solutions involve a larger contribution from the
(8, 8} terms in 2» and the calculations as a whole

TABLE V. Contributions to the kaon mass squared (in ~ ) from the cp, c8, dp, and d8 terms
in the kaon mass formula

(2gp+g&)/G. + 4hp {2+a)+ zh& (4 —a)
K2

1 +Ed

for the various types of symmetry breaking in all models. Note K =3.67~ and K2 =13.497( .
We set ~ =1.56. En the second, third, sixth, and seventh cases g' =958 MeV.

dp =d() =0 d8 =0 do =0 go=d8=0 gp =dp =0
gp —-0.5 gp — 1.5 d8 —0

go=0 go=0.3 ~ =1450 g =1450 & =1450

c, 925
cs 4 24

do 0
da 0.0

3.11 8.94
4.24 3.56
6.14 0.0
0.0 0.99

8.47
4.24
0.78
0.0

9.49
4.75
0.0

-0.75

7.49 7.86
3.74 3.70
1.54 1.14
0.72 0.79

4.31
2.54
4.15
2.48

2.88
2.61
5.61
2.39

63.40
4.24

-54.14
0.0
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are less satisfactory than those given in the tables.
Consequently, our calculations favor small (8, 8)
corrections to the dominant (3, 3~)83(3*,3) contribu-
tion.

The particular forms of symmetry breaking for
which results are presented in Tables II, III, and
IV were chosen on the basis of both the above
numerical results and of the ideas presented in
the Introduction. The GMOR case d, =d, =0 [i.e. , no

(8, 8) contributionJ is that studied by Schechter
et a~."" The case go=, = o s the Okubo case '6 "
which has only the (8, 8) part of Zss breaking
SU(2) x SU(2). The Sirlin-Weinstein model" cor-
responds to go 0 The other cases are included for
interest and comparison. We also include some
interesting calculations with g' = 1450 Me V, near the
mass of the F. meson, "another possible choice
for the ninth member of the pseudoscalar nonet. "

The masses of the pseudoscalar meson nonet are
accurately known (except for a possible uncertainty
with regard to the choice of q'). The scalar nonet
masses, on the other hand, are subject to a great
deal of uncertainty. First, we identify the iso-
vector 5(970) with the c "Sec.ondly, we identify
the broad Kw signal in the 1200-1400 MeV region"
with the ~. Finally, we use the results of Proto-
popescu et al."to complete the nonet with the a
around 660 MeV and the a' at approximately 997
MeV. In our calculations the above masses are
chosen if possible. If the model being considered
applies constraints to these masses, we try to
fit them while maintaining reasonable results for
the other quantities of interest. Such a compro-
mise is not always possible.

We now consider the strong, electromagnetic
and weak interaction calculations separately in
Secs. VIIA, VIIB, and VIIC, respectively.

TABLE VI. The 0' mass for various 0 masses in the
general model with scale invariance. WVe set go

—-d& —-0
and ~ =1.66, corresponding to the values given in Table
III. There are no solutions for e' for o between 38 and

60 7)' .

O
2

(MeV}
g I

(MeV)

improve. If one tries to force the x mass to a
larger value, the width increases too rapidly to
be acceptable. This is a consequence of the form
of g„r„which varies as (z'-v'). These results
hold for all models.

In the general model, we have no constraints on
e, a, and a' and, hence, choose them at 970, 660,
and 997 MeV, respectively. We are also free to
choose the o-a' mixing angle (ez), and, on the
basis of the results for the v and 0' widths, we
tend to favor a value around 120". This choice
generally minimizes the calculated widths and
puts them in an accepted region. " Our best width
for the E is -200 MeV in the model calculations.
This is much larger than the experimental width
of 50+30 MeV.""

If we choose to impose scale invariance on V„
this places a constraint on 0, cr', and 8~. This re-
striction is not particularly pleasing as it does
not allow a value of a' around 1000 MeV. One can
adjust the value of 0; however, in the region of
interest, the o' mass is quite insensitive to that
of the 0. In addition, not all values of 0 and 0'
are allowed. This is demonstrated in Table VI for
the case with g, =d, =0 (the Okubo case). The re-
sulting widths in all cases are undesirably large.
Moreover, with this large value of 0', we cannot
identify it with the particle" at approximately

A. The strong -interaction calculations

Before considering the actual results we recall
that the values of f„fr/f„v, K, and possiblyq and
q' are used as input to determine the fundamental

parameters in the model. Some of the results of
Table II will now be discussed in detail.

First, we consider the mass spectra and decay
widths. The only comment we make on the pseudo-
scalar mass spectrum is that, when the g' mass
is not used as an input, the Okubo and GMOR cases
give the best results. It is also interesting that
with g'=958 MeV e~ is small, whereas for q'=1450
MeV e~ is an order of magnitude larger.

The ~ mass generally prefers a value around
1000 MeV with I'(z-Kv) around 400-500 MeV for
all forms of symmetry breaking. Cicogna et al."
comment that by shifting the input masses by
several MeV, they can get a large value for ~.
However, it is not clear that the over-all results

6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
62
64
66
68

331
382
427
468
505
540
573
604
633
661
688
714
739
764
787
810
832

1063
1080
1097
1113

65.7

67.7

70.0
72 ' 7

75.8
80.0
84.1
89.7

96.8
106.2
119.0
137.6
167.0
220.9
350.7

1101.7

1 ~ 5
4.1
6.3
8.3

1094
1111
1129
1151
1175
1204
1234
1279
1328
1391
1473
1583
1 745
2006
2528
4480

164
272
339
388
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1000 MeV. Consequently, this modification of the
general model is not of particular interest.

In passing we also note that scale invariance
gives us enough information to calculate
I'(q'-q vv). We find that for small, negative val-
ues" of the slope parameter 8 (-0.28~8~0), the
width is larger than the experimental limit of 0.8
MeV." The width increases as 8 becomes more
negative.

In the renormalizable model there is also a con-
straint on the o-o' system. Again, the same diffi-
culties occur as mentioned above, although, in
this case, we can get the 0' mass down to about
1100 MeV. With this model we can also calculate
the E mass. This mass tends to be close to the
"physical" one,"but, as in the general case, the
width is usually around 200 MeV.

In addition to being able to calculate the g'- yam

width, which turns out to be «2 MeV, one can cal-
culate the slope 8 in the renormalizable model.
8 is found to be small and negative, in accord
with the latest data. "

Finally, we should point out that the imposition
of scale invariance on the renormalizable form of
V, [i.e. , setting d=0 in Eq. (2.23)] leads to un-
satisfactory results.

The scattering lengths, in particular the 7r-n.

S-wave scattering lengths ap and a„provide a
useful criterion to assess the success of the vari-
ous types of symmetry breaking. The require-
ments that ap 0.05 and a, &0 imply that we should
reject the three cases da 0 dp 0 and gp dp 0.
The scattering lengths arrived at in the various
symmetry-breaking schemes may be compared
with their current-algebra counterparts" which,
for 7rmscattering, are p, =0.20m 'and@, = -0.06m ',
and for mK scattering are a», ——0.17 and a3/2
=—-0.09.

One can also compare the mm scattering ampli-
tude at the Adler point4' (T„) to that at threshold
(Tr) In the GM. OR case the ratio T„/Tr is ap-
proximately 10 '. In all other cases the mag-
nitude of T„/Tr is around I, varying from about
3 with d, = 0 to about 0.3 in the Okubo case. A

similar calculation for mK scattering gives a ratio
of about 10 ' in all cases except that with d, = 0,
when it is around 10 '.

B. The electromagnetic-interaction calculations

entries are omitted as they are completely un-
satisfactory. In general, we find that the case
using the (8, 8) term alone gives unacceptable re-
sults. At this point we note that the tabled elec-
tromagnetic-interaction results were not subjected
to fine tuning, as it was felt that this refinement
was not justified considering the approximations
used.

In order to determine the model parameters in
this case we extended the techniques employed in
the strong- interaction calculations. Consequently,
to evaluate the a's we use f, and fr/f, as above,
and, in addition, consider many values for the
difference, n, -a, . From Eq. (5.7) we expect
this difference to be negative. It is also related
to e mass through Eq. (5.6). In order to evaluate
the c's and d's in these computations we use, in
order of their usage (the number employed de-
pending on the number of parameters to be deter-
mined} Ko, vo, rl andy', ands. Some masses not
used as input can then be calculated.

The value of d, is given directly by the physical
m'-m mass difference; it is 0.069m'. From the
analysis of Socolow~ we expect a value for d~ of
about 0.15m'. This corresponds to a K'-E' self-
energy mass difference of 2.8 MeV. From our
calculations we prefer dz=0. 21m'. With the model
parameters determined, one gets a &'-K' mass dif-
ference of several MeV; however, the masses are
still in the region around 1000 MeV. The above
remarks apply to all three types of models being
considered for Vp.

In the renormalizable model we have enough con-
straints to allow further analysis. In particular,
we are interested in the decay g- m'z m . The re-
sults for both the partial width I'(q- v'w v') and
the Dalitz-plot slope parameter p are presented in
Table IV. P has been determined" to be -0.478
+0.038. We see that it is possible to have P in the
acceptable range for a reasonable value of &.
(Recall that these results have not been finely tuned. )
The partial width has generally been quoted" as
605 + 150 eV. However, more recently, Browman
et al.~ have determined a value of 324+46 eV.
Our results are closer to the latter determination.

We again find that, in general, the Okubo and
GMOR forms of symmetry breaking give the best
numerical results. The Sirlin-Weinstein scheme
fairs less well in the electromagnetic calculations.
We have thus chosen to present the results only of
the Okubo and GMOR cases in Table IV.

In our numerical analysis we considered three
types of electromagnetic interactions. These in-
clude employing the (3,3') 8 (3*,3}and the (8, 8)
contributions individually and jointly. The computa-
tions of interest are given in Table IV. Most

C. The weak-interaction calculations

In this subsection we briefly discuss our calcula-
tion of the partial width I'(E~- v'v vo) and the
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K-2m decays. The K-3m partial width affords
us another criterion to evaluate the symmetry-
breaking forms. Comparing the tabled values with
the experimental value" of (2.31+0.07) x10' sec ',
we find that, of the three types of symmetry break-
ing preferred on theoretical grounds, the Sirlin-
Weinstein form gives the best result, with the
GMOR model next, although none of these predic-
tions is close to the experimental value.

We conclude by considering the K-2m decays
with first-order electromagnetic corrections.
From Table IV one sees that in both the Okubo and
GMOR cases, the ratio T(K'-w'n )/T(IP, -w'w ) is
approximately 0.01. The experimental value" is
0.044 and consequently our ratio is in error by a
factor of about 4.

VIII. CONCLUSIONS

In the foregoing we have studied in some detail a
number of chiral SU(3) x SU(3) symmetry-breaking
schemes within the context of a simple linear o

model. This has included consideration of a large
number of possible symmetry-breaking combina-
tions" belonging to the (3, 3*)$(3*,3) $(8, 8) rep-
resentations of SU(3}x SII(3). While a number of
the conclusions that cari oe drawn from the present
work are model-dependent, it is felt that some of
our results may have a more general validity. In
particular, several of the simpler symmetry-
breaking forms seem to provide a competitive al-
ternative to the GMOR" (3, 3*)8 (3*,3) model,
which was previously studied in the context of the
linear o model by Schechter et al."~'

Perhaps it is a bit surprising to find another
simple, two-parameter symmetry-breaking
scheme which works as well as the GMOR one
does. However, this is indeed the case; the
Okubo form" of symmetry breaking [Eq. (1.5)]
gives results across the board which are at least
as acceptable as those of the GMOR form [of Eq.
(1.1)], with the exception of the predictions for
I'(E~-w'w wa), which neither model succeeds in

predicting too well. The other theoretically ap-
pealing symmetry-breaking form (among those
considered here), due to Sirlin and Weinstein, "
[Eq. (1.4)] is almost a,s successful as those of
GMOR and Okubo; its prediction of I'(IP~- w'w w }
is better, but its performance in the electromag-
netic calculations is poorer. Of course, it might
be argued that since the Sirlin-Weinstein model
contains three parameters, we should require
from it a much better fit to the data than we do
for the other two.

While we prefer the above models on theoretical
grounds and because they appear to do a better
job with fewer parameters, we must point out to
the reader at this point the rather striking results
achieved in one of the four-parameter cases. For
an ri' ma, ss of 1450 MeV [near the E(1420) (Ref.
34)] the renormalizable model with general (3, 3~)
6 (3*,3) 63 (8, 8) symmetry breaking gives very ac-
ceptable results for most of the quantities of in-
terest. Of more interest, however, is the fact
that this is the only case which can accommodate
a very narrow a' (at -900 MeV) together with a
broad g (at 700 MeV)'; also, its value for
I (Kr, w'w-w ) is quite close to the experimental
one.

One discovery which did not come as too much
of a surprise is that the symmetry-breaking La-
grangian cannot be pure (8, 8) or even dominantly
so. In view of our assignment of the scalar and
pseudoscalar mesons to the (3, 3*}$(3*,3) repre-
sentation of SU(3)XSU(3), pure (8, 8} symmetry-
breaking would force a complete abandonment of
operator P CAC in even an approximate sense.
This could lead to mass extrapolation difficulties
in the current-algebra low-energy theorems
which seem to be belied by the general success of
these calculations. This suppression of (8, 8)
symmetry breaking is quite possibly a model-
dependent result. However, because of the suc-
cess of the Okubo and GMOR models, we feel that
it might be true generally.

Finally, the imposition of scale invariance on
the chiral-symmetric part of the Lagrangian
proved unacceptable in all cases. Also, the re-
normalizable model, with the exception of the
case mentioned above in which q' = 1450 MeV, is
unable, at least in the tree approximation, to ac-
commodate a narrow a' at -1 GeV.

APPENDIX A: SOLUTION OF THE 7) -q-q' SYSTEM

We present here the solutions for the masses
and mixing angles of the w'-g-q' system in the
general case where both SU(3} and isospin are vio-
lated. The corresponding results for the isospin-
conserving case, which are needed in Sec. IV, may
be obtained by letting &, = &, and setting to zero
all parameters describing isospin-violating effects
in what follows. Here, and in Appendix B, the
analysis will not depend on the chiral decomposi-
tion of Vsa.

In the presence of SU(3} symmetry breaking alone
there is mixing between the. q and q' mesons char-
acterized by an angle e~ [see Eq. (4.6)]. When
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isospin violation is included, there is additional
p-q' mixing, which changes 8~ slightly by an angle
g„as well as mixing between m and q and n and
q' with the small angles g, and g„respectively.
This additionat mixing can. be represented by the
rotation

which, whenperformed after the q-q' rotation of
Eq. (4.6), leads to the field transformation

1 1~ +P,b+$2a —~+),b+g2a ~2(-g,a+),b)

1
q = — —g, +b1 -v2a p2 (A1)

1q' —~ $3+a
1

~2 $3+a

where a and b are defined in Eq. (4.11}in terms
of L9~. Note that g2 has been absorbed into ~p.

First, we note that from Eq. (A1) we can write

= Jfo (2 + %2 $~b + &2/29)
a2V

a41a41 o

+q'(b' —v2 bg, ) +q" (a2- v2 a/2),

(A2)

= v,'(-,
' —u2 g, b —&2/, a)(

a2V

2a~2
— 0 2

+q2(b2+&2bg, ) +q' (a2+2&2ag ), 2

(A3)

a$ ap G a$

12V,e, a, a2V»

a@3af3 ~ a$3

12V &, a2V»
Q'3 a $3a P3

alla y2 4 3 aylay2

= -12V4&2+

(A9)

(A10)

(A11}

(A12)

and

a2V
= 2a2q2 + 262@"

a $3a (t)3

= --m 2+h2q2+a2q'2
a2V

alla p2 2 0 t

(
a2V

= p,2( q, a+ g,b) +q-2( &2ab + g,a)-
a~la~3 o

(A4}

(AS)+q" (V2 ab —g ),2b

and

= -12V4&, + 2 3, A13

Using Eqs. (A2), (A3), and (A5) w,
2 can now be

expressed as

ay', a ', , ay', ap,', ay', ay', , '

(A14)

a ~
~

2
V

~ ~3
~~

0
2

I 3
2

a2V
= v,2((,a —g,b) +q2(-&2sb —g, a}

2 3 0

+q" (&2 ah + $2b}. (A'?)

Rewriting this in terms of the symmetry-breaking
parameters and V, we have, using Eqs. (A&), (A9),
and (A10),

a4ia4~ o ~1 a$1 o

12V,a,a, O'VsI

o
(AS)

Next we use Eq. (2.17) to express these matrix
elements of the mass squared matrix in terms of
the symmetry-breaking parameters and V4. This
gives a n

4 ' n aI

~l ~ o ~ ~2 0 ~1 ~2 0

(A15)
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As we are interested in calculations only to first
order in the isospin-violating interaction we can
neglect the V4 term

(n, —n, }94' ae1 2

Finally, to first order

Also from Eqs. (As) and (A7) we have

g2p
2v2 abq9 —2&2abq" =—

(A19}

8$18ft)1 9(t)qBQq 0 8/18/~

(A16)

We define the variable

cos28p
2

(A20)

Using onr form for VBB [Eqs. (3.1}, (3.21), (3.23),
and (3.25)] we have

JT9 = '[g9+2Pl9(&q+ &9+ &9)+2&9(Qq+ o9}].0 2~ ~ 0

(A1 7}

We now turn our attention to the g-'q' system.
From Eqs. (A2), (A3), and (A5)

Then

1 1 ~g =—+—~,4 6

1 1g
4 B

and

ab =~(i', -+9&'} '.

(A21)

(A22)

(A23)

8 p', a (t}2
(A18)

Using these definitions, Eq. (A4), and Eqs. (A8) to

(A13) then gives

q +q —96(q —q ) =2 9 9
——

9
—24V4

2y„2 aV»
(A25)

and

9 59 1/2 9 z9 VSB VSB 12V
1 3 0 2 3

(A26)

We rewrite these equations in the form

—,'(q9+q" }+&(9}"—q9) +A V, = E„

,'(rP+q")- &—(q"—q9)+BV, =F9,

and

+(——59)'~9(q9 —9l'9) +CV =F~,

where

A=ISo ( " '}'

(A27)

(A2s)

(A30)

C=-lsv2(n, +o.,), (A32)

(A33)

(A34)

and

~4'&»1 0 ~4'~42 0 ~41~4a 0

36
D CR

Q'3
(A31) ~0i»S 0 ~&~~&S 0

(A35)
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(g, +2h, n, },
3(n, 4. n, }

2&i ~2

F.= —[g. +g. +2h. (n, + n. )1,
3

n,

F, =6vYh, .

(A36)

(A37)

(A38)

To solve this set of equations we first add Eqs.
(A27) and (A28) to give

3(q'+q")+(A+B)V, =F, +E,. (A39)

We define the variable G in terms of given quan-
tities

E„E„and ~, can be evaluated using Table I„giving Again the value of 6)~ determined from the above
equation must be checked in the original system
of equations to ensure that it is the correct one.
This concludes our determination of q', 8~, and V4.

In the final part of this appendix we indicate the
solution for ii2 and g, . Equations (A2) and (A3)
give

2&2@0'(g,b+g, a) —2)(2 q'bg, —242 q"a(I),

=(, , ) —(, ,). (A42)

From Eqs. (A6) and (A7} one finds

2v,'( $2a-+g,b) + 2q'g, a —2q"g,b

G=E, +F~ —3q'

= 3@'2+ (A+B)VA. (A40) =(, ,) —(, ,) . (A20)

26(q" —g') + (A —B)VA = F, —E2

We define another known quantity

(A41)

Next we subtract Eq. (A28) from Eq. (A27) to ob-
tain

W'e rewrite these equations to give

22(2 g, b(n, '-)}')+2)(2 g,a(v, ' —q") =M

and

(A51)

&=Ei- &I (A42) 2v 2 g, a(v, ' —q') —2& 2 g,b(v, ' —q") =N, (A52)

We now square Eq. (A29} and multiply by 4 to ob-
tain

9(xP —q"} —46 (rP —q' ) =4E +4C'V' —8ECV

(A43)

where

44)2 12V n ( 2 ~2)

&S

(A53)
Using Eq. (A40) to substitute for q" in the final
term and Eq. (A41) to remove the 6' term, we
finally have (after rearranging terms)

4(AB —C'}V,'+ 2[B(A + B)+ H(A —B)+4F,C]V,

+ (E' —EP —4E,') = 0, (A44)

where

WA2((,) —(, ,) —12V, (44, —,)
(A54)

With our choice of V»

E=3q -G. (A45) 1
](n, —n, )[g, + 2h, (n, + n, + n, )+2h, (n, + n, )]

We solve this quadratic equation for V„ then cal-
culate g" and & using +g, (n, + n, ) —2h, n, (n, 4. n, )

q' = —,'[G- (A+B)V], (A46)

(A47)
and

—12V,n, (n,'- a, ')) (A55)

As we squared Eq. (A29) we must check to see if
our solution obeys the original set of equations,
with either a plus or minus sign being allowed in

Eq. (A29).
Once & is known we may solve for tan28~ using

(A20). This gives

2]E2 + v 2 (E, —E,) —[C + &2(A —B)]V }
E, —F2 —4)(2 E, —(A —B —42(2 C}V4

(A48)

=N-4&2 +h122(2 V (n —n, ). (A56)

bM+ aN
2(2 (v,' —q') (A57)

(A58)

This linear set of equations can easily be solved
to give
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This concludes the determination of q', 6~, V4, P„
and ((), in terms of V~s and )).

and

V = -2Q'V —6Q V ——1 &Vsa
1 2 3 4 2Q gal 0

(B6)

APPENDIX B: DETERMINATION OF PARAMETERS

IN THE RENORMALIZABLE MODEL

1. V0

It can be seen from Eq. (2.25) that the renormal-
izable model for V, contains four parameters Vl,

Vl 1 V2 and V,. We will now solve for these con-
stants in terms of the symmetry-breaking param-
eters, assuming that the latter have been obtained

independently.
The imposition of the extremum conditions gives

two relations (in the isospin-symmetric limit) be-
tween V, and V . Thus one needs two more con-
ditions to completely determine V,. Perhaps the

simplest conditions are to choose the value of V,

calculated in the q-g' system evaluation in which

the g mass is used as input and to use the 0-0'
system in which the 0 mass is input.

We first consider the extremum condition

~ Vss
BS',BSbb BS',8Sbb

(B'I)

We have, from the scalar analog of Eqs. (4.6) to
(4.11) and Eq. (B2)

m ——~ 2+/( 2g2+g&20 t2
11 2 0

g2 V

To obtain a value for V» we now consider the
v-v' system (in the isospin-conserving limit}.
Consider the quantities

g2 V
Pl ~—

&Vo ~Vs' (al)

=2Q,5, ,
o

=4Q 35bBI
Sa

b 0

and

814 12Q1Q2Q3

Evaluating the derivatives in terms of the V's and

noting that

and

g2 V
ll 4 3 gSl S2

2 0

m» =W a'b'( "o-o')

4QQ3 Vll + 12V4Q + 1 3
1 3 0

m =2@ "o2+ 26 "g"

2V1+4V11Q3+ 12V2Q3+ 33
BS3BS3 0

(B9)

(B10)

one obtains

Q
2Q, V, +4Q 'V, +12 ' V =

Q4
4 BS',

(a=1, 2, 3) .

From this equation

2Q Vj +4Q V2 + 12QQ3V4
1 0

(B3)
where

1&' = —(sine& + W cos&z)

1b'= —(cos8~ —W sin&z).

(B12)

Q 3 Vl + 4Q 3 V2 + ] 2Q V 3
3 0

(B4) From Eqs. (B8) to (Bll}we get immediately

Assuming a value of V4 obtained from the g-g'
system we have

2 &2m»+m»+ffl33 0 +0 (B13)

We can now derive an expression relating Vll to
o' and known quantities (V„V„V,and the sym-
metry-breaking parameters). We define the

known quantities
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2n, 1=m„-40' V,1

Q2 V=2V, +12V2u + 1 S1

2
12™,2

- 40' V„

&' Vsa= 12 V~@3+ BS'BS2
1 2 0

813 m 13 4n@3 V11

82 Vsa= 12 V4(2 + S' S3 0

2
33™33 11 3

(B14)

v", and es. This completes our determination of
the parameters in V,.

Z. X, and X3

We now calculate X1 the f 0 o electromagnetic
mixing angle and X„ the ep-0' electromagnetic
mixing angle. The calculation parallels that of tl),

and g3 in Appendix A.
First, we note

2

~
~

a

2

a
~~ I 2 ~ 2&V aV

spent sSosS, 2~Xi——b'{Eo
1 1 0 2 2 0

+2&}(,a'(eo' -o")

Then

Q2 V
2 vi+12 V2Q32+ 3

SB3

(o' —n„-n„)(o' —n,„)-2n„'
4u'[4~n» —2n» —&o'(n» + n») +&r'(2 + &u')]

'

(
Q2 V 82 V

ss ss
—

ss ss1 3 0 2 3 0

+ 2gob (to —(7 ) .

Evaluating the V, contribution directly and defining

(B15)

Thus we can relate V» to o' by Eq. (B15) and then
can get o" using Eq. (B13). We also obtain

~' Vsa &' Vsa

8$,8S, BS BS

(B18)

~g 2~ m» +mgQ moo ming

PPl11 + m12 m33 + am13
(Ble)

~' Vsa ~' Vsa
eS'aS3 BS2eS3

1 3 0 2 3 0

Thus, given a value for a', we can calculate V», leads to

2~}(,b'(so' —o') +2/Xx, a'(so' -cr") = 8u(u, —u, )( V» +3 V, ) +p ',
2y,a'(eo' —oo) -2g,b'(e, ' —a' ) =-4(u, —uo)(u, V„—3V, ) q' . - (B19)

Solving these equations for X, and X, gives

4(u, —u, )[&ub'(V„+3 V, )+a'(3V, —u, V„)]+p'b'/W q'a'-
X1 (B20)

and

4(u, —u, )[~ua'(V»+3 V, ) -b'(3V» —u, V»)]+a'p'/~+b'q'
X3= 2 g/2

0
(B21)

With (3, 3*)8 (3*,3)$ (8, 8) symmetry breaking

p'= ~3 h1 and q'=4h

3. Calculation of some electromagnetic coupling constants

In this subsection we outline the calculation of the coupling constants that are required for our calcula-
tion of the q-n'v vo decay rate. These include f, oo, f oo, f o + -, f — +„o, and f ~~~+, ,o. The cal-
culations are to first order in the isospin-violating interaction.

First we note that the inverse of Eq. (Al) is
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j~+/, b+g,a —~+b —~ +a so

1—~+g~b+gza ~~ +b

~(-y a+y b) -Wa vYb g'
E.

with a similar relation for the scalar case. We evaluate the coupling constants directly from V, [Eq.
(2.25)]. Using our previous techniques we have

g3 p
,faro' =

ggg~ogq 0

(B23)

(n, —u, ) V,bb'+ (3a V, —~ub V, )+ 8b'(2$, ( uV, a-'+3~ah V, )+g, [2uab V, +3~(a' —b') V,]}

—4~a'((, [4 n, a'V, —3 V~(1+2b')] —2abg, (2n, V, + 3V, )} (B24)

g3 p'

a'b V (n, —n, )+ —
X,(3aV, —flub V ) +8a'{2$,(-na'V2+ 3~ah V )+g,[2uab V, +3~(a' —b') V~]}

+4Mb'(g, [4u, a'V, -3(l +2b') V ) —2abg, (2n, V, + 3V, )} .

Again using the standard techniques, one finds

f p + —= — (e' —v')(X,b'+ Xsa ) —
2

—
2 (Xp +Xsa ) + (Xxa

1. . . , (A' —B') (A'+B'), , C'

(a25)

(B26)

where

and

&' VSB &' V„
8$'aS' + BS'BS'

~'~SB ~' ~SB8$8$8S BS

9 ygB / 8 ySB 8 ysB 8 ysB

(B2V)

With (3, 3*)8 (3*, 3)9 (8, 8) symmetry breaking

A. '= -4' —4h3+, h„B'= -4h0 —4h3 —,A„C' = -4h0 .

Also

(All BII) (All ~ Bll) Cll
f, ,+ o = — (e' —v')(g, b+ g,a) — ~ — (g,b+ f,a)+ —(g,a —p, b)

where

(B28)

(B28)

and

~SB ~SB
gylgy3 gy2gy3

(B3o)

With (3, 3*)8(3*,3)~ (8, 8) symmetry breaking

A 4l0 +4EL3 3 A~~ B 4A0+ 483 + 3 A~) C 460 ~



886 H. B. GE DDE S AND R. H. GRAHAM 12

Finally,
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