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Failure of inelastic X/D equations to generate the p resonance
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The effective left cut of the mn P wave is rigorously determined by comparing the usual partial-wave

dispersion relation with a new dispersion relation of the kind derived by Roskies and Roy. A recent

experimental result for the inelasticity below M „„=1.9 GeV is inserted into the Frye-Warnock N/D
equations. The solutions are nonresonant, even when the inelasticity is increased by 50% over the

experimental value. Because of the rigorous basis for the effective left cut, I conclude that the p
resonance is not generated by forces in the mm channel.

I. INTRODUCTION AND SUMMARY plitude with isospin I in the t channel by T'(s, t)
The A and T' are related by

In a recent Letter, ' I argued that elastic N/D

equations for the mm P wave are incapable of gen-
erating the p resonance for any plausible choice of
the left cut. I noted, however, that inelasticity at
some energy above m would be conducive to a gen-
eration of the p. A recent experiment' indicates
that the elasticity q,' may fall to 0.5 near M.„=1.6
GeV. Hence I study here the possibility that in-
elastic V/D equations, as formulated by Frye and

Warnock, ' may be capable of generating the p res-
onance. The answer is negative, because the ex-
change forces are simply too weak.

The major innovation of this work is a clean and

precise determination of the effective left cut,
based on a dispersion relation of the type first
studied by Roskies and Roy. The analysis pro-
ceeds as follows.

T (s, t) =Q C~~.A (s, t),

where C = C ' denotes the s-t crossing matrix.
The elements we shall need here are Cyr 3

and —~6for I=0, 1, and 2, respectively.
We normalize the amplitudes such that

A (s, t) = g (2l + 1)A "'(s) P,(z},
l=p

(2)

A~o'(s) = -,'t Q '(s) [I —rt, exp(2ltig')],

where

(4)

where z =cos8, is given by

2t
g =1+

s —4

The AO vanish when (l +I) is odd. The nonzero
partial waves satisfy

II. NOTATION AND CONVENTIONS

Let us use units wherein m, =h=c=l. %'e

denote the mn elastic amplitude with isospin "I"
in the direct, s channel by A'(s, t), and the am-

q,
' denotes the elasticity (0 & g, & 1), and the phase

shifts &i are real.

III. DISPERSION RELATIONS AND THE LEFT CUT

I assume that A "' satisfies

s —4 ' ~, "~, ImAt'~'(s')
s „, (s' —4) (s' —s)

~Az(s) +As(s),

and also that A' satisfies'

t-u " ds' (s —t }(2s' + t —4)(' —&&('- l
™'t'(

N +2& 4) ' '-')'-
4

where

(6)

u=4-s —t .

12
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Equation (6) is valid for arbitrary s when t is
real (+i e) and —32 & t & 4.'

Bose symmetry implies that A'(s, t ) is an odd
function of z, so we can write

1
A(') '(s) = dz P,(z) A'(s, t) . ( I)

0

Equations (6) and (7) yield an A(')' valid for

—4 &s + 68, where the upper limit corresponds to
M„=1.14 GeV.

It will prove convenient to introduce a param-
eter A such that the ImA with l ~ 4 are negligible
when s&A. In practice, I will use A' '=1.9 GeV
(see Appendix A, where my input absorptive parts
are enumerated). Then Eqs. (6) and (I}yield

A(')'(s) = — ds' ' ' ' '+~ C ~M(s' s) ImA" (s') +A "'(s)
Hj:.

4 I=0 l=p
(8)

where the functions M, (s ', s) are given in Appendix B, and

s —4 '
2

" ds', , (s —t)(2s'+t —4)
AH', ."(s}=- z'dz,

) (, )
ImT'(s', t)+ (, }(, 4}

lmA'(s', t)

Upon comparing Eqs. (5) and (8}, we obtain

A z(s) = —Q C„Q ds ' M, (s ', s) ImA(" (s ') +AIH'E'(s)—
I=p l=p 4

which is valid for —4 &s &68 [subject of course to our assumption that the lmA(')'(s) are negligibleforl & 4
when s &A].

For —32 &s +0, crossing and analyticity imply that'

ImA("(s) = 2

s —4

4 S 2 oe

d 'p, ( E C„I (2) ~ 1)tmAm'(s')P, ) ~, }.
I=0 l=p

In order to determine the unknown distant left cut,
we decompose Az(s) into parts coming from the
distant and near sections of the left cut:

=As~(s) +A„~(s) .

(s' —4) (s' —s)

(12)

IV. RESONANCE GENERATION

A resonance is not likely to result from ex-
change forces unless A~ becomes more posi-
tive than the unitarity bound would permit for
ReA ' ', over some range of energy above the res-

Using Eq. (11}for —32 &s &0, we can write
36

ds 'H, (s ', s) ImA(') (s '),
I=p

(13)

where the functions H, (s ', s) are given in Appendix
B for l = 0 and 1. I shall assume in this work that
the ImA with l ~ 2 a,re negligible for s &36
(M, „&0.84 GeV).'

Since ADz =Az-A„z, Eqs. (10) and (13) yield
A~(s) for -4 &s &68. This is the result for AD&

upon which I shall base my model for the distant
left cut.

onance:

Az(s) &-, Q 'q', .

The inequality (14) implies (together with unitarity)
that Az(s) is negative. Since ImA ' ' is positive-
definite along the right-hand cut, a negative value
for A~ requires that ImA ' ' have a relatively
large value below the range of s where A„ is nega-
tive. This is the mechanism of resonance gen-
eration: ImA ' ' develops a peak at some loire~
energy in order to render A„negative, thereby
avoiding the violation of unitarity which would
otherwise be implied by the inequality (14).

V. STRENGTH OF THE LEFT CUT

Let us now examine the A~(s) implied by Eq. (10).
AL was defined in such a way as to be analytic for
s & 0, so the right-hand side of Eq. (10) must share
this analyticity. It is readily verified that the
functions M,(s', s) are analytic in s for s &0. Fur-
thermore, the function A„'„"(s)has only the right-
hand cut of the P wave with s & A if (a) the
ImT'(s ', t) and ImA'(s ', t ) used in Eq. (8) are
analytic in t, and (b) ImA'(s ', t) satisfies Bose
symmetry:

ImA'(s', t) =-ImA'(s', 4 —s' —t) .
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Hence the right-hand cut of A „'E' will be precisely
canceled by that of the integral over ImA~' ' on
the right-hand side of Eq. (10), provided that
ImA "' is precisely the P-wave projection of the
ImA'(s ', f ) used in Eq. (9). I shall use input ab-
sorptive parts which satisfy all of these conditions
(see Appendix A).

Although Eq. (10) is only valid for —4 &s &68,
my choice of input absorptive parts renders the
right-hand side of Eq. (10) analytic for arbitrarily
large positive s, so the analytic continuation of
A~(s) can be achieved simply by evaluating Eq. (10)
for large s. There is, homever, a limitation to
this procedure: Our neglect of ImA ' with l ~ 4
for s &A becomes a less good approximation as
s increases above 68, for we are then using a
truncated version of a formally divergent series. '
Hence our results for A~(s) lose their rigor for
s & 68 (M, & 1.14 GeV), but may well be a good
approximation for substantially higher energies
(i.e., the series may well be asymptotic).

In Table I are presented the individual contribu-
tions to, and total value of, the right-hand side
of Eq. (10) for M, „=0.5, 1.0, 1.5, and 2.0 GeV.
The latter two energies lie above s = 68, so the
corresponding values for A~ can only be regarded
as approximate, with errors which are, I would

hope, negligible, but are not accessible to my
powers of estimation.

The most significant feature of Table I is that
Az(s) is small, relative to the unitarity bound on
ReA'"'. For example, g,

' would have to fall as
low as 0.10, 0.25, or 0.39 at M, „=1.0, 1.5, or
2.0 GeV, respectively, in order for the inequality
(14) to be satisfied. There is no experimental
evidence that g', reaches any of these small values
at the required energies, so Table I indicates
that the p resonance is not generated by exchange
forces in the nn channel.

Another significant feature of Table I is that no
single contribution to Az(s) is dominant. Hence
even a 100% increase in the largest contribution
would be unlikely to result in a generation of the p.
In reality, the experimental uncertainties in the
input absorptive parts are estimated to be fairly
modest —none more than 30% (see Appendix A).

M„(CeV) 0.5 1.0 1.5 2.0

So
$2
P
Dp

D2

gi~ Regge
gi

Regge

Total.

0.018
-0.006
-0.019

0.006
-0.000

0.002
0.011

-0.003

0.010

0.039
-0.015
-0.031

0.014
-0.000

0.016
0.035
0.001

0.057

0.044
-0.020
-0.010

0.010
-0.000

0.037
0.040
0.026

0.128

0 ~ 043
-0.022

0.021
0.006

-0.000
0.056
0.035
0.060

0.199

below M„, =0.84 GeV are neglected (which is cer-
tainly a good approximation). The resulting
ImA ' ' is shown in Fig. 1.

For s & —32, let us represent ImA "' by an ex-
pression of the form

a+bsImA'"'(s) =, + g c cos(mvx), (16)

where a and & will be chosen to reproduce the
values implied by Eq. (11) for the zeroth and first
derivatives of ImA~' ' at s = —32, while

for some 0 & 32 and 7 & 0 remaining to be selected.
Hence x ranges from 0 to 1 as s varies from —~
to —32.

Oopp0
0 p 0

po
0 0

0
0

Q ~ ~

Q y ~

~ p
~ p ~

p ~

TABLE I. Individual contributions to, and net values
of, right-hand side of Eq. (10) for Al, (s). The contribu-
tion from ImA (s') fors'&A is included inAR„g„, since
one must use the P-wave projection of AReg„ for A
(see Sec. V).

VI. MODEL FOR DISTANT LEFT CUT
(

-1000 -100 -10

The remarks of the preceding section indicate
that the p resonance is not likely to emerge from
N/D equations in the wv channel. An explicit cal-
culation, however, remains desirable. Toward
this end, I now propose a simple model for the
effective left cut of A "'.

For —32 &s & 0, we of course use Eq. (11). As
mentioned earlier, absorptive parts with l & 2

FIG. 1. ImA(i)1 as a function of v —= 4(s-4). For &

~ —9 (s ~ -32), the solid curve displays the result of
Eq. (11). For ~ &-9, the solid curve displays the result
of Eq. (17). For the sake of comparison, open circles
display the net contribution of low-energy (M ««1.5 GeV)
S waves and P wave to the right-hand side of Eq. (11) in
its forbidden region, while closed circles display the net
contribution of S, E, and D waves.
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Since proper zeroth and first derivatives at
s =-32 are being embodied in a and 5, we impose
the constraint

Q(-l)c =0.

To avoid the generation of spurious poles in A' '
when N/D equations are solved, we also constrain
ImA'~' to vanish at —~, i.e. ,

c =0.

0 and 7 are selected in such a way as to min-
imize the number of terms in the Fourier series
required to reproduce, to good approximation, the

A~(s) implied by Eqs. (10), (12), and (13). A

surprisingly small number of terms is sufficient.
Specifically, I find that

the p, I repeated the calculation with an q', given
by

(1 —q', ) =1.5[1—g', (Ref. 2)] .

In this case, g', falls to 0.3 near 1.6 GeV. The
resulting ~', remains less than 7' below 1 GeV.
The small value of q', near 1.6 GeV does produce
a broad (I'= 0.24 GeV), highly inelastic resonance
at 1.57 GeV, but there is no hint of p generation.
In both the preceding cases, I have established
that D is free of zeros on the physical sheet, hence
that the solutions A. ' ' are free of spurious poles.

In view of the rigorous basis for my distant left
cut, I regard the preceding two solutions as con-
clusive evidence that the p resonance is not gen-
erated by forces in the mm channel.

APPENDIX A

(17)

Between threshold and M„,=0.9 GeV, I assume
elastic unitarity, and that'

with Q cot5p=
'

0 36
16.4

(Al)

Q cot5' = ' -0.97,
-45.8

(A2)

reproduces the A~(s) implied by Eqs. (10), (12),
and (13) within +0.0001 for —4 &s &68, and within
+0.0005 for 68 &s &210 (M„=2.0 GeV). Hence
Eq. (17) provides a very precise representation
of the effective distant left cut. The ImA~', i' of
Eq. (17) is shown in Fig. 1. I remark that the
result seems highly plausible.

VII. SOLUTIONS TO INELASTIC N/D EQUATIONS

As formulated by Frye and Warnock, ' inelastic
N/D equations require a knowledge of the elastic-
ity function g', (s) in addition to the left cut of Ai"'.
I have used the q', reported by Hyams et al. ' below
1.9 GeV. This g,'equals unity below 1.0 GeV, falls
smoothly to 0.5 near 1.6 GeV, then rises smoothly
to unity at 1.9 GeV. Above 1.9 GeV, I have as-
sumed that ri', is unity. (The latter assumption
cannot be realistic to arbitrarily high energies,
but should not affect the solution in the p region. )

For integrations over the distant left cut, x has
been used as the integration variable; a finite
range of integration was thereby obtained. The
N/D equations were then solved by matrix inver-
sion; 100 mesh points were used for the integra-
tions. The resulting &', is nonresonant, and re-
mains smaller than 6' below 1 GeV.

To see if greater inelasticity would generate

Q cot5', = —2.79 —0.0262s.97.7
s-4 (A3)

Equation (Al) corresponds to an S-wave scattering
length a0=0.26, with 50=43', 73', and 89' at
M„,=0.50, 0.70, and 0.90 GeV, respectively.
Equation (A2) corresponds to a, = —0.041, with

0

GeV, respectively. Equation (A3) corresponds to
a, =0.040, with mp=0. 770 GeV, and I"p 0 146 GeV.
All lmA '" with l ~ 2 below 0.9 GeV are neglected.

Between 0.9 and 1.9 GeV, I use the S, P, D, and
F-wave phase shifts and elasticities of Hyams
et al. ' for I= 0 and 1, and the S- and D-wave phase
shifts and elasticities of Durusoy et al. ' for X=2.
All ImA~'" with /~ 4 below 1.9 GeV are neglected.

Above 1.9 GeV, Regge theory is used to evaluate
the ImT'(s, f) and ImA'(s, f) in Eq. (9). It is as-
sumed that

ImT'(s, t)=y (t)(s s/) "'+yq(t)(s/s) ~"', (A4)

1mT'(s, t) = zy(t)(s s/) ~~",

ImT'(s, t) =0,

(A5)

(A6)

-chere s -=1 GeV' defines the scale of the y's.
For Pomeranchon exchange, I use the parametri-

zation and experimental results of Robertson and
Walker, '
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n~(t) =1,

yp(t) = 1.2 exp[0.3(t/s)],

(A7)

(A8)

Let us therefore use the Regge forms (A4) and

(A5) for Im T and Im T', but modify the result of
Eq. (A13) by using

which corresponds to an asymptotic total cross
section of 15 mb. The uncertainty in the cross
section was estimated to be roughly 30%.

Assuming that

n& (t ) =0.50+0.90(t/s), (A9)

1=0
(A13)

The Regge forms (A4) and (A5), however, are
only valid in the forward hemisphere, and may in
fact be poor approximations near 8=90 . As was
explained in Sec. V, it is important that the as-
ymptotic expression for ImA'(s, t) satisfy Bose
symmetry:

ImA'(s, t ) = -ImA'(s, u) . (A14)

a recent analysis" of mm charge-exchange data led
to a result for y~, which is denoted here by y~, and

which is valid within about +0.10 for —1.0 GeV'
(t «0. 1 GeV':

y~(t ) =0.67+ 1.78(t/s)+ 0.41(t/s)' —0.17(t/s)'.

(A10)

When evaluating the ImT'(s, t } in Eq. (9), I use yz.
When evaluating the ImA'(s, t ) in Eq. (9), I use a
slightly modified y~, to be described later.

For the effect of f, exchange, I assume p-fo
exchange degeneracy, which implies that

(A11)

(A12)

Crossing symmetry implies that

y~(t) =yq(t) —0 045(tls.)'. (A16)

The above modification is negligible near t=0
(forward scattering}, and the ImA'(s, t) of Eq.
(A15) has the correct value at 6 = 90' by construc-
tion. Although y~(u) does not vanish for higher
values of s when t =0, the slopes of e& and n~ are
sufficient to render the errors inherent to Eqs.
(A15) and (A16) completely negligible for all
s'") 1.9 GeV. Hence I use Eq. (A15) to evaluate
the ImA'(s, t) in Eq. (9), while using Eq. (A16)
for y, , and simultaneously Eq. (A12) for yt.

For the Im A 'i' required above s = A in Eq. (10),
I use the I'-wave projection of the asymptotic
ImA'(s, t) described above. As was explained in

Sec. V, it is essential that this be done.

ImA'(s, t)=p C,z[imT (s, t) —ImT (s, u)].
(A15)

Equation (A15) will be a good approximation if the
functions 1mT (s, u) are negligible in the forward
hemisphere.

The Pomeranchon term in ImT'(s, u) is negli-
gible in the forward hemisphere because of the ex-
ponential decrease of y~ in Eq. (A8). Further-
more, the f, contribution to ImT (s, u) and the p
contribution to ImT'(s, u) tend to be small in the
forward hemisphere because of the slope of 0&

and n~ Th. e result (A10) for y&, however, is a
cubic function of t, so that y~ (u) can be substantial
for t near zero. Let us therefore add to yq(t) a
quartic term which is chosen to make y~(u) vanish
for s'"=1.9 GeV, t=0:

APPENDIX B

The functions M, (s', s} defined implicitly by Eqs. (6), (7), and (8) are given for i=0, 1, 2, and 3 by

1
M,(s', s) = —[G' —G -4],

M, (s', s)=, [(s'+2s-4)G'+(3s' —4)G +2(2s' —s-4)],

M2(s', s)=, , [(s"—8s'+ 6s's-24s+ 6s + 16)G'- (13s"—32s'+ 16)G —2(14s" —52s'+ gs's- 20s(s-4}(s'-4)'
+ 4 s'+ 48)],

M~(s', s)=, 3
[(s'~-12s"+48s'+ 12s'2s+30s's2 —g6s's+ 192s- 120s2+ 20s~ —64}G'

(s- 4)(s' —4)'
+ (63s"-228s' + 240s'- 64)G

+ —,'(372s"- 1680s"+ 2336s'+ 24s"s- 178s's'+ 272 s's- 656s+ 508s —83ss- 960)],
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where

G'=2 1+ — ln 1~

Tbe fnnctions H, (s', s) defined implicitly by Eqs. (11), (12), and (13) are given for / = 0 and 1 by

H, (s', s) = [I.+ 6+(s' —36)(76- s)],1

H, (s', s)=, [(s' +2 -s4)I. + ~, (s'-36)(76s' —s's+140s-272)],3

where

2s' 36(s'+ s-4) ~

s-4 s'(s+32)
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