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We use the resolvent-kernel technique to obtain the inclusive distributions in a one-dimensional bootstrap
model containing both pionization and diffraction. In the case where diffraction is described by a bare
Pomeron with intercept less than one, we obtain an exact solution of the bootstrap equation for the single-
particle distribution, which can display correct double-Regge behavior near x = 0. For a Pomeron with

intercept exactly one, we obtain a multifireball expansion for the inclusive distribution in powers of the
Pomeron coupling constant. Comparison of the multifireball expansion for the bare Pomeron, with the exact
solution, indicates that the expansion does not correctly describe the distribution near x = 0. We discuss the
solution of the n trajectory, one-dimensional bootstrap model and its relation to conventional treatments of
the n-trajectory Chew-Pignotti model.

I. INTRODUCTION

The bootstrap model for inclusive reactions has
been developed by a number of authors. ' ' It is
based on the bootstrap hypothesis of Krzywicki
and Petersson, ' the implications of which were
first investigated in detail by Finkelstein and
Peccei. ' It is assumed that there is exactly one
leading particle in each production event and that
the inclusive distributions will factorize into
products of the leading-particle distribution and
the inclusive distribution of the other particles
in the remaining fireball. The bootstrap hypothesis
then states that the inclusive distributions inside
the firebal. l, as functions of the variables appro-
priate to the fireball rest frame, are described
by the same functions as described the inclusive
distributions in the whole event as functions of
the c.m. variables. In models where the leading
particle is produced by the exchange of "some-
thing, " the bootstrap hypothesis is equivalent to
the statement that the "something"-particle cross
sections have the same behavior as the particle-
particle cross sections.

Since the integrated inclusive distributions are
the multiplicity moments, it is an immediate con-
sequence of the bootstrap hypothesis that the mul-
tiplicity distributions associated with a leading
particle should depend only on the mass squared
of the fireball, M', and not on s, and should, in
fact, have the same behavior as functions of this
variable, as the multiplicity distributions in the
whole event as functions of s. This has been con;
firmed by the NAL bubble-chamber results for
multiplicities associated with a slow proton in
P-P collisions. ' Similar results have been ob-
tained for ~-P collisions. ' lt has also been noted
in the analysis' of the exclusive reaction
K p-Z (pn'n ) at 16 Gevic that the pn'n system

tends to decay l.ongitudinally in its rest frame, as
the bootstrap hypothesis would suggest, rather
than isotropically.

The bootstrap hypothesis leads directly to a set
of recursion relations in the form of integral
equations for the multiparticle distributions" '
and for the generating function for the multiplicity
moments. " The equations involve only the phys-
ical on-shell inclusive distributions and it has
been shown" that the solutions of the bootstrap
equations must satisfy the energy-momentum
conservation sum rules. " The equations are writ-
ten most simply in terms of the Feynman scaling
variable x rather than the rapidity y and are thus
best suited for the study of the inclusive distri-
butions in the fragmentation regions where x is
the appropriate variable and the energy-momentum
constraints are important, rather than on the
central plateau where the appropriate variable is
the rapidity and the energy-momentum constraints
can be neglected.

The bootstrap equations could provide a useful.
phenomenological tool' or they can be used to
construct simple, soluble models that are capable
of reproducing the gross features of the data. We
shall adhere to the second philosophy and, for
simplicity, we shall restrict ourselves to the case
where all produced particles are identical and
spinless, although quantum numbers can be in-
cluded in the model. '

In a previous paper, ' which we shall refer to as
paper I, we studied the properties of a simple
one-dimensional model for which the bootstrap
equations are soluble. The model, which is closely
related to the one-trajectory Chew-Pignotti
model, '2 depends on a single parameter P, is
Regge-behaved in the triple-Regge region, and
can exhibit the properties of either the diffractive
or pionization component, depending on the value
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of P. Since both pionization and diffraction must
be present in any realistic model, our object in
this paper is to study the properties of models
containing both. Since the behavior of the multi-
plicity distributions and correlation coefficients
has been studied in such models by Morel and
Petersson, ' we shall concentrate on the inclusive
distributions themsel. ves.

We shall concentrate on the "bare-Pomeron"
approach, "where the Pomeron is assumed to
have an intercept slightly less than 1 and can be
interchanged an arbitrary number of times, as
it is simplest to handle in the bootstrap context.
We shall. , however, also discuss the case where
the Pomeron intercept is exactly 1. There are
several possible approaches to the inhomogeneous
Volterra equations that arise in the bootstrap
model, and while Finkelstein and Peccei' have
emphasized the Mellin-transform technique, we
shall find the reciprocal or resolvent-kernel tech-
nique to be more useful for our purposes.

In Sec. II we shall discuss the relationship be-
tween the inclusive and exclusive cross sections
in the bootstrap model. We will show that if the
square of the T matrix is a sum over all permu-
tations of the outgoing momenta of q factorizable
terms, then the bootstrap equations are satisfied,
and, conversely, that if all of the bootstrap equa-
tions are satisfied by the inclusive distributions,
then the square of the T matrix must be the sum
of such q factorizable terms. In Sec. III we will

use the resolvent kernel to obtain the solution
for the model discussed in paper I. We shall dis-
cuss the properties of the multiparticle distribu-
tions and correlation functions in this model.

In Sec. IV we show how the resolvent identities
can be used to obtain a perturbation expansion
in powers of the Pomeron coupling constant, which
is assumed to be small. Because we will obtain
an expansion for the inclusive distribution rather
than the inclusive cross section, the nth term in
the expansion cannot be identified simply as the
contribution from diagrams with n Pomerons on
the multiperipheral chain. Nevertheless, for
simplicity, we shall refer to the expansion as the
"multifireball expansion. " We shall discuss both
the bare-Pomeron case and the case of unit Pom-
eron intercept.

In Sec. V we show that the two-trajectory Chew-
Pignotti model (of which the ordinary trajectory
plus bare-Pomeron model is a special case) is
also soluble and we compare the results of those
of Sec. IV. We shall see that the multifireball
expansion provides a good approximation in the
region near x = 1 but can provide incorrect results
in the neighborhood of x =0, although the combi-
nation of bare Pomeron and ordinary trajectory
can result in reasonable double-Regge behavior
in the neighborhood of x =0 in the exact solution.
We indicate how the n-trajectory problem could
be solved and specul. ate as to how this could be
used to effect a multi-Regge bootstrap.

II. THE T MATRIX

The invariant inclusive cross section for the process a+&-k' identical, spinless particles plus anything

is given by

4
n

= ) (2~)'I '(~)Z
g (

i dp *,'''dp. 1( l(, (7)(, l„)l'()' p. +p, —g (;). (2.&)

The corresponding distribution, f)((, )(P„P, ~P( P, ), is obtained by dividing by the total cross section
o(s). As in paper I, we assume that by specifying a leading particle (, we can write the s(luare of the

T matrix as a sum of q factorizable terms,

I & P. , P(, I
& I t(, P. }I' =f I & f(. , f(, I &( I P( ' ' ' P.) I',

i=1

I(p. , p~ I&( lt, p. ) I'=f'(s, M(', t()I(p. p„p( I ~IP( t-(( „p(.( p. ) I'.
(2.2)

(2.3)

then, in the strong-ordering limit, successive

This assumption of q factorizability of the 7.' ma-
trix is, of course, the fundamental assumption
of multiperipheralism. If we were to take

f(s, M', t) =r(t)(s/I')'",
IIr, (t(}(s, ,„}"'( (2.4)

applications of E(l. (2.2) would give us a T matrix
that is a sum of terms of the usual. mul. ti-Regge
form
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However, it is essential that we do not make the
strong-ordering assumption. In Eq. (2.2) we are,
in. effect, summing over all permutations of the
outgoing momenta, and it is necessary to do so
to obtain the bootstrap equations. Thus, as em-
phasized by Finkelstein and Peccei, it is impos-
sible to specify the leading particle in a given
event as, for example, the particle with the largest

longitudinal momentum. The leading particle is
specified in the model as the first particle on the
multiperipheral chain.

Substituting Eq. (2.2) into Eq. (2.1), making the
additional assumption" that off-shell effects be
either negl. ected or incorporated into the definition
of f, we obtain

(k)(paPpb~p1'''pk)=Q 1.(p pablp()&(k, )(p ap( pbP~p, p, „p„, p, )
&=1

+ P +I a&P&IP &(p) .-P,Pp Pj. ' ' 'Pa). (2.5)

Equation (2.5} is the Krzywicki-Petersson-Finkelstein-Peccei bootstrap integral equation in its most
general form. In the case where k =1, we have for the single-particle distribution

pI(p. p, I p) = &, (,p. , p, I p) fap p(, tp. , p, I l ')pl(p —p'p,
I p. ). ', (2.6)

W~ is the leading-particle distribution, given by

Since there is one and only one leading particle, Nl must satisfy the normalization conditions

(2 &)

dpi'~

g ~ pylP) =1. (2.8)

f is an arbitrary function of the three independent invariants that we can form from the momenta pa 1 pbb

and ~i s

s=(p. +p, )', M, '=(p. +p, -.p, )', t, =(p. -p,)'. (2.9)

We also have dp =d'p j[(2s)'2Ep], and A
' is the flux factor which satisfies a(s) = s for large s.

We can also argue that, conversely, if all of the bootstrap equations (2.5) are satisfied, then the square
of the T matrix must be a sum of factorizable terms, as in Eq. (2.2}. We can always write the inclusive
density as a sum over semi-inclusive densities corresponding to states of fixed final-state multiplicity.
If we define o(„(s)=o„(s)/u(s), we have

+(k)(Pa P Pb I P1 Pk) Q +a (S)NIk )(Pa P Pb I P1 Pk) (2.10)

and, also,

(k-1)(PII P(P Pb I P1 P 1 P1(+1PPk ) Q &a(M( )&(k 1)(Pa P(P Pb I P1
' '-' P; 1P P;+1 ' ' ' Pk).

n= k-g
(2.11)

Since states of definite final-state multiplicity correspond to physically distinct processes, any equality
between inclusive quantities expressed in this way must be valid term by term. " In particular, consider
the contribution to N&» in Eq. (2P5) from the state with k particles in the final state. There will be no
contribution from the integral, term which receives contributions only from states with at least 0+1 final
particles. Hence, substituting Eq. (2.10) and (2.11) into Eq. (2.5) and identifying the contribution from
the state with 0 final particles we have

k( ) (k)(Pa P Pb IP1 Pk) Q 1 (Pa P Pb I P() k-1( 1 ) Ik 1)(Pa Pi P Pb I Pi Pi-1P P1+1 Pk)' (2.12)

Equation (2.2), in fact, relates the k-particle exclusive cross section at s to the (f1 —1)-particle exclusive
cross section at M, '. In terms of the T matrix, we have
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k) —,'(2(()'
T ~ » ~ 2

I3)(pa ~ P() I Pl P()) ~(s)o (s) I( Pa 1 Pb I I Pl P3 ) I
k

and a similar expression for N&„'1»'.

So, Eq. (2.12) becomes

k

f(p. , p3ITIP, '''p»&('= &c(pa, p3IP() ~M 3, ,M, )
I(P. P;—, P3ITIp, '''p; „P;+,'''P3)f'.

=1

Equation (2.14) is identical to Eq. (2.2), with f (s, M, t ) given in terms of N~(p, , p, I p) by Eq. (2.7).

(2.13)

(2.14)

IIL THE RESOLVENT KERNEL FOR
THE CHEW-P1GNOTTI MODEL f(x) =g(x)+

(

dz K(x, z)f(z), (3.5)

f(x) =g(x)+ —g(y)f
x

(3.1)

f,(x, ~ ~ ~ x, )

Assuming, as the data indicates, that transverse
momentum is limited and that Feynman scaling
holds at high energies, we integrate over the
transverse momentum to obtain the one-dimen-
sional bootstrap equations. Equations (2.6) and
(2.5) become, respectively,

with

K(x, z)= g 1-- .z(z —x) z
'

Iterating, we obtain the Neumann series,
1

f(x) = g(x)+ «K(x, z)g(z)
x

1 (1
+ dz dz'K(x, z)K(z, z')g(z}

x

(3 6)

k

i

~ ~ ~

i

~
X1

~ ~ ~
Xi -1 i+1

1 —x; 1 —x;'1 —x; 1—

~ ~ ~

1-Z; ] yy X Xk
+ g(y f3

0
(3.2)

where x is the Feynman scaling variable,
x=2P((/Ws, and

Pj
(„) J2(2,).&,((., (, I('),

"d P1~f ()( j k) 2(2 )3

d2Pk

2(2 )3 (Pa Pb I p& P())

(3 3)

The normalization condition, Eq. (2.8), becomes

J'dx—g(x) =1.
0 x (3.4)

Since, in the bootstrap model. , in the scaling limit,
we have complete factorization between hemi-
spheres, Eq. (3.2) is valid for x, x,&0. For
the case x, x, & 0 x ~ x & 0, the distribution
will be a product of terms, f, and f, „each of
which satisfies an equation of the form of Eq. (3.2).

Equation (3.1) is an inhomogeneous Volterra
equation of the second kind. It can be put into
standard Volterra form by making the substitution
z =x/(1 —y) and we obtain

+ ~ ~ ~ (3.7)

(», 3)=K)(*)~ I)d IC(, )X(*,,y)

+ dz dz'K(x, z)K(z, z')K(z', y}
x z

+ ~ ~ ~ (3.8}

The Neumann series is then given by g+Rg, so

1

f(x) =g(x)+ A(x, y)g(y)dy
x

(3 9)

If the kernel has a singularity at ~ =0, as will
be the case in the model we are interested in,
the Neumann series wil. l converge uniformly to
a unique solution on any interval & ~ x «1 that ex-
cludes a neighborhood of x =0. The fact that the
Neumann series will converge more rapidly in
the region near x =1 than in the region near x =0
is consistent with the interpretation of the nth
term in the series as the contribution to the in-
clusive distribution from diagrams where the ob-
served particle is the &th particle on the multi-
per ipheral chain.

Since we could always write a Volterra equation
as a Fredholm equation with a discontinuous ker-
nel by defining Z(x, z) =K(x, z)6)(z —x), techniques
that are applicable to Fredholm equations could
also be useful. in the case of Eq. (3.5). In par-
ticular, another way to obtain the Neumann series
is to define the resolvent kernel. to be
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Y

R(x, y) =K(x, y)+ dz K(x, z)R(z, y)
X

(3.10)

is the solution to Eq. (3.5). Equation (3.8) is itself
the Neumann series for the integral equation for
the resolvent which can be written as

which has the correct Regge behavior near x =1,
which satisfies the normalization condition, and
which has been shown. by Jengo, Krzywicki, and
Petersson' to reproduce the Poisson distribution
for the multiplicity of the Chew-Pignotti model
is

or equivalently

( y

as(&) = ((3+1)x(1—x)'. (3.17)

R(x, y) =K(x, y)+ dz R(x, z)K(z, y). (3.11)

dz[6(x —z)+A(x, z)] [5(z —y) —K(z, y)]

We can write these equations in a somewhat dif-
ferent form:

Since the coupling constant is then just

g' =(0+1),

Eq. (3.16) becomes

Q =2@+@ —1,

(3.18)

(3.19)

Y+

dz [5(x —z) —K(x, z}][ 5(z —y) +R(z, y)]
X

which is just the Chew-Pignotti relation for the
output trajectory.

The kernel for this choice of g(x) is then

= 5(x —y). (3.12) Ks(x, y) =(I+I} s+, . (3.20)

Equation (3.12), which we can write in operator
notation as

(1+A }(1 —K) = (1 —K)(1+R) = 1, (3.13)

is a statement of the fact that the operator [1+R]
is the inverse of the operator [1-K]. We shall
refer to Eq. (3.12) or, equivalently, Eq. (3.13) as
the resolvent identities. In Eq. (3.12), which is
just a convenient shorthand notation for Eqs. (3.10)
and (3.11), we have taken the limits of integration
to be

dz =lim l dz
X 6~0 X E.

(3.14)

o(s) =c,s (3.15)

where u' is the intercept of the output trajectory.
Then, if a is an average value for the input tra-
jectory in Eq. (2.3), from Eq. (2.7), in the neigh-
borhood of x =1, g(x) must behave like g'(1 —x),
with g2 being the coupling constant for the model
and

P = u' —2u. (3.16)

The behavior of g(x} near x =0 is determined by
the behavior of I'(f ) which cuts off the amplitude
when f becomes large. We must have g(0}= 0 so
that the normalization condition, Eq. (3.4), can
be satisfied. A particularly simple choice for g(x)

so that the arguments of the 6 functions are always
within the range of integration.

We now wish to consider a simple single-tra-
jectory multi-Regge model with f given by Eq.
(2.3). We will also assume that the total cross
section in the model is Regge-behaved at large
energies,

As(x, y}= P+1 (3.22)

Equation (3.9) then gives

f s(x) = (13+1)(1—x)'. (3.23)

This is the solution that we found in paper I by
trial and error. Since fs(0) =(P+ 1)=g', we obtain
another classic Chew-Pignotti result,

( n) = g
' ln(s). (3.24)

Hence, since this model reproduces al. l. the re-
sults of the Chew-Pignotti model wherever these
models can be directly compared, we must con-
clude that this model is the Chew-Pignotti model
in a somewhat unfamiliar form.

For the multiparticle distributions, the solution
of Eq. (3.2) for the choice of g given by Eq. (3.17)
is just

f. (», *.) = ((( ~ ((' (( —2»; (3.25)

We have just shown that Eq. (3.25) holds for k =1.
Let us assume that it holds for k —1 and assume
that f, is a function only of the variable X,

X= x].
=1

It is then easy to see that Eq. (3.2) becomes

(3.26)

The Neumann series for the resolvent kernel,
Eq. (3.8), becomes

[(l +1)ln(y/x)]" (3 21}
n=o 8 ~

and, recognizing the power series for an expo-
nential, we immediately have
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(3.27)

However, this equation is exactly the same as
Eq. (3.1) except for the coefficient of the inhomo-
geneous term. The solution is obviously Eq.
(3.25).

If P& 0, f (x) will have a maximum at x = 0 and
will vanish at x = 1, while f,(x, ~ x,) will ha ve a
maximum at the center and will vanish at the
phase-space boundary. We have called such be-
havior "pionizationiike. " Similarly, if li& 0, f (x)
has a minimum at x = 0 and diverges at x = 1, and

f, (x, ' ' ' x„) has a minimum at the center and di-
verges at the phase-space boundary. We have
called this behavior "diffraetionlike. "

In the first quadrant of the Van Hove hexagon,
where both particles are in the forward hemi-
sphere and the two-particle distribution is non-
vanishing, the two-particle correlation function
has the form

c,(x„x,) =(P+I)'

x[(1 —x, —x2) —{1—x, ) (1 —x2} J.
(3.28)

For P& 0 the correlation function is negative
throughout this region and for P& 0 it is positive
throughout the region and diverges at the phase-
space boundary. Similar remarks are valid for
the third quadrant, where both particles are in
the backward hemisphere. In the second and fourth
quadrants, factorization of the amplitude between
hemispheres requires that the correlation func-
tion va, nish identically. In the ease where P =0,
al. l of the multiparticle amplitudes are constant
and al. l of the correlation functions vanish identi-
cally.

We have previously defined a set of "kinemat-
ically corrected" correlation functions" which
vanish identically in the Fermi modeL and uneor-
related jet model. and should therefore be a mea-
sure of dynamical. correlations free of kinematical.
effects. These "corrected" correlation functions
c also have a simpl. e form in the above model:

c(x„x,) =(/+I)'[(I —x, —x, )
'"

Eq. (3.25), satisfies the energy-momentum con-
servation sum rules and is, in fact, the simplest
set of such functions that we can construct which
does so. The analog of the energy sum rule for
g determines the average fraction of the projectile
energy carried away by the leading particle in the
c.m. frame,

E
A g(y)

(3.30)

+ —g(y), 0, (3.31)

which is the same as Eq. (3.1) except that the in-
homogeneous term is multiplied by f,(0). The
solution is thus

(3.32)

There are thus no eorreLations between particles
in the central plateau and particles in the frag-
mentation regions. This is a consequence of the
fact that the bootstrap model in the scaling limit
is a short-range correlation model. On the other
hand, if we are at the phase-space boundary,
x2 1 xy the integ ra l ter m vanis hes and we have

For P = 0 the leading particle carries off, on the
average, —,

' of the projectile energy.
If we consider Eq. (3.2) with arbitrary g(x), then

it would also be advantageous to use the variable
X, Eq. (3.26). We need n —1 other independent
variables which we can take to be x; =x, /X, which,
of course, satisfies Q, x, =1. Equation (3.2) will
then reduce to a one-dimensional. integra. l equa-
tion in the variable X. The equation will have
the same kernel as Eq. (3.1) and, hence, the same
resolvent. The inhomogeneous term will, in gen-
eral, be a complicated function of X and the para-
meters i„so that the resulting integrals wil. l.

have to be done numerica, lly. There are, however,
two special cases where the two-particle distri-
bution has a simple form independent of the choice
of g(x). Suppose that one of the particles is pro-
duced at x=0. Since g(0) =0, we get

f, (o, x) =f,(0)g(x)

—(1 —x, ) '"(1—x, )
' J. (3.29) f,{x„1—x, ) = [g(x,}+g(l —x, )]f (1). (3.33)

Thus, as long as the intercept of the input trajec-
tory is positive, the dynamical correlations will
be positive. In the case where n =0, which would
correspond to the uncorrel. ated jet model, of
course, c =0.

It is trivial to verify that the set of f~, given by

IV. RESOLVENT-IDENTITY PERTURBATION THEORY
AND THE MULTIFIREBALL EXPANSION

Let us consider the case where the leading-par-
ticle distribution has the form
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(4.2)

so as to insure that the normalization condition
is satisfied exactly and the model will produce
physically meaningful results.

We can now use the resolvent-identity pertur-
bation technique previously applied by the author"
to the Faddeev equations. Writing g =g, +~g, we
can take the kernel to be K, +4A and let us cal.l
the resolvent A. The resolvent identity will then
have the form

(1 —Ko —EK}(1+R)= 1

which we can rewrite as

(1 —Ko)(1+R) = 1+dK(l +R).

(4.3)

(4 4)

We can then multiply on the left by (1+R,), and
use the resolvent identities for the unperturbed
problem to obtain

where g, (x} is a leading-particle distribution, such
as that considered in the previous section, for
which we can obtain an exact solution. We assume
that «& 1 so we will seek a, solution in the form
of a power series expansion in &. Since g~ satis-
fies the normalization condition, we must have

associated decoupling theorems has recently been
emphasized by Chew, Bishari, and Koplik. " One
assumes that there is a "bare Pomeron" with
intercept close to, but still less than, unity which
can be exchanged an arbitrary number of times.
Because the Pomeron coupling constant is much
less than 1, the inclusive cross section can be
expanded in powers of this parameter. The zero&J~-

order term gives the pionization component and
the first-order term gives the diffractive com-
ponent. Higher-order terms do not seem to be
important, even at CERN-ISR energies. In what
follows, we shall emphasize the bare-Pomeron
approach simply because it is easier to handle,
although a Pomeron with intercept exactly at 1

presents no essential difficulty in principle if one
is careful to take into account threshold effects
in the neighborhood of x =1.

Let us consider a model. that contains both an
ordinary trajectory o.'(t ) and a bare Pomeron
o~(t ), both of which can be exchanged an arbi-
trary number of times. The T matrix will satis-
fy Eq. (2.2) and, if we assume that the total cross
section is asymptoticaLly constant in this model,
instead of Eq. (2.3), we will have

f (s, M', t ) = I' „(t)(s/'M' )
"~"+ r (t )(s/M') "p ~" .

R =Ra+ (I +Ra)DK(1+R). (4.5) (4.8)

+(I+Ra)t)K(I+Ro)AK(1+AD)+ . (4.6)

Each term in the series is correct to all orders
in g, and to a given order in 4g and hence in &.

The solution is given by f =(I+R)g and, using the
fact that f (o1+R )g owoe obtain, to first order,

f =fo+ (1+Ra)bg+ (1+Ro)DKf~. (4.7)

We know that both diffraction and pionization are
present in the real world and, hence, that any
realistic model must contain at least both a Pom-
eron and an ordinary trajectory. If we assume
that the Pomeron is an isoLated factorizable pol. e
with intercept exactly unity, then the Finkelstein-
Kajantie theorem" would require that there be
no more than one Pomeron on a multiperipheral
chain to avoid violation of the Froissart bound.
This philosophy leads naturally to a two-compon-
ent model where the pionization component arises
from diagrams that contain no Pomerons and the
diffractive component arises from diagrams
having one Pomeron. An. alternative philosophy
that avoids the Finkelstein-Kajantie problem and

Equation (4.5) is an integral equation for the re-
solvent which we can iterate to obtain the Neumann

series,

R = Ra+ (I +Ra)t)K(l +Ro)

The bootstrap equations, (2.5) and (2.6), will then
follow with the leading-particle distribution given
by

iv=W, +x„,
E (p p ~p)=I' '(t)(s/M')'"" '.
X„(p., p, I p) = r '(t )(s/M')'&"'-'.

(4.9)

(4.11)

If we were to set & =0, we would have +~„=~~„
and, since the inclusive distributions are positive-
definite quantities, the only way that Eq. (4.11)

If we were to turn off the bare-Pomeron coupling,
we would have a one-trajectory model of the type
discussed in the previous section. This model
would describe the pionization component and we
can assume that its cross section o„(s) falls as-
ymptotically with s like s '. From Eq. (2.7) it
is clear that the leading-particle distribution in

this model would be

N .(P. , P, IP) =r.'(t)( /M')"&"'-'. (4.1O)

Since the normalization condition must be satis-
fied in both models, we have
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could be satisfied would be if N~~ were identical. ly
zero and there were no diffraction. Hence, both
the diffractive and nondiffractive cross sections
cannot be asymptotically constant in this type of
model.

When we integrate over transverse momentum
and make the same assumptions about the behavior
of the cutoff function as in Sec. GI, Eq. (4.10) be-
comes

g„(x) = (P+ 1 —e) x(1 —x) s (4.12)

g(x) =gs (x) + b,g(x),

ag(x) = —ex(l —x)s+ x(1 —x) "-'.
P+1

(4.14)

Ne assume that the parameter & which determines
the relative strengths of the coupl. ing of the I' and
.n trajectories is smal. l, so that a perturbation
expansion in powers of & would be meaningful. . b g
has been specifically constructed so that Eq. (4.2)
is satisfied and hence contains a renormalization
term as well as a Pomeron term.

In the simplest case, o = ~, p =0, go(x) =x,
f,(x}= 1, itis a trivial matter to evaluate the first-
order term in the multifireball expansion, Eq. (4.'I),
with 4g given by Eq. (4.14)

with u being an average val. ue for the trajectory
and P =1 —2u. The coupling constant g ' is thus
determined. Integrating Eq. (4.9) over transverse
momentum, we obtain, for the two-component
model,

g(x)=(8+1 —e)x(l —x) +g~ x(1'-'x)' 2 "~, (4.13)

We can set n~ =1 —6 and use the normalization
condition for the two-component model to obtain
g~2 and we have

„~= u,x[1+e(l —x) '&(x, —x)]. (4.16)

Again, for simplicity, we have taken the ordinary
trajectory as having n = &, I3 = 0. The normaliza-
tion condition then gives the total. cross section
for the model,

to the first term. It is the last term that creates
problems. For small 5, (1 —x2 ) will be appreciab-
ly different from zero only in the neighborhood
of x =0, and the coefficient of this term will be
negative. It thus tends to produce a "hole" in the
distribution at x =0, and if 6& e it can even lead
to an f (0) which is negative, which is absurd.
Thus, the multifirebal. l expansion gives reasonable
results in the neighborhood of x =0 only if ~&+ 0.

The perturbation technique is appl. icable what-
ever the shape of the diffractive term. We can
allow a (1 —x) ' behavior if we note that this be-
havior is valid only for x& xo, xo = 1 -Mo'/s. Mo'
is a fixed mass above which the Pomeron-particle
cross section is constant and we have high mass
diffraction. For x& x0, the diffractive term will
depend on the assumptions made concerning the
behavior of the Pomeron-particle cross section
for small. M', but the inclusive cross section must
vanish as x-1 and the phase space available for
the reaction vanishes. For simplicity we will.
neglect this low mass diffraction and consider
a model. with only high mass diffraction. For
simplicity we shall also allow the Pomeron to be
exchanged an arbitrary number of times. The
first-order term in the multifireball expansion
would correspond to the exact solution in a model
where the Pomeron could be exchanged only once.
We shall therefore assume that the leading-par-
ticle incl. usive cross section has the form

f(x) =(1 —&)+2&5x(1 —x) "' + e(1 —x} v =o,[1+ fin(1 -x,) 'j. (4.17)

+ c 1-—1-x1
24

(4.15)

It is easy to verify that, to first order in ~, this
is indeed the solution of the bootstrap equation
and that it satisfies the energy-momentum con-
servation sum rule.

The first term in Eq. (4.15) is just (1—e)fo(x)
and the second term is g~(x) which dominates near
x =1. Since both ~ and 5 are small, the third
term wil. l be both small and relatively flat and,
hence, can be considered negligible in comparison

I

So, to first order in ~, we can write

g(x }= x + hg(x),
{4.18)

Ag= —ex in(1 —xo) '+ex(l —x) '&(x, —x).
We can then substitute this expression for 4g in

Eq. (4.7) and obtain

f (x) = I + nf (x). (4.19)

Because of the discontinuity of Og, r f will, in

fact, consist of a sum of three terms which are
nonvanishing in separate, overlapping regions of
x, which we can write as

1 —xex(l-x} '+eln I „, 0&x&x,
0

af (x) = + e in(1 —xo) —e lnx —e I.n(I —xo)lnx+ —,& ln'x, 1-x,+ x& 1 (4.20)

—2@In (1 —xo), 0&x& l. —xo.
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We should note that &f is continuous at x = 1 —x„
and the term ex(1 —x) '&(xs —x} dominates the
amplitude for x near 1. We should also note that
the solution will suffer from the same problems
as in the bare-Pomeron case. In particular, as
s- ~ and xs-l, the last term in Eq. (4.20) will
become large and negative. The first term in
the multifireball expansion will be a good approxi-
mation over the whole range of x only of
s in'(s/Mo')«1, which is to say, only for those
energies for which the diffractive cross section
can be considered small. compared to the total
cross section.

If we turn on an additional interaction with
strength &, both the inclusive cross sections and
the total cross sections must increase as E in-
creases. Hence if we expand the inclusive dis-
tribution N= (1 /o) d(t/dp in a power series in e,
the series will contain both positive and negative
terms and there is no guarantee that the result
wil. l be positive-definite if we cut off the series
after a finite number of terms. Thus as we have
seen, the first order term in the expansion for
f(x) could be negative, near x =0, for some values
of the parameters. This problem could be avoided
by expanding the inclusive cross section in powers
of & (in this case we could identify the nth term
in the expansion with the contribution from dia-
grams containing n Pomerons) and normalizing
with the total cross section, calculated to the
same order in &, at each stage. Such a procedure
would be cumbersome in the context of the boot-
strap model, and we indicated in paper I what
form the first-order equations in such a model
should take.

We should emphasize that for small E the results
are perfectly reasonable. We expect that the in-
clusion of diffraction in the model should add a
small negative contribution to the inclusive dis-
tribution at x = 0, as the presence of diffraction
should decrease the average multipl. icity.

V. AN EXACT SOLUTION

meter a, 0 ~a ~ 1, determines the relative
strengths of the couplings of the P and P' trajec-
tories and it is obvious that the normalization
condition is satisfied. The kernel of the equation
will have the form

EC(x, y) =ass(x, y)+(1 —a)Es (x, y),

where, referring to Eq. (3.20}, we can write

Ks(x, y) = (p+1)Zs(x, y},

Zs(x, y) =x'"'/y'".
For P c P ', a useful relation is

(5.3)

&s(x ~)&s (& y)« =(p —p } [&s (xi y) - &s(x, y)l

or, schematically,

A'8'. ——Zg. Z8

=(P P') '-(&s -Zs).

(5 4)

(5 5)

In the single-trajectory problem, the solution to
Eq. (3.11) had the form 8 s = (p+ 1)Z, . Hence, in

the two-trajectory case, let us seek a solution
of the form

It is clear that the last term will. also be a linear
combination of Z „Zs, ZB. , and Kz. Since these
are linearly independent functions of & and y, the
coefficients of each must be equated separately.
Using Eq. (5.5), we obtain for the coefficients
of Z, the identity c=ca+c(1 —a). From the co-
efficients of Zs, EB, and K~, we obtain respec-
tively,

A =cK, +dX,
where c, d, and y are parameters that we must
now determine. We can then write Eq. (3.11) as

cZ, +dE& = a(P+ 1)Zs + (1 —a)(P' + l)Zs

+ (cZ, +dZ~ )

x I a(p+ 1)Zs + (1 —a)(p' + l)Ks. I .

(5.7)

The Chew-Pignotti model. with an ordinary tra-
jectory and a bare Pomeron is just a special case
of a two-trajectory Chew-Pignotti model. We now
will see that it is possible to obtain an analytic
solution in this case. Let us assume we have
two trajectories with average values 0. and a'
and corresponding parameters P = 1 —2a,
P' =1 —2~'. The leading particle distribution will.
then have the form

C
+ =1~

0+1 P-y

c
P'+1 P' —y

a(P+1) (1 a)(P'+1)—
+ f =1.P-y P' —r

(5.8)

(5.9)

g(x) =ags(x)+(1- a)gs (x) (5.1)

where gs and gs have the form (3.17}. The para-

Equation (5.10) is a quadratic equation for y. One
solution is y = —1, but this solution obviously
leads to an inconsistent set of equations for c and
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The other solution is

y =a/'+(1 —a)P. {5.11) (5.12)

We can then substitute this value of y into Eqs.
(5.8) and (5.9), solve the resulting set of simul-
taneous equations, and obtain

Having found the resolvent, we can now obtain
the solution f = [1+8]g,

f(x) =a(I3+I)x(l —x)' +(1 —a)(p'+1)x(1 —x) +ac(1 —x) "+(1—a)c(1 —x)8 "
+ ad(p+l)[B(-y, /+I) —B„(-y,p+1)Jxy" +(1 —a)d(p'+I)[B(-y, p'+I) —B,(-y, p'+l)]xy", (5.13)

j(x) == Qg, x' (5.15)

where we can consider the a; trajectories with
coupling constants &~, to be the output trajectories
of the modeL which, of course, are not necessariLy
identical to the input trajectories. As long as
f{Q)10 we will always get a Pomeron with 6 =1.
In the one-component model discussed in Sec. III,
expanding (1 —x) in a power series about x = 0 we
can see that we also obtain contributions from
an infinite number of Pomeron daughters. In the
two-trajectory model. , we can expand each term
in Eq. (5.13) in a power series about x =0. We
can see that, in addition to the contributions from
the Pomeron and its daughters, we will have ad-
ditional contributions from a trajectory with

(5.16)

In order to compare the results of this section
with that of Sec. IV, we take

a = e, P =(-1+26), P' =0,

where B(- y, /+I) is the beta function and

B, (-y, /+1)istheincompletebetafunction. Since
the incomplete beta function wil. l behave'9 like
-x "/'z as ~-0, it is clear that only the second
and third terms of Eq. (5.13) contribute to f (0)
and we s imp 1.y hav e

(5.14)

which is both finite and positive-definite for all
possibl. e va. l.ues of P, P' a, nd a.

In the doubl. e-Regge region, x =—0„ the distri-
bution should have the form'

g(x ) = Q a,. g 8 (x) (5.19)

and, to satisfy the normal. ization condition,

(5.20)

The kernel is then

(5.21)

The first thing to notice is that the combination
of the ordinary trajectory and the bare Pomeron
can produce reasonable doubLe-Hegge behavior
in the central region. In particular, if we take
(1- &)(1 —25) =2, the leading nonPomeron tra-
jectory in the double-Regge region will have

In this case, of course, both & and & cannot
be small.

If, on the other hand, we a,ssume tha, t e, ~«1
and, in addition, that «&6, we wil. l have c =1,
d =0, the resolvent will be approximately equal
to the unperturbed resolvent, and an expansion
of the resolvent in powers of e wil. L converge.
It is clear that under these assumptions Eq. (4.15)
wil. l result, but it is only correct to first order
in (&/&). We, of course, have no exact solution
to compare with the second example of Sec. IV.
However, it is reasonable to conclude that in this
case, also, the pathological behavior in the neigh-
borhood of x=0, for & In'(s/Mo~) large, arises
from the perturbation expansion and not from the
model itself.

We can now speculate about the solution of the
&-trajectory Chew-Pignotti model. Suppose we
take

24
C (5.18)

In analogy with Eq. (5.6), let us seek a solution
of the form

e(1 —c)(1 —25)'
e+ 25 —2e5
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c 1 — a,. =0, (5.23)

a,. (P,. +1}
P;-w (5.24)

(5.25)

We then substitute Eqs. (5.21) and (5.22) into Eq.
(3.11). Using Eq. (5.5} and equating the coeffi-
cients of E „K&„and E&„respectively, we ob-
tain

in analogy with Eqs. (5.8)-(5.10}. Equation (5.23) is
automatically satisfied because of the normaliza-
tion condition, (5.20). Equation (5.24} is an nth

degree equation for y&. Because of the normaliza-
tion condition, y,. = —1 is a solution but it will pro-
duce an inconsistent set of equations for c and the
d&'s. There are, however, n —1 other solutions.
Substituting the n —1 values for y, into Eq. (5.25) we
would have n simultaneous equations for the n par-
ameters, c, d&, j =1, . . . , n —1. The solution will
then have the form

n ff- I

f(x) = p&, gz, (x)++ca, (l —x) &"+p ga, d&(p, +. 1)x&s. "[8(—y„p, +1) —8,( —y„p, +1)].
4=1 4=1 s= 1

(5.26)

In the double-Regge region, the leading output tra-
jectories will be the Pomeron with co=1 and the
n -1 trajectories with

(5.27)

We are thus lead to the possibility of using the
bootstrap model to effect a multi-Regge bootstrap
(the multi-Regge bootstrap bootstrap?). If the input
trajectories n, =-', (1 —P, ), i =1, . . . , n -1, are or-
dinary trajectories and o„=-,'(I —P„)=1 —5 is the
bare Pomeron, then the bootstrap condition would

require that the input and output trajectories be
identical,

a, = of„ i=1, . . . , n —1. (5.28)

We have seen in the two-trajectory case that we
can have u= 0. = —,

' if the bare-Pomeron parameters
have the appropriate values and the bootstrap can
probably be effected in the general case.

Having obtained the resolvent and the single-par-
ticle distribution, it is possible to obtain the mul-
tiparticle distributions and correlation functions.
However, without evaluating the integrals numeri-
cally, it is possible to make one statement con-
cerning correlations in the presence of diffraction.
Consider the two-particle correlation function in
the sealing limit for both x, and x, &0,

c,(x„x,) =f,(x„x,) f,(x, )f, (x,). - (5.29)

If the model contains a bare Pomeron, f, (x) will
diverge at x=1. From Eq. (3.33), it is clear that

f,(x„x,) will diverge at the line x, +x, = 1, which
is the phase-space boundary for the two particle
production process. Since the product of single-
particle distributions remains finite along this
line, there should be large positive correlations
in this region. This effect arises from diagrams
where the second trajectory on the multiperipheral

chain is the Pomeron. If the second particle on
the multiperipheral chain is produced diffractively,
it will tend to retain most of the remaining lon-
gitudinal momentum of the projectile, thus pro-
ducing the large enhancement in the neighborhood
of the boundary. Were this effect to be observed,
it could be regarded as the signature for this
process.

VI. DISCUSSION

In Sec. II we saw that if the square of the T
matrix is a sum over all permutations of the out-
going momenta of q factorizable terms, then the
bootstrap equations are satisfied, and, conversely,
if all the bootstrap equations are satisfied, then
the T matrix must be a sum of such q factorizable
terms. Since this is the fundamental assumption
of multiperipheralism, we ean conclude that the
bootstrap picture and multiperipheral picture are
equivalent. This same conclusion is indicated by
the results of Jengo, Krzywicki, and Petersson'
for the multiplicity distributions and by the fact
that in the bootstrap model in the sealing limit
there are no correlations between opposite hemi-
spheres or between either hemisphere and the
point x =0. In the bootstrap model. , however, all.
of the multiparticle distributions and the generating
function for the multiplicity moments are deter-
mined by a set of integral equations once the lead-
ing particle distribution is given. The bootstrap
model can be made to correspond to any particular
multiperipheral model, such as the ABFST (Amati-
Bertocci-Fubini-Stanghellini-Tonin) model or the
Chew-Pignotti model, by the appropriate choice
of the leading-particle distribution. The fact that
the strong-ordering approximation is often made
on conventional. treatments of multiperipheral
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models but cannot be made in the bootstrap model
is due, must likely, to the fact that this may be
a reasonabl. e a,pproximation for particles on the
central plateau as a function of y, but not for par-
ticles in the fragmentation regions as a function
of x.

In Sec. III we applied the resolvent-kernel tech-
nique to the one-dimensional bootstrap equations.
With an appropriate choice of variables, all of the
bootstrap equations for the multiparticle distri-
butions can be represented as one-dimensional
Vol.terra equations with the same kernel and,
hence, with the same resolvent. We obtained the
resolvent kernel, single-particle distribution, and

multiparticle distributions for the leading-particle
distribution corresponding to the single-trajectory
Chew-Pignotti model and discussed the properties
of the multiparticle distributions and correlation
functions in this case.

In Sec. IV we used the resolvent identities to
obtain a perturbation expansion for the inclusive
distribution in the case where a small perturbation
is added to a leading-particle distribution for
which the solution is known. Treating the dif-
fractive contribution to the leading-particle dis-
tribution as such a perturbation, we evaluated
the first term in the multifireball expansion for
both a bare Pomeron and a Pomeron with intercept
1. In both cases this term was well behaved in
the neighborhood of x =1 but became large and

negative in the neighborhood of x =0 when the Pom-
eron coupling constant became large.

We obtained an exa, ct solution for the single-
particle distribution in the two-trajectory Chew-
Pignotti bootstrap model. We saw that a model
with a bare Pomeron and ordinary trajectory
could exhibit correct double-Regge behavior near
x =0, indicating that the pathological behavior in

this region, found in Sec. V, is the result of the
convergence properties of the multifireball ex-
pansion and not of the model itself. We saw how

a solution could be obtained for the n-trajectory
model, which would have n output trajectories in

the double-Regge region. This result is consistent
with the observation, made by several authors'
using conventional methods, that the n-trajectory
multiperipheral model and the Mueller-Regge
model are equivalent.

We have seen that it is possible to construct
realistic bootstrap models, containing both pion-
ization and diffraction, and to cal.culate the in-
clusive distributions and multiplicity moments in
these models. Such models will have correct
triple-Regge behavior by construction and can
also exhibit reasonable double-Regge behavior.
In a bootstrap model for the pionization component
alone, double-Regge bahavior would have to be
imposed by hand. ' ' While in the Mueller-Regge
model, the double-Regge region and the triple-
Regge region must be considered as distinct limits,
the bootstrap model provides a smooth interpol-
ation between them.

The bootstrap equations could provide a useful
phenomenological tool for the analysis of multi-
particle distributions and correlation functions,
in the fragmentation regions, now becoming avail-
able at Fermilab and the CERN ISR. Detailed
comparison with the data would, however, neces-
sitate further refinements of the model; in par-
ticular, the addition of low-mass diffraction in a
realistic way and the use of the multichannel form-
al. ism of Kronenfeld and Peccei. '

Note added in Proof. After the manuscript was
submitted, the author became aware of a paper
[J.DeBrion, C. Bromberg, T. Ferbel, P. Slat-
tery, J. Cooper, A. Seidel, azd J. Vander Velde,
Phys. Lett. 52B, 4't't (19't4}]which presents
a direct experimental confirmation of the boot-
strap hypothesis. The above authors compared
the characteristics of the remaining fireball in
the process p +p -P + "anything" at 102 GeV/c
to those of the whole event in y+P - "anything"
at s =I'. They found striking similarities between
the two processes, not only in the multiplicity
moments, but also in the inclusive m' distribu-
tions. (The author is grateful to Dr. Hannu

Miettinen for bringing this paper to his attention
and to Professor T. Ferbel for a short discussion. )
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