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A simple relativistic potential model is constructed in order to describe meson spectroscopy in a unified way,
encompassing both light- and heavy-quark systems. A linear potential, transforming as the fourth component
of a vector potential,-is assumed in accordance with quark-confinement mechanisms appropriate to gauge
theories. Scaling arguments are used to derive the Regge behavior of the model. We present evidence that the
forces which confine quarks are essentially independent of quark species. The over-all systematics of our
predictions for meson energy levels and leptonic decay widths give support to the usefulness of the model. We
comment on the application of asymptotic freedom as a means of estimating decay rates which violate the

Okubo - Zweig - lizuka rule.

I. INTRODUCTION

Discovery of narrow resonances at 3.1 (Ref. 1)
and 3.7 GeV,? and a broad enhancement at 4.2 GeV?3
in e*e~ annihilation has caused intense interest?
in the particle physics community. Several possi-
ble interpretations of the phenomena have been
offered,* with an extremely attractive explana-
tion*'® being that these are the 3S, ground state
and radial excitations of a heavy quark-antiquark
pair. It has been further suggested that these
heavy quarks are in fact the charmed quarks*-¢
needed for the suppression of strangeness-chang-
ing neutral currents in weak decays.” In the sim-
plest models, the charmed quark is the fourth
quark required for an SU(4) (Refs. 6-8) classifica-
tion of the strong interactions, although more
elaborate models with additional quarks may be
considered.®

The bound-charm explanation of the new reso-
nances is far from confirmed, with many prob-
lems remaining to be solved by both theorists
and experimentalists before the charmonium pic-
ture can be fully accepted. Although we have no
instant answers to these questions, we still re-
gard the bound-charmed-quark picture as the best
working hypothesis until a more compelling frame-
work supersedes this explanation.

The bound-charmed-quark picture is of interest
for studies of strong interaction dynamics, as it
may provide a fertile proving ground for ideas
concerning quark binding and confinement. It is
tempting to interpolate between the nonrelativistic
bound charmed quark states and their analogs in
other systems in order to gain further insights
into the more difficult problems encountered in
the relativistic domain. In particular, a fruitful
comparison can be made between the 1~ state
p(770), considered to be the lowest 35S, bound state
of light (1 and ®) quarks, and the ¢.(3100) state,
assumed to be the lowest 3S, bound state of heavy
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(charmed) quark pairs. (Indirect evidence!® sug-
gests that the effective mass of the charmed quark
is of the order of 1-3 GeV.) The first 35, vadial
excitation of the p system should be identified with
p’(1600), although there may be some admixture
of 3D, in p’. Analogously, ¢.(3700) should be the
first radial excitation of bound charmed quarks

in a 35, state. The radial excitation energy of the
p,p’ pair is As=1.96 GeV?, but ¢/(3700) is sepa-
rated from ¢,(3100) by As =4 GeV2. [It is rele-
vant to discuss radial excitations in (mass)? for
the same reason that one discusses orbital or
Regge recurrences in (mass)?.] Furthermore,
typical quark models!! suggest the sequence of
states: 1S, 2P, (25, 3D),...; which means the spac-
ing typical of Regge trajectories should be rough-
ly half that of radial recurrences. Noting that

As =4 GeV? for the ¢, ¢. pair, one could then con-
clude anyone of the following: (a) the interaction
strength among charmed quarks is significantly
different from that of the light quarks, (b) there

is a missing ¢, state to be interpolated between
the two discovered, (c) ¢, is not a radially ex-
cited ¢, or (d) the large spacing between ¢, and
¢¢ is a kinematical effect due to the large mass

of the charmed quarks. It is one of the purposes
of this paper to present model calculations to sup-
port the idea that the large ¢., ¢! spacing is in
fact a kinematical effect,'?> with the dynamics of
light and heavy quarks comparable.

Attempts have been made® to explain the bind-
ing of charmed quarks near the charmed particle
threshold on the basis of a Coulomb-type mech-
anism based on a Yang-Mills theory of strong
colored gluons, with the predominate contribu-
tions coming when the quark separation is small.
However, for reasonable parameters® this mech-
anism underestimates the ¢.-¢. splitting (in mass)
by roughly a factor of 10, and further suggests
that the quarks are far apart in the ¢/ state, a
regime where the forces that confine the quarks
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play an important role. Several independent lines
of argument!®!* suggest that the confinement of
quarks is by means of an interaction which in-
creases for large quark separation in proportion
to the separation itself. It is likely that this is
the dominant mechanism for explaining the excita-
tions in the quark-antiquark systems, with the
Coulomb-type interactions negligible except per-
haps for forming the ground state.

It is the purpose of this paper to explore a possi-
ble unifying quark dynamics of bound heavy- and
light-quark systems based on the above ideas.
Since the methods employed will be dynamical
(albeit crude), and not group-theoretic, we are
not committed to models with any particular num-
ber of quarks, so that our results may be applied
to charmed quark models more elaborate® than
the original SU(4) models.® -8

In the absence of detailed field theoretic meth-
ods applicable to the relativistic region, we pro-
pose to study the quark spectrum by means of a
static linear potential acting as the fourth com-
ponent of a four-vector, as might be expected
from a confinement mechanism based on gauge
theories.’®* We choose a formulation which re-
duces to the Schrodinger equation in the nonrela-
tivistic limit, and yields a spectrum similar to
that of the massless string model in the extreme
relativistic limit., Detailed numerical studies of
the meson spectrum with our model allow us to
conclude that the linear potential, with more or
less universal strength, can be used for both light-
and heavy-quark systems in a unified way. In par-
ticular the large splitting [in (mass)?] of the ¢ - ¢/
pair as compared to the p-p’ pair is a kinematical
effect.!?

II. THE MODEL

We are interested in constructing a bound-state
model which is capable of interpolating between
the nonrelativistic and relativistic domains so that
we compare the spectroscopy of bound charmed
quarks with that of mesons built of light quarks.
On the purely classical level, the string model
with massive quarks!® is a reasonable candidate;
however, a classical model cannot provide us with
wave functions, which would limit the applications
of the model. On the other hand, practical calcula-
tions in a field-theoretic context encounter a num-
ber of difficulties in the relativistic domain. For
example, the Bethe-Salpeter equation can be for-
mulated, but not solved except in the simplest of
cases. A single-time relativistic Schrodinger
equation would be a useful tool; however, there
is no formulation which follows from the first
principle of field theory.

In the absence of a satisfactory field-theoretic
framework in which to imbed our problem, we
consider a simplified single-time two-body equa-
tion based on classical considerations. We as-
sume that quarks and antiquarks are confined via
a potential which behaves as the fourth component
of a four-vector, as might be expected from a
confinement mechanism arising from gauge the-
ories.'® Retardation and spin-dependent correc-
tions will be neglected as negligible compared to
the effects we wish to consider.

The fotal energy E in the center of mass of a
classical system of a quark and an antiquark in-
teracting by means of this potential is'®

E - V=(-§2 +m12)1/2 +(~52 +m22)1/2 , (1)

where D is the three momentum of the quark. For
equal masses m, =m,=m,

iE-VE=PP+m?. (2)

Making the usual quantum identifications, we
arrive at the Klein-Gordon equation for the energy
eigenstates

[V +5(E - VP -m?]| $(F)=0, (3)

which reduces to the Schrodinger equation in the
nonrelativistic limit, with the correct reduced
mass dependence. Based on theoretical specula-
tions,'® we consider the potentiall?:17:18

V=ar+b, 4)

where the constant b subsumes effects not de-
scribed by the confinement mechanism, and in-
dicates that one cannot calculate absolute ener-
gies, but only energy differences. Negative val-
ues of E'® should be omitted from consideration
in accordance with Eq. (1). If we rewrite (3) as
a Schrodinger-type equation, translating E by b,

1
1E? —m?

[_ ﬁ Vh»‘u(r)} o()= 2

o(T), (5)

with p =3m being the reduced mass and

20U(r) =3 aEr —§a%?, (6)
we expose abasic inconsistency of our approach.'?+*°
The equivalent (energy-dependent) potential w(r)
has no lower bound, but has a barrier whose maxi-
mum grows as E2/4m, and whose width [measured
where U(r)=0, r #0] increases as E/2a. There-
fore, (3) or (5) do not have genuine bound states
with real eigenvalues. They can give, to a good
approximation, (quasi-) stationary states if the
probability of tunneling through () from » =0 to
¥ = ig sufficiently small. A rough estimate
shows that the transmission coefficient 7 appro-
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priate to (3)-(6) is
2 2
T~exp <— Zm > , (7

which if small, makes (3)-(6) a useful way of esti-
mating the excitation energies of the system, and
computing an approximate wave function. As T
approaches unity, (7) ceases to be valid; nonethe-
less it indicates where our approach breaks down.
Equation (7) indicates that 7 is large when the con-
stant a is large, which means that the model is

not valid for quarks confined close together.

The origin of this tunneling problem is the pre-
sence of the positive-definite term V? in Eq. (3),
which dominates for large » for any confining po-
tential which increases with ». The tunneling
through the barrier produces complex energy
eigenvalues, a difficulty which can be associated
with the neglect of the possibility of creating pairs
from the vacuum. It has been emphasized?®® that
the vacuum polarization can lower the energy of
the bound quark-antiquark pair by the screening
effects of other pairs which emerge from the vac-
uum, and can allow the bound state to decay into
ordinary particles. [The imaginary part of the
energy eigenvalues appropriate to (3) should no!
be identified with the physical lifetime of the
bound state, but should only be used as a measure
of the applicability of the model.]

A very good approximate solution to the
(quasi-) stationary-state problem is obtained by
neglecting the quantum-mechanical tunneling
through U(r), defined by (6). This approach can
be compared with the exact solution of Egs. (3)-
(6) for S waves, which we do in Sec. IV. The ap-
proximate solutions compare very favorably with
the exact results. As discussed in Sec. III the
spectrum of this model is rather similar, but not
identical to that of the classical string model.

A possible alternative strategy is to neglect the
V? term completely in Eqs. (3)-(6) as a higher-
order effect to be associated with the neglected
vacuum polarization. This prescription gives a
spectrum which is also qualitatively like that of
the string model, but the dependence of the spec-
trum on the parameter a does not agree well with
the string model. For this reason, we choose the
first prescription and retain the V? term, so that
we can use the (open-) string model for compari-
son purposes whenever possible. We suggest that
this is the appropriate classical model to be con-
sidered for comparison, since it describes the
confinement of quarks, neglecting the decay of
the bound states to first approximation. Further-
more, in our model, as well as the string model,
the rest energy per unit length is a constant.

III. WKB APPROXIMATION
A. Spectroscopy

Given the uncertainties inherent in our approach,
a detailed analytic or numerical solution to the
problem hardly seems justified. However, a very
good approximate solution to the (quasi-) station-
ary-state eigenvalue problem presented by (3)-{6)
is given by the WKB method.” Consider the radi-
al equation appropriate to (3)-(6),

[ a* 1l+1) 1 2]
—a‘;—2+—(TZJ—Z(E—(W)Z-#sz!u,,,(r):O,

(8)
where u,,(r) is the usual reduced wave function.

S waves (1=0). For S waves the WKB quantiza-
tion appropriate to (8) gives?®:

Zfldrp,=2(n’+%)rrﬁ, (9)
[
where
Py =3[(E? - 4m?) - 2¢Er +a**]/2, (10)

where n=n’+1 is the principal quantum number of
the /=0 system, and 7, is the first classical turn-
ing point (p,=0). Note that we have neglected the
effect of tunneling [cf. (7)] by not including the
region 7, to © in the quantization condition (9), as
discussed in Sec. II. This exercise gives the re-
sult

$(E(E? - 4m®)"2 +4m? In{[E - (E? — 4m?)/%|/2m})
=2(n’+3)am. (11)

[Note we have absorbed the unknown constant term
b in the potential (4) by making the translation E

- E -b, so that only energy differences are com-
putable by these methods.] For E - 2m<<2m, one
obtains

m

(E -2m)¥2 = %’-ﬁ(nwg) (12)

while if E > m
E2=dan(n’'+3%). (13)

These nonrelativistic and relativistic limits will
be useful in giving a qualitative understanding of
the meson spectrum, as well as allowing a com-
parison with the string model. Applications will
be made by means of numerical integration of
Eqgs. (9) and (10), which will be discussed in Sec.
V. Comparison with the exact solutions presented
in Sec. IV indicates that the WKB quantization
leads to typical errors for radially excited states
of the order of (1-2)%.

Higher partial waves (1+0). The WKB quantiza-
tion condition?! appropriate to [#0 is
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2 [ drp, =20 + by, (14)
To
withn’=n-1-1, and

o 1

S B - P emt | (15)

where the replacement ([ +1)= (I+3)? has been
made in accordance with the WKB method. One
can also use (14)~(15) for S waves by setting =0
in (15), with negligible numerical difference from
Eqs. (9)-(11). The advantage of using (9)-(11) for
the 5 waves is that one can perform the integration
analytically.

Equations (14) and (15) cannot be integrated
analytically; however, the integration can be re-
presented in terms of sums of elliptic integrals
of the first, second, and third kind, which we
have done. In actual applications the integrations
are performed by computer, with the evaluation
in terms of the elliptic integrals being used to
check the results.

B. Scaling theorems

It is unfortunate that one cannot give an analytic
integration of Eqs. (14) and (15) in terms of ele-
mentary functions, since this would give an ex-
plicit expression for the Regge trajectories of the
model. However, one can derive scaling theorems
appropriate to the WKB integrals which will yield
the behavior of the Regge trajectories in the non-
relativistic and relativistic limits. We consider
these two cases separately.

The nonrelativistic limit of the WKB integral
(14) and (15) is

T - Lyo q1/2
I:fldrii-(l:;) sm(T-ar) | (16)
o -

where E - 2m=T.
If we make a change to dimensionless variables

x=va r,
T=Va 7,
am
and
Ya M=m,
then
= 1/2 "1d_x [__ ._____(l*%)z 3‘_2 - e
I(ZM)L,x w+2(7x)}
(18a)
/ Lyo
- nnper (L o) (18b)

where the functional dependence expressed by

(18b) follows from the fact that the limits of in-
tegration are determined from the zeros of the
cubic equation

1yo
Tty ——(li‘;’ -0. (19)

x
Let us rescale our variables as
X=Ay,
T=A€,
(l+32)=22(L+3),

from which one obtains

(L+3) >_ a2 ”ld_y[ (L+2P ]1/2
F( sy 0 T) =X fyo 0 ——ZNT~+y(e—y)

(20a)
=N2F <(_L‘z‘+17§)i , e> (20b)

where (20b) follows from the fact that y, and y,
are the same functions of L and € as x, and x, are
of /and 7. Therefore, we have the scaling law

Jo (L4 28 )_ <A3(l+%)2 )
A”F(—-———-ZM ,7)=F o JAT) . (21)

This assures us that

F<(l;151)2,‘r> =G<(~12+—Ajf,73>, (22)

where G(u, v) is a homogeneous function of « and

v satisfying G(Au, Av) =2¥2G(u, v). This proves
that

1 Lyo L \
O (s (23)

where H is a function which can be determined
only by numerical integration. The WKB quantiza-
tion (14) combined with (16) and (23) implies that

(/2>3/2 ( a(l+3) > _(L> T’ +3)
m Cm)ET% | "\ ) T V2

(24)
where we have restored the original variables.
(Recall that E =2m+T.) We arrive at a scaling
law for the nonrelativistic spectrum. Comparison
with (12), where =0, gives the approximate rela-
tions

A -
H(0)
V2
9

R

R

(25)

The Regge trajectories are described by the con-
dition n’ = constant. Let us consider the range of
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! along the Regge trajectory for which the argu-
ment of H is slowly varying. The trajectories
then satisfy (24) expressed as

T a(l+3) a wn'+3)

(5" [0+ oS 0] =i e

=const,

(26)
where we have assumed that H can be well ap-
proximated by the first two terms of the Taylor
expansion. The nonrelativistic Regge trajectory
therefore must satisfy

3/2
(;’T-?) ~A+B(l+3), @)

where A and B are dimensionless constants fixed
by (26). Using (25) we estimate

A&<%)§21(n+%> (28)
We have no general argument which estimates B
aside from numerical computations. We only note
that in the linear string model, identifying the con-
stant with the rest tension, one obtains from the
leading Regge trajectory (n’ =0) [see Eq. (41)] in
the nonrelativistic limit the estimate'®

B(n'=0)=\/_2—(Wa;>.

If we had considered the more general homo-
geneous potential of the form
Vr)=ar*, (29)

we would have found the scaling law

1+3)? . l+3
F <( 21; ) T> = T(k 2)/2kH ((M1721f25+2 i72‘ ) ’

(30)
with radial excitations behaving as
T (k+2)/2k a 1/k
(ﬁ> ~ W (n’+%). (31)

Proceeding in analogy with Eqgs. (24)—(27) one ob-
tains Regge trajectories which satisfy

T (R+2)/2k N
(—) ~A+B(l+3), (32)
m
with A and B being the appropriate dimensionless
constants.

It is possible to derive scaling laws appropriate
to the relativistic region as well. Returning to the
linear potential, one must evaluate

J=f'1 &[_(l+§)2 +i(E S —mzrz]l/z '
s
° (33)

The change of variables

1

r= = e=7i;, M=7'Z- (34)
shows that

J=F((l+37,¢, (€ = M?)). (35)

The scalings
x=dy, €=AE, (I+3)=)3(L+3) (36)

enable one to demonstrate that F is a homogeneous
function of (I+3)?, €, and (€2 — M2)?, with the
property

F((I+30, €, (62 —=4M?)) = €%G <(l+§)2 € — 4P >,

S
(37)

where F and G are functions to be determined
numerically (and not to be confused with the func-
tions appearing earlier). The WKB condition im-
plies that
Ly 2 2
€2G <(l+ 2) € 24M

4 ’

. . ) =(n'+H)7, (38)

with the Regge trajectory again described by the
condition #’ =constant. In the relativistic limit
E2 > MZ’

(1+3)p >_ * dx[ (L+3)7 1 x%(e-x)? 12
oIl 1) - [ & [ UsiE L attecnt

et s X €t €t B

=0 (39)

describes the Regge trajectories in the extreme
relativistic domain. Recall that x, and x, are the
zeros of the integrand, which is positive. There-
fore, Eq. (39) implies that x, and x, are a double
root of the integrand, providing us with the equa-
tion of the Regge trajectories in the relativistic
limit,
€2=8(l+3)
or (40)
E?=8a(l+7)

in terms of the original variables. Therefore, our
model leads to straight-line Regge trajectories in
the relativistic limit, with inverse slope numer-
ically ™' =8a. Equation (40) has also been verif-
ied by computer calculations, by evaluating Eqgs.
(14) and (15) for a large (fixed) value of #’ and
several (large) values of /. Note that the homo-
geneous potential (29) gives rise to Regge trajec-
tories behaving as E? « [2¥/k+1  go that if V «#?,
then E? « [*/3 in the relativistic region (in this
model).
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C. String model

It is useful to compare the spectrum of our
model with that of the classical string model.*
Consider two quarks of mass m, and m,, attached
to a massless string, whose rest tension is T,
and consider the rigid rotation of the system,
which gives rise to the leading Regge trajectory
(' =0) if quantized. It is easy to show'® that in
the nonrelativistic limit this trajectory satisfies

T2 1/3
E—-(m,_+m2)=<—j—> L3, (41)

where u is the reduced mass of the two quarks,
while in the relativistic limit

E?=27T,L, (42)
which gives the Regge slope
a=2nT,)™", (43)

which is identical to that of the massless limit.
Recall that the quantized version of the string
model (with massless quarks) gives rise to the
spectrum of the dual resonance model in which
both ghosts and odd daughters are absent. Thus
the radial excitations of this string model behave
as

E* =4uT g’ (44)

in the relativistic region, which is identical to
(13).

One is tempted to identify the rest tension T
of the string model with the parameter a since
they both correspond to a constant interaction en-

ergy per unit length in the rest system [cf. Eq. (4)].

Comparison of Eq. (13) with (44) supports this
identification. However, comparison of (40) with
(42) shows (to our disappointment) that

a~'=21T, (string model) (45a)
and
a~!'=8a (potential model) (45b)

in the two models. Thus our potential model does
not correspond to the string model in detail, al-
though the two models are similar in a number of
features.

IV. EXACT SOLUTION FOR S WAVES

In this section we will present an exact solution
of Eq. (8) for the case l=0. The equation to be
solved is

d?u(r)
ar®

+[5(E —ar)? —m*Ju(r)=0. (46)

The exact solution of this equation allows us to
test the validity of the WKB approximation and

our treatment of the instability problem. In gen-
eral, the WKB method provides an excellent ap-
proximation for states with a large number of
radial nodes, i.e., for n’ large. However, for
low excitations the accuracy depends on the par-
ticular problem being considered. (For example,
this approximation gives correct energy eigen-
values for the nonrelativistic harmonic oscillator.)
To solve (46) we make the change of variables
i 2
x= 5 (E —ar),
(47)
ulr)=e "2 v(x),

which transforms (46) to the confluent hypergeo-
metric differential equation

d*v (1 dv (1 z'n12> _
Y axt +<2"‘) dx \3 "2 )70 (48)

whose general solution is??

4 2a’2
3 23
+czx‘21F1<4 - Z;; ;-2-;x> (49)

Therefore the solution of the S-wave radial equa-
tion (46) is

1 im? 1
ur)=c,e™? F, (— - x>

4 2a 2’
3 im® 3
-x/2,,1/2 S_tm 9.
+cye %y ,F1<4 TR ,x>, (50)

where the constants ¢, and ¢, are to be determined
by the boundary conditions.

Since the wave number in Eq. (46) becomes real
for large 7 [cf. (5) and (6)], the boundary condition
at infinity is such that only outgoing waves should
be present asymptotically. This necessarily leads
to complex energy eigenvalues. Furthermore, we
only consider those states with ReE >0 as approp-
riate to Eq. (1). In other words, a wave packet
confined inside the potential barrier at time £=0
has a finite probability of tunneling through the
barrier at later times, which would be a purely
outgoing wave sufficiently far from the origin.

The wave function «(r) has a branch cut in the
x plane due to the presence of x2 in Eq. (50).

We shall choose a cut from 0 to « so that

argx=-37m when ar >E
and (51)
argx=37 when ar<E .

The wave function for large » can be readily ob-
tained from the asymptotic behavior of the indivi-
dual confluent hypergeometric functions in Eq.
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(50).22 The appropriate limit for large » is

v he r(b) ~iva -a r(b) x a=b
lFl(a’b’x),__,:I‘(b—a) e x4+ _I‘(a)e x4=7
with (52)
argx=-37.

The boundary condition at infinity then fixes
the constants ¢, and ¢, up to an over-all normal-
ization, so that

L L2 1 im? 1
. T'(5+im*/2a) e-x/le1< im >

ulr) = e I~ g3
L'(; +im*/2a) -x/2,.1/2 <§ im? 3
I"(%) e "ex e Fy I 3 '3 ,
(53)

with x related to » by (47).

The energy eigenvalues can now be determined
by the boundary condition at the origin #(0)=0.
This usually requires a numerical calculation;
however, a check of the WKB approximation to
the exact solution can be made analytically in two
limits: nonrelativistic and extreme relativistic
limits. Before doing this, first consider the high-
energy limit of the confluent hypergeometric func-
tions appearing in Eq. (53). For large E one must
choose argx =37, as indicated by (51), so that in
this limit

r(b) ira ., -a w x . a=b .

Fa;b;x)—e=—— "™ x%+ e*x
Fila ) -0 @)

(54)

This shows that %(0) is an elementary transcendent-
al function of E. Assuming that E has a small
imaginary part, (-i/2)I', we can readily solve

the eigenvalue problem, with the result

E? — 4m? 1n<;nEi >= damn’ (55a)
and
- 2
Erzaexp<——2—gln—> . (55b)

The equation for the real part of energy is the
same as the large-E limit of the WKB condition,
Eq. (11), up to an additive constant in E. The
imaginary part of the energy level I', has the ex-
ponential behavior as estimated in Eq. (7).

Next consider two limits where the exact wave
function can be expressed in terms of more famil-
iar functions:

(i) Nonvelativistic limit. In the large mass
limit, each confluent hypergeometric function be-
comes a linear combination of two Airy functions
Ai and Bi.?* However, the coefficient of Bi is sup-

pressed by a factor of exp(— mm?/a) compared with
that of Ai. Discarding the contribution of Bi we
have the eigenvalue condition

Ai[—(% )USEJ =0, (56)

which gives 7eal eigenvalues. Since the trans-
mission probability, (7) or (55b), becomes zero
in the large-mass limit the particle is completely
confined inside the potential barrier, and the
eigenvalues must be real, in accord with (56).

(ii) Extreme velativistic limit. In the massless
limit, the wave function becomes the sum of two
Bessel functions of order i ,?® with the wave func-
tion at the origin satisfying

E? 2414 E?
u(0)ed, <§5>- 5 Y (@> =0. (57)

The solution of Eq. (57) now requires complex en-
ergies.

In Table I we display the first few eigenvalues
obtained from Eqgs. (56) and (57) and compare
them with the WKB values. As can be seen from
the table, the WKB method is better in the non-
relativistic limit than in the extreme relativistic
one. Nevertheless, in the latter case our approxi-
mation is good within 2% for low radial excitations.
Furthermore, one should note that the imaginary
parts of the energy levels are quite small com-
pared to the real parts, and are expected to be
even smaller for massive quark systems due to
the exponential factor in Eqgs. (7) and (55b). Thus
the exact solution for the /=0 radial equation
justifies our treatment of the tunneling effect in
Sec. II and allows us to trust the WKB solution of
our model. Furthermore, the exact solution for
1=0 suggests that the WKB approximation is prob-
ably rather accurate even for [ #0.

V. APPLICATIONS

A. Energy levels

In order to apply these considerations to meson
spectroscopy, one must be able to fix the free
parameters of the model: the constants a and b
of Eq. (4), as well as the quark masses. If quark
confinement is due to strong long-range interac-
tions of Yang-Mills gluons, in the approximation
in which closed fermion loops are neglected one
expects the constant a to be universal, i.e., in-
dependent of the meson system being considered.
On this basis we propose to apply our model to
meson spectroscopy with the assumption that the
constant a does not depend on the nature of the
quark-antiquark pairs being bound. In doing so
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TABLE I. A comparison of exact and WKB approximate energy levels obtained from Eq. (8)
for S waves (I =0). The range of eigenvalues of Eq. (57) is somewhere between the practical
limits of the power series expansion and the asymptotic expansion. We used the Taylor expan-
sion of the Whittaker function for the first three eigenvalues. For=z=2,3,4, Eq. (57) is ex-
panded near ImE =0 up to the quadratic terms and numerical tables are used for the solution.
Therefore the eigenvalue for » =2 is checked by two methods. For numerical values of the
Bessel functions, see Ref. 25.
Nonrelativistic limit Extreme relativistic limit
m 1/3 m 1/3 1 1
" v E, (exact) <?> E, (WKB) ﬁEn (exact) 7{7E" (WKB)
0 2.338 2.349 3.096-0.110:¢ 3.151
1 4.088 4.091 4.697-0.074: 4.717
2 5.521 5.519 5.883 - 0.059¢ 5.890
3 6.787 6.781 6.867—0.051¢ 6.868
4 7.944 7.935 7.728 —0.045:¢ 7.724
we obtain a satisfactory description of meson a=0.30 GeV?, (58)
spectroscopy with “reasonable” quark masses
pectroscoby avie d ’ b,=-1.13 GeV (59)
and claim support for the idea that the forces P
which bind quarks are more or less universal, for the potential of the p-like states, and
and that bound light- and heavy-quark systems
g y-a y me =260 MeV (60)

are distinguished to a large degree by kinematical
considerations.?® We treat the constant ¢ as a
free parameter of the model, rather than one to
be obtained from comparison with the string mod-
el or from other theoretical considerations. (Qur
‘model is sufficiently different from the string-
model to justify this approach.)

In some sense the constant b must account for
all other interactions omitted from consideration,
such as the shorter-range spin-independent inter-
actions, as well as spin-dependent corrections,
both of which depend on the masses of the quarks
being bound. Therefore, we cannot assume that b
is a universal constant. Furthermore, it is to be
expected that the effective value of b will depend
on the spin-state being considered, even for the
same quark content. One can ignore the parame-
ter b if one is only interested in energy differ-
ences, and not in an absolute energy scale. How-
ever, it will be interesting to evaluate b for each
bound quark system, as an estimate of the ener-
gies associated with the omitted interactions.

We may fix the constant a of the potential by
choosing as input the masses of three different
meson states composed of N and ® quarks in an
I =1 spin-triplet state, which seems to be better
understood than the I =0 or singlet systems. To
avoid the seemingly anomalous behavior of the
pionlike states,?” we take as input p(770), p’(1600),
and A,(1310), which we assume to be the 35,
ground state, the first (3S,) radial excitation, and
the first Regge (°P,) excitation of the ground state,
respectively. Fitting the masses of these states
with our model yields

for the mass of the nucleon-type quarks.

Now consider the triplet bound states of Xx
quarks. We assume that ¢(1019) is the 3S, ground
state of this system, and that f(1516) is the first
Regge (°P,) excitation. Given the value of a from
(58), we find

by=-1.16 GeV

(61)
and

m, =475 MeV (62)

for the A quark mass.

We are encouraged by the reasonable values ob-
tained for the quark masses'' to apply our model
to the bound-charm system. Using the value for
the constant a given by (58), we assume that
¢$.(3700) is the first radial excitation of the 3S,
¢.(3100) ground state, and we find

b, =-1.72 GeV (63)

and

m,=2.0 GeV . (64)

Again, a plausible value for the quark mass em-
erges.'® Given these parameters we predict the
3S, ¢.(3100) ground state and radially excited part-
ners to have masses

E=3.1,3.7,4.2,4.6,4.9,... GeV. (65)

All free parameters of the model have been de-
termined for the triplet systems, so that we can
predict the other excitations of p(770), w(783),
¢(1019), and ¢.(3100) within the accuracy ex-
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2754 2832
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2333
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, 1758 :Leem
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(AsUI310)
 (1270)
1310=20100)
$(993)
51970)
(p 770))
177075 (783)
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FIG. 1. Predictions for mean energy levels (in MeV) for I=0 and I =1 mesons with N- and @ -type quark pairs in a
triplet state (3LJ). States used as input are p(770), p’(1600), and A,(1310). Relevant experimentally confirmed (Ref. 28)
states are indicated in the level diagram.

pected, given our neglect of spin-orbit and ten- Let us now turn to a discussion of the singlet
sor couplings. The level scheme that emerges states.?® The spectroscopy of the I =0 singlet
is shown in Figs. 1, 2, and 3, with confirmed®® levels is complicated by the annihilation of quark-
meson states indicated in each of these figures. antiquark pairs into gluons, which makes a strvong-
One is struck by the scarcity of solid experimen- ly enevgy-dependent®® contribution to the meson
tal information on meson spectroscopy. mass matrix. As a consequence, the pseudoscal-
375 —— 3236
3095—
2986
2920
2807
2704 2637
2410 2498 —
2304
2165
1935
1806
1516 (t'asi4))
L=0 L=1 L=2 L=3 L=4

FIG. 2. Predictions for mean energy levels for I =0 mesons with A-type quark pairs in a triplet state ér 7). States
used as input are ¢ (1019) and f' (1514).
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4450
4286
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FIG. 3. Predictions for mean energy levels for I =0 mesons with charmed quark pairs. States used as input are

¢.(3105) and ¢.(3695).

ar meson states 1, ', and n” need not be ortho-
gonal.?®3° Arguments based on asymptotic free-
dom?®'3! suggest that this annihilation term is
negligible for the charmed quarks, so that n”

can be considered to be entirely bound ckarmed
quarks. Therefore the level structure of the
singlet Cc states is essentially that of the corre-
sponding triplet levels, and hence can be obtained
from Fig. 3 with a downward shift in energy of
roughly 25-100 MeV appropriate to the hyperfine
interaction. Because of the annihilation term, the
7 and i’ contain nonorthogonal combinations?®3°
of N-, ®-, and r-type quarks. Furthermore, the
hyperfine interaction is strongly mass- and angu-
lar-momentum-dependent, since it behaves ag?®:3

1
— G G,V .
&, 201 G,VPV(r) (66)

We believe these complications place the discus-
sion of the 7 and 1’ outside the scope of our model,
so that we shall not discuss these I =0 singlet
states or their excitations further.

We now consider the I =1 singlet states. It has
been emphasized that the spin-spin interaction (66)
makes its most important contribution to /=0
states,?® so that with this hyperfine interaction
omitted in our model, 7(140) does not seem to be
well suited as an input for fixing the parameter
b,. Instead we choose B(1235) as the input, de-
termining

b,=-1.21 GeV, (67)

with the resulting spectroscopy shown in Fig. 4.
It is not suprising that our prediction for the pion
mass is very much too large. [The pion always
presents difficulties for this kind of spectroscopy,*
if one ignores the contribution of Eq. (66).] Our
satisfactory prediction of 1683 MeV for A,(1640)
leads us to concur with the opinion®° that the ano-
malous behavior of the pion is due to the hyper-
fine interaction.

It should be noted that we are unable to treat
meson systems with unequal-mass quarks without
generalizing Eqs. (2) and (3) to the appropriate
quartic differential equation.'® Thus, we cannot
discuss K*, K, or charmed meson states without
extending our analysis, although we expect the
resulting spectroscopy to be of the same qualita-
tive nature as the states discussed here.

Let us now comment briefly on the values ob-
tained for the constant b which appears in the po-
tential. Comparing Egs. (59), (61), (63), and (67),
we see that the value of b is essentially indepen-
dent of the meson system for noncharmed-quark
systems, and is somewhat larger (in absolute
value) for the charmed-quark system. We can
offer no theoretical explanation for this aspect
of our fit to the data, although the large value for
the constant in the potential leads us to question
the validity of omitting such a constant® in fits
to the meson spectra with linear potential models.
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FIG. 4. Predictions for mean energy levels for I =1 mesons with - and @ -type quark pairs in a singlet state iL ).

The state used as input was B (1235).

B. Leptonic widths

In Sec. IV we found the S-wave wave functions
of the model in terms of confluent hypergeome-
tric functions. From the wave functions of the
model, one can estimate a number of hadronic
and leptonic widths, and radiative transitions of
the meson states. To do so here would require a
computer calculation of the wave functions over-
lap integrals appropriate to our model; results
which we are not prepared to present at this time.
In lieu of this, we appeal to the nonrelativistic
limit presented in Sec. IV [e.g., Eq. (56)] in terms
of Airy functions.

As an illustration, we estimate various vector-
meson decay widths into lepton pairs, V—=1*1-,
whose width is given by,3* assuming that there are
three colors,

0 2
r(v=1+1-)=16m07 12O, 2 (68)
my
neglecting the lepton mass. Here a is the fine-
structure constant, m, is the vector-meson mass,
and eg? is the square of the quark charges, with®!!

ea®=%; %%
for the p, w, ¢, and ¢, systems, respectively.
We (overoptimistically) use the nonrelativistic
limit to estimate the wave function at the origin,
i.e.,

ma

[p(0) = e (69)

where m is the appropriate quark mass. Using
our values for the parameters, we obtain the re-
sults shown in Table II, with the agreement with
experiment®® better than we have a right to ex-
pect. (Our predictions for the leptonic widths of
the p, w, ¢ states are roughly a factor of 2 too
large.)

C. Hadron decays

Attempts have been made to describe hadron
decays which violate the Okubo-Zweig-Iizuka rule
in terms of decays into colored gluons.*®*3” Thus,
in analogy with the three-photon decay of ortho-
positronium, one has®®

T'($.(3100) = hadrons) = 32 (72 - 9)[a,(3.1)]?

2
x L‘;S_)J_ (70)

and®®

T(¢~pm)=(2)(42)(r? - 9)[a,(1)]? l¢(02) £ ,
L
(1)

where the extra factor Zaccounts for the fact that the
A quark contributes to Okubo-Zweig-Iizuka-rule
allowed decays of the ¢ meson,*’ and where ¢(0)
is the appropriate wave function at the origin.
Since the value of ¢(0) is model-dependent, it is
desirable to avoid a specific model by relating it
to the leptonic widths by means of Eq. (68).
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TABLE II. Predictions for leptonic decays and wave functions at the origin for vector
mesons. Experimental values are obtained from Refs. 28 and 35.

1$(0)|* MeV)®

T(V—I*l7) (keV)

D(V—1*1") (keV)

State theory theory experiment
p (770) 6.27x 108 14.1 6.5+ 0.5
w (783) 6.27x 108 1.53 0.76+0.17
¢ (1020) 11.4x 108 3.27 1.34+0.084
¢.(3100) 48.1x 108 5.97 4.8+0.6
$,(3700) 48.1x 10° 4.20 2.2+£0.6
¢.(4200) 48.1x 108 3.24 4.0+£1.2
p’ (1600) 6.27% 106 3.27 1.02 to 2.65
Consider the two ratios®® l:ozs(l)]s . (0.51 >3 _15.2 (78)
R - T(¢=pn) @s(3) ], 10.21 ’
T T(p=1*1") .
with
_20(n%-9) 3 3 3
= tear e (72) [a_s(l)_n_] - (%-g?g.) =5.44, (79)
a5(3)themy *
and which indicates that the asymptotic freedom mech-
R. = I'(¢. = hadron) anism is qualitatively correct, although quantita -
2 (¢~ 1%L7) tively it may overestimate the decay width
5(n% - 9) I'(¢, —hadrons) by a factor of three.
= W[as(s)]s, (73) It is essential to note that this test of the gluon

which should be compared with experimental val-

ues

663
Ry)p = 737495

and

59
(Ro),p = 75123

(74a)

(74b)

These experimental ratios can be combined with

Eqgs. (72) and (73) to give
[as(1)] . =0.51

exp

and
[es(3)],,=0.21,

(75a)

('15b)

values which are similar to those previously re-

ported.5+2°

If these values of a4(m,) are connected by asymp-

totic freedom, they should satisfy

a,(3) = ay(1) {1+ %as(l)msa] -

Using (75a) as input, one predicts

[as(3)]

theor.

=0.29.
y

Perhaps more relevant is the comparison of

(76)

(1)

annihilation model has made no use of an explicit
calculation of the bound-state wave function. All
that is required is that the annihilation into gluons
take place at short distances. Thus, if quantitative
understanding of decay rates suppressed by the
Okubo-Zweig-Iizuka rule is to be obtained, one
should perhaps consider corrections to the sim-
plest estimates (70) and (71). This is especially
true for the rate for ¢ - pon, since the effective
gluon coupling constant is not particularly small.

V. CONCLUSIONS

We have presented a simple relativistic poten-
tial model to describe meson spectroscopy in a
sufficiently unified way so as to encompass both
light- and heavy-quark systems. Totality of our
results supports the view expressed in the Intro-
duction that the large ¢.,(3100), ¢/(3700), ¢/(4200)
spacing [in (mass)?] as compared to level spacings
in the p-p’ system was in fact a kinematical effect
due to the large mass of the charmed quark. The
evidence we collect here is consistent with the
premise that forces which confine quarks are
essentially independent of quark species. A par-
ticular feature which characterizes the spectra
of our model is the prediction that parent and
daughter energy levels are not degenerate, as is
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obvious from Figs. 1-4, as well as from Eqs. (44)
and (45), which is to be contrasted with the string
model.'®

The over-all systematics of our predictions for
the meson energy levels and leptonic decay widths
give support to the usefulness of our model and
the parameters and wave functions that emerge
from analysis of existing data. We look forward
to further tests of our simple picture of quark
binding.
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