Failure of inelastic N/D equations to generate the ρ resonance

E. P. Tryon

Department of Physics and Astronomy, Hunter College of The City University of New York, New York, New York 10021 (Received 7 October 1974)

The effective left cut of the $\pi\pi$ P wave is rigorously determined by comparing the usual partial-wave dispersion relation with a new dispersion relation of the kind derived by Roskies and Roy. A recent experimental result for the inelasticity below $M_{\pi\pi}=1.9$ GeV is inserted into the Frye-Warnock N/D equations. The solutions are nonresonant, even when the inelasticity is increased by 50% over the experimental value. Because of the rigorous basis for the effective left cut, I conclude that the ρ resonance is not generated by forces in the $\pi\pi$ channel.

I. INTRODUCTION AND SUMMARY

In a recent Letter, 1 I argued that elastic N/D equations for the $\pi\pi$ P wave are incapable of generating the ρ resonance for any plausible choice of the left cut. I noted, however, that inelasticity at some energy above $m_{\rm p}$ would be conducive to a generation of the ρ . A recent experiment indicates that the elasticity η_1^1 may fall to 0.5 near $M_{\pi\pi}=1.6$ GeV. Hence I study here the possibility that inelastic N/D equations, as formulated by Frye and Warnock, may be capable of generating the ρ resonance. The answer is negative, because the exchange forces are simply too weak.

The major innovation of this work is a clean and precise determination of the effective left cut, based on a dispersion relation of the type first studied by Roskies and Roy. The analysis proceeds as follows.

II. NOTATION AND CONVENTIONS

Let us use units wherein $m_{\pi} = \hbar = c = 1$. We denote the $\pi\pi$ elastic amplitude with isospin "I" in the direct, s channel by $A^{I}(s, t)$, and the am-

plitude with isospin I in the t channel by $T^{I}(s, t)$. The A^{I} and T^{I} are related by

$$T^{I}(s,t) = \sum_{I'=0}^{2} C_{II'} A^{I'}(s,t) , \qquad (1)$$

where $C = C^{-1}$ denotes the s-t crossing matrix. The elements we shall need here are $C_{1I} = \frac{1}{3}, \frac{1}{2}$, and $-\frac{5}{6}$ for I = 0, 1, and 2, respectively. We normalize the amplitudes such that

<u>«</u>

$$A^{I}(s, t) = \sum_{l=0}^{\infty} (2l+1)A^{(l)I}(s) P_{l}(z) , \qquad (2)$$

where $z \equiv \cos \theta_s$ is given by

$$z = 1 + \frac{2t}{s - 4} \quad . \tag{3}$$

The $A^{(l)I}$ vanish when (l+I) is odd. The nonzero partial waves satisfy

$$A^{(I)I}(s) = \frac{1}{2}i Q^{-1}(s) \left[1 - \eta_I^I \exp(2i\delta_I^I) \right] , \qquad (4)$$

where

$$Q(s) \equiv \left(\frac{s-4}{s}\right)^{1/2} ,$$

 η_{i}^{I} denotes the elasticity $(0 \le \eta_{i}^{I} \le 1)$, and the phase shifts δ_{i}^{I} are real.

III. DISPERSION RELATIONS AND THE LEFT CUT

I assume that $A^{(1)1}$ satisfies

$$A^{(1)1}(s) = \frac{s-4}{\pi} \left(\int_{-\infty}^{0} ds' + \int_{4}^{\infty} ds' \right) \frac{\text{Im} A^{(1)1}(s')}{(s'-4)(s'-s)}$$

$$\equiv A_{L}(s) + A_{R}(s) , \qquad (5)$$

and also that A^1 satisfies⁴

$$A^{1}(s,t) = \frac{t-u}{\pi} \int_{4}^{\infty} \frac{ds'}{(s'-t)(s'-u)} \left(\operatorname{Im} T^{1}(s',t) + \frac{(s-t)(2s'+t-4)}{(s'-s)(s'+2t-4)} \operatorname{Im} A^{1}(s',t) \right) , \tag{6}$$

where

$$u \equiv 4 - s - t .$$

Equation (6) is valid for arbitrary s when t is real $(\pm i\epsilon)$ and $-32 \le t \le 4.4$

Bose symmetry implies that $A^{1}(s, t)$ is an odd function of z, so we can write

$$A^{(1)1}(s) = \int_0^1 dz \, P_1(z) A^1(s, t) \ . \tag{7}$$

Equations (6) and (7) yield an $A^{(1)1}$ valid for

-4 ≤ s ≤ 68, where the upper limit corresponds to $M_{\pi\pi} = 1.14$ GeV.

It will prove convenient to introduce a parameter Λ such that the $\operatorname{Im} A^{(l)I}$ with $l \geq 4$ are negligible when $s < \Lambda$. In practice, I will use $\Lambda^{1/2} = 1.9$ GeV (see Appendix A, where my input absorptive parts are enumerated). Then Eqs. (6) and (7) yield

$$A^{(1)}{}^{I}(s) = \frac{1}{\pi} \int_{4}^{\Lambda} ds' \left[\frac{(s-4) \operatorname{Im} A^{(1)}{}^{I}(s')}{(s'-4)(s'-s)} + \sum_{I=0}^{2} C_{1I} \sum_{I=0}^{3} M_{I}(s',s) \operatorname{Im} A^{(I)}{}^{I}(s') \right] + A_{HE}^{(1)}{}^{I}(s) , \tag{8}$$

where the functions $M_i(s', s)$ are given in Appendix B, and

$$A_{\rm HE}^{(1)1}(s) = \frac{s-4}{\pi} \int_0^1 z^2 dz \int_{\Lambda}^{\infty} \frac{ds'}{(s'-t)(s'-u)} \left[\operatorname{Im} T^1(s',t) + \frac{(s-t)(2s'+t-4)}{(s'-s)(s'+2t-4)} \operatorname{Im} A^1(s',t) \right] . \tag{9}$$

Upon comparing Eqs. (5) and (8), we obtain

$$A_{L}(s) = \frac{1}{\pi} \sum_{I=0}^{2} C_{1I} \sum_{I=0}^{3} \int_{4}^{\Lambda} ds' M_{I}(s', s) \operatorname{Im} A^{(I)I}(s') + A_{HE}^{(1)1}(s) - \frac{s-4}{\pi} \int_{\Lambda}^{\infty} ds' \frac{\operatorname{Im} A^{(1)I}(s')}{(s'-4)(s'-s)},$$
 (10)

which is valid for $-4 \le s \le 68$ [subject of course to our assumption that the Im $A^{(l)I}(s)$ are negligible for $l \ge 4$ when $s \le \Lambda$].

For $-32 \le s \le 0$, crossing and analyticity imply that⁵

$$\operatorname{Im} A^{(1)1}(s) = \frac{2}{s-4} \int_{4}^{4-s} ds' P_{1}\left(1 + \frac{2s'}{s-4}\right) \sum_{l=0}^{2} C_{1l} \sum_{l=0}^{\infty} (2l+1) \operatorname{Im} A^{(l)l}(s') P_{l}\left(1 + \frac{2s}{s'-4}\right). \tag{11}$$

In order to determine the unknown distant left cut, we decompose $A_L(s)$ into parts coming from the distant and near sections of the left cut:

$$A_{L}(s) = \frac{s - 4}{\pi} \left(\int_{-\infty}^{-32} ds' + \int_{-32}^{0} ds' \right) \frac{\text{Im}A^{(1)1}(s')}{(s' - 4)(s' - s)}$$
$$\equiv A_{DL}(s) + A_{NL}(s) . \tag{12}$$

Using Eq. (11) for $-32 \le s \le 0$, we can write

$$A_{NL}(s) = \frac{1}{\pi} \sum_{I=0}^{2} C_{1I} \sum_{l=0}^{\infty} \int_{4}^{36} ds' H_{l}(s', s) \operatorname{Im} A^{(l)I}(s') ,$$
(13)

where the functions $H_l(s',s)$ are given in Appendix B for l=0 and 1. I shall assume in this work that the Im $A^{(l)I}$ with $l \ge 2$ are negligible for s < 36 $(M_{\pi\pi} < 0.84 \text{ GeV}).^6$

Since $A_{DL} = A_L - A_{NL}$, Eqs. (10) and (13) yield $A_{DL}(s)$ for $-4 \le s \le 68$. This is the result for A_{DL} upon which I shall base my model for the distant left cut.

IV. RESONANCE GENERATION

A resonance is not likely to result from exchange forces unless A_L becomes more positive than the unitarity bound would permit for $\operatorname{Re}A^{(1)1}$, over some range of energy above the res-

onance:

$$A_L(s) > \frac{1}{2} Q^{-1} \eta_1^1 . \tag{14}$$

The inequality (14) implies (together with unitarity) that $A_R(s)$ is negative. Since $\mathrm{Im}A^{(1)1}$ is positive-definite along the right-hand cut, a negative value for A_R requires that $\mathrm{Im}A^{(1)1}$ have a relatively large value below the range of s where A_R is negative. This is the mechanism of resonance generation: $\mathrm{Im}A^{(1)1}$ develops a peak at some lower energy in order to render A_R negative, thereby avoiding the violation of unitarity which would otherwise be implied by the inequality (14).

V. STRENGTH OF THE LEFT CUT

Let us now examine the $A_L(s)$ implied by Eq. (10). A_L was defined in such a way as to be analytic for s>0, so the right-hand side of Eq. (10) must share this analyticity. It is readily verified that the functions $M_I(s',s)$ are analytic in s for s>0. Furthermore, the function $A_{HE}^{(1)}(s)$ has only the right-hand cut of the P wave with $s>\Lambda$ if (a) the Im $T^1(s',t)$ and Im $A^1(s',t)$ used in Eq. (9) are analytic in t, and (b) Im $A^1(s',t)$ satisfies Bose symmetry:

$$ImA^{1}(s', t) = -ImA^{1}(s', 4 - s' - t)$$
 (15)

Hence the right-hand cut of $A_{\rm HE}^{(1)1}$ will be precisely canceled by that of the integral over ${\rm Im}A^{(1)1}$ on the right-hand side of Eq. (10), provided that ${\rm Im}A^{(1)1}$ is precisely the *P*-wave projection of the ${\rm Im}A^1(s',t)$ used in Eq. (9). I shall use input absorptive parts which satisfy all of these conditions (see Appendix A).

Although Eq. (10) is only valid for $-4 \le s \le 68$, my choice of input absorptive parts renders the right-hand side of Eq. (10) analytic for arbitrarily large positive s, so the analytic continuation of $A_L(s)$ can be achieved simply by evaluating Eq. (10) for large s. There is, however, a limitation to this procedure: Our neglect of $\operatorname{Im} A^{(l)I}$ with $l \ge 4$ for $s < \Lambda$ becomes a less good approximation as s increases above 68, for we are then using a truncated version of a formally divergent series. Hence our results for $A_L(s)$ lose their rigor for s > 68 ($M_{\pi\pi} > 1.14$ GeV), but may well be a good approximation for substantially higher energies (i.e., the series may well be asymptotic).

In Table I are presented the individual contributions to, and total value of, the right-hand side of Eq. (10) for $M_{\pi\pi}$ = 0.5, 1.0, 1.5, and 2.0 GeV. The latter two energies lie above s = 68, so the corresponding values for A_L can only be regarded as approximate, with errors which are, I would hope, negligible, but are not accessible to my powers of estimation.

The most significant feature of Table I is that $A_L(s)$ is small, relative to the unitarity bound on $\operatorname{ReA}^{(1)1}$. For example, η_1^1 would have to fall as low as 0.10, 0.25, or 0.39 at $M_{\pi\pi}=1.0$, 1.5, or 2.0 GeV, respectively, in order for the inequality (14) to be satisfied. There is no experimental evidence that η_1^1 reaches any of these small values at the required energies, so Table I indicates that the ρ resonance is *not* generated by exchange forces in the $\pi\pi$ channel.

Another significant feature of Table I is that no single contribution to $A_L(s)$ is dominant. Hence even a 100% increase in the largest contribution would be unlikely to result in a generation of the ρ . In reality, the experimental uncertainties in the input absorptive parts are estimated to be fairly modest—none more than 30% (see Appendix A).

VI. MODEL FOR DISTANT LEFT CUT

The remarks of the preceding section indicate that the ρ resonance is not likely to emerge from N/D equations in the $\pi\pi$ channel. An explicit calculation, however, remains desirable. Toward this end, I now propose a simple model for the effective left cut of $A^{(1)}$.

For $-32 \le s \le 0$, we of course use Eq. (11). As mentioned earlier, absorptive parts with $l \ge 2$

TABLE I. Individual contributions to, and net values of, right-hand side of Eq. (10) for $A_L(s)$. The contribution from $\operatorname{Im} A_L^{(1)}(s')$ for $s' > \Lambda$ is included in $A_{\operatorname{Regge}}^1$, since one must use the P-wave projection of $A_{\operatorname{Regge}}^1$ for $A^{(1)}$ (see Sec. V).

$M_{\pi\pi}$ (GeV)	0.5	1.0	1.5	2.0
S_0	0.018	0.039	0.044	0.043
s_2	-0.006	-0.015	-0.020	-0.022
$P^{"}$	-0.019	-0.031	-0.010	0.021
D_0	0.006	0.014	0.010	0.006
D_2°	-0.000	-0.000	-0.000	-0.000
F	0.002	0.016	0.037	0.056
T^1_{Regge}	0.011	0.035	0.040	0.035
A 1 Regge	-0.003	0.001	0.026	0.060
Total	0.010	0.057	0.128	0.199

below $M_{\pi\pi}=0.84$ GeV are neglected (which is certainly a good approximation). The resulting Im $A^{(1)1}$ is shown in Fig. 1.

For s < -32, let us represent Im $A^{(1)1}$ by an expression of the form

Im
$$A^{(1)}(s) = \frac{a+bs}{s^2} + \sum_{m} c_m \cos(m\pi x)$$
, (16)

where a and b will be chosen to reproduce the values implied by Eq. (11) for the zeroth and first derivatives of $ImA^{(1)}$ at s = -32, while

$$x \equiv \left(\frac{\sigma - 32}{\sigma + s}\right)^{\tau}$$

for some σ <32 and τ >0 remaining to be selected. Hence x ranges from 0 to 1 as s varies from $-\infty$ to -32.

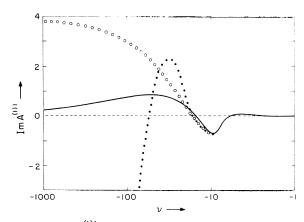


FIG. 1. Im $A^{(1)1}$ as a function of $\nu \equiv \frac{1}{4}(s-4)$. For $\nu \geq -9$ ($s \geq -32$), the solid curve displays the result of Eq. (11). For $\nu < -9$, the solid curve displays the result of Eq. (17). For the sake of comparison, open circles display the net contribution of low-energy ($M_{\pi\pi} \leq 1.5$ GeV) S waves and P wave to the right-hand side of Eq. (11) in its forbidden region, while closed circles display the net contribution of S, P, and D waves.

Since proper zeroth and first derivatives at s=-32 are being embodied in a and b, we impose the constraint

$$\sum_{m} (-1) c_{m} = 0 .$$

To avoid the generation of spurious poles in $A^{(1)}$ when N/D equations are solved, we also constrain $ImA^{(1)}$ to vanish at $-\infty$, i.e.,

$$\sum_{m} c_{m} = 0.$$

 σ and τ are selected in such a way as to minimize the number of terms in the Fourier series required to reproduce, to good approximation, the $A_{DL}(s)$ implied by Eqs. (10), (12), and (13). A surprisingly small number of terms is sufficient. Specifically, I find that

$$ImA^{(1)1}(s) = \frac{1351 + 64.4s}{s^2} + 0.609[1 - \cos(2\pi x)],$$
(17)

with

$$x \equiv \left(\frac{-17}{15+s}\right)^{0.36} ,$$

reproduces the $A_{DL}(s)$ implied by Eqs. (10), (12), and (13) within ± 0.0001 for $-4 \le s \le 68$, and within ± 0.0005 for $68 \le s \le 210$ ($M_{\pi\pi} = 2.0$ GeV). Hence Eq. (17) provides a very precise representation of the *effective* distant left cut. The Im $A_1^{(1)}$ of Eq. (17) is shown in Fig. 1. I remark that the result seems highly plausible.

VII. SOLUTIONS TO INELASTIC N/D EQUATIONS

As formulated by Frye and Warnock, inelastic N/D equations require a knowledge of the elasticity function $\eta_1^1(s)$ in addition to the left cut of $A^{(1)1}$. I have used the η_1^1 reported by Hyams $et\ al.^2$ below 1.9 GeV. This η_1^1 equals unity below 1.0 GeV, falls smoothly to 0.5 near 1.6 GeV, then rises smoothly to unity at 1.9 GeV. Above 1.9 GeV, I have assumed that η_1^1 is unity. (The latter assumption cannot be realistic to arbitrarily high energies, but should not affect the solution in the ρ region.)

For integrations over the distant left cut, x has been used as the integration variable; a finite range of integration was thereby obtained. The N/D equations were then solved by matrix inversion; 100 mesh points were used for the integrations. The resulting δ_1^1 is nonresonant, and remains smaller than 6° below 1 GeV.

To see if greater inelasticity would generate

the ho, I repeated the calculation with an η_1^1 given by

$$(1 - \eta_1^1) = 1.5 [1 - \eta_1^1(\text{Ref. 2})]$$
.

In this case, η_1^1 falls to 0.3 near 1.6 GeV. The resulting δ_1^1 remains less than 7° below 1 GeV. The small value of η_1^1 near 1.6 GeV does produce a broad (Γ = 0.24 GeV), highly inelastic resonance at 1.57 GeV, but there is no hint of ρ generation. In both the preceding cases, I have established that D is free of zeros on the physical sheet, hence that the solutions $A^{(1)1}$ are free of spurious poles.

In view of the rigorous basis for my distant left cut, I regard the preceding two solutions as conclusive evidence that the ρ resonance is not generated by forces in the $\pi\pi$ channel.

APPENDIX A

Between threshold and $M_{\pi\pi} = 0.9$ GeV, I assume elastic unitarity, and that⁷

$$Q \cot \delta_0^0 = \frac{16.4}{s - 0.05} - 0.36$$
, (A1)

$$Q \cot \delta_0^2 = \frac{-45.8}{s - 2.04} - 0.97, \qquad (A2)$$

$$Q \cot \delta_1^1 = \frac{97.7}{s - 4} - 2.79 - 0.0262s.$$
 (A3)

Equation (A1) corresponds to an S-wave scattering length a_0 = 0.26, with δ_0^0 = 43°, 73°, and 89° at $M_{\pi\pi}$ = 0.50, 0.70, and 0.90 GeV, respectively. Equation (A2) corresponds to a_2 = -0.041, with δ_0^2 = -9°, -18°, and -24° at 0.50, 0.70, and 0.90 GeV, respectively. Equation (A3) corresponds to a_1 = 0.040, with m_ρ = 0.770 GeV, and Γ_ρ = 0.146 GeV. All Im $A^{(1)I}$ with $l \ge 2$ below 0.9 GeV are neglected.

Between 0.9 and 1.9 GeV, I use the S, P, D, and F-wave phase shifts and elasticities of Hyams $et\ al.^2$ for I=0 and 1, and the S- and D-wave phase shifts and elasticities of Durusoy $et\ al.^8$ for I=2. All Im $A^{(I)I}$ with $l \ge 4$ below 1.9 GeV are neglected.

Above 1.9 GeV, Regge theory is used to evaluate the $\operatorname{Im} T^1(s,t)$ and $\operatorname{Im} A^1(s,t)$ in Eq. (9). It is assumed that

$$\operatorname{Im} T^{0}(s,t) = \gamma_{P}(t)(s/\overline{s})^{\alpha_{P}(t)} + \gamma_{f}(t)(s/\overline{s})^{\alpha_{f}(t)}, \quad (A4)$$

$$\operatorname{Im} T^{1}(s,t) = \gamma_{0}(t)(s/\overline{s})^{\alpha_{\rho}(t)}, \tag{A5}$$

$$\operatorname{Im} T^{2}(s, t) = 0, \qquad (A6)$$

where $\overline{s} = 1 \text{ GeV}^2$ defines the scale of the γ 's.

For Pomeranchon exchange, I use the parametrization and experimental results of Robertson and Walker,⁹

$$\alpha_{P}(t) = 1 , \qquad (A7)$$

$$\gamma_{P}(t) = 1.2 \exp[0.3(t/\overline{s})],$$
 (A8)

which corresponds to an asymptotic total cross section of 15 mb. The uncertainty in the cross section was estimated to be roughly 30%.

Assuming that

$$\alpha_0(t) = 0.50 + 0.90(t/\overline{s}),$$
 (A9)

a recent analysis 10 of $\pi\pi$ charge-exchange data led to a result for γ_{ρ} , which is denoted here by $\overline{\gamma}_{\rho}$, and which is valid within about ± 0.10 for -1.0 GeV² $\leq t \leq 0.1$ GeV²:

$$\overline{\gamma}_{\rho}(t) = 0.67 + 1.78(t/\overline{s}) + 0.41(t/\overline{s})^2 - 0.17(t/\overline{s})^3$$
.

(A10)

When evaluating the $\operatorname{Im} T^1(s,t)$ in Eq. (9), I use $\overline{\gamma}_{\rho}$. When evaluating the $\operatorname{Im} A^1(s,t)$ in Eq. (9), I use a slightly modified γ_{ρ} , to be described later.

For the effect of f_0 exchange, I assume ρ - f_0 exchange degeneracy, which implies that

$$\alpha_f(t) = \alpha_0(t), \tag{A11}$$

$$\gamma_f(t) = \frac{3}{2}\gamma_0(t). \tag{A12}$$

Crossing symmetry implies that

$$A^{1}(s,t) = \sum_{I=0}^{2} C_{1I} T^{I}(s,t).$$
 (A13)

The Regge forms (A4) and (A5), however, are only valid in the forward hemisphere, and may in fact be poor approximations near $\theta = 90^{\circ}$. As was explained in Sec. V, it is important that the asymptotic expression for $\operatorname{Im} A^{1}(s,t)$ satisfy Bose symmetry:

$$\operatorname{Im} A^{1}(s, t) = -\operatorname{Im} A^{1}(s, u).$$
 (A14)

Let us therefore use the Regge forms (A4) and (A5) for $\operatorname{Im} T^0$ and $\operatorname{Im} T^1$, but modify the result of Eq. (A13) by using

$$\operatorname{Im} A^{1}(s, t) = \sum_{I=0}^{2} C_{1I} \left[\operatorname{Im} T^{I}(s, t) - \operatorname{Im} T^{I}(s, u) \right].$$
(A15)

Equation (A15) will be a good approximation if the functions $\operatorname{Im} T^{I}(s,u)$ are negligible in the forward hemisphere.

The Pomeranchon term in $\operatorname{Im} T^0(s,u)$ is negligible in the forward hemisphere because of the exponential decrease of γ_P in Eq. (A8). Furthermore, the f_0 contribution to $\operatorname{Im} T^0(s,u)$ and the ρ contribution to $\operatorname{Im} T^1(s,u)$ tend to be small in the forward hemisphere because of the slope of α_f and α_ρ . The result (A10) for $\overline{\gamma}_\rho$, however, is a cubic function of t, so that $\overline{\gamma}_\rho(u)$ can be substantial for t near zero. Let us therefore add to $\overline{\gamma}_\rho(t)$ a quartic term which is chosen to make $\gamma_\rho(u)$ vanish for $s^{1/2}=1.9$ GeV, t=0:

$$\gamma_{o}(t) = \overline{\gamma}_{o}(t) - 0.045(t/\overline{s})^{4}$$
 (A16)

The above modification is negligible near t=0 (forward scattering), and the $\operatorname{Im} A^1(s,t)$ of Eq. (A15) has the correct value at $\theta=90^\circ$ by construction. Although $\gamma_\rho(u)$ does not vanish for higher values of s when t=0, the slopes of α_f and α_ρ are sufficient to render the errors inherent to Eqs. (A15) and (A16) completely negligible for all $s^{1/2}>1.9$ GeV. Hence I use Eq. (A15) to evaluate the $\operatorname{Im} A^1(s,t)$ in Eq. (9), while using Eq. (A16) for γ_ρ , and simultaneously Eq. (A12) for γ_f .

For the Im $A^{(1)}$ required above $s = \Lambda$ in Eq. (10), I use the P-wave projection of the asymptotic Im $A^{1}(s, t)$ described above. As was explained in Sec. V, it is essential that this be done.

APPENDIX B

The functions $M_l(s', s)$ defined implicitly by Eqs. (6), (7), and (8) are given for l=0, 1, 2, 3 and 3 by

$$\begin{split} M_0(s',s) &= \frac{1}{s-4} \left[\, G^+ - G^- - 4 \right] \,, \\ M_1(s',s) &= \frac{3}{(s-4)(s'-4)} \left[\, (s'+2s-4)G^+ + (3\,s'-4)G^- + 2(2\,s'-s-4) \right] \,, \\ M_2(s',s) &= \frac{5}{(s-4)(s'-4)^2} \left[\, (s'^2-8s'+6s's-24s+6s^2+16)G^+ - (13\,s'^2-32s'+16)G^- - 2(14\,s'^2-52s'+9s's-20s+4s^2+48) \right] \,, \\ M_3(s',s) &= \frac{7}{(s-4)(s'-4)^3} \left[\, (s'^3-12s'^2+48s'+12s'^2s+30s's^2-96s's+192s-120s^2+20s^3-64)G^+ \right. \\ &\quad \left. + (63\,s'^3-228s'^2+240s'-64)G^- \right. \\ &\quad \left. + \frac{1}{2}(372s'^3-1680s'^2+2336s'+24s'^2s-178s's^2+272s's-656s+508s^2-83s^3-960) \right] \,, \end{split}$$

where

$$G^{\pm} \equiv 2 \left(1 + \frac{2s'}{s-4}\right) \ln \left(1 \pm \frac{s-4}{2s'+s-4}\right).$$

The functions $H_l(s', s)$ defined implicitly by Eqs. (11), (12), and (13) are given for l = 0 and 1 by

$$H_0(s',s) = \frac{1}{s-4} \left[L + \frac{1}{648} (s'-36)(76-s) \right],$$

$$H_1(s',s) = \frac{3}{(s-4)(s'-4)} \left[(s'+2s-4)L + \frac{1}{648} (s'-36)(76s'-s's+140s-272) \right],$$

where

$$L = 2\left(1 + \frac{2s'}{s-4}\right) \ln \left[\frac{36(s'+s-4)}{s'(s+32)}\right].$$

¹E. P. Tryon, Phys. Lett. <u>38B</u>, 527 (1972).

²B. Hyams *et al.*, Nucl. Flys. <u>B64</u>, 134 (1973). I use the energy-dependent results.

³G. Frye and R. L. Warnock, Phys. Rev. <u>130</u>, 478 (1963).

⁴E. P. Tryon, Phys. Rev. D 8, 1586 (1973).

⁵G. F. Chew and S. Mandelstam, Phys. Rev. <u>119</u>, 467 (1960).

⁶Using an energy-dependent Breit-Wigner formula for the f_0 resonance, I find the f_0 contribution to the

right-hand side of Eq. (11) to be less than 0.01% of the ρ contribution for $-32 \le s \le 0$. The f_0 contribution to A_{NL} must be comparable, and hence is quite negligible.

⁷E. P. Tryon, Phys. Rev. D <u>10</u>, 1595 (1974).

⁸N. B. Durusoy et al., Phys. Lett. <u>45B</u>, 517 (1973).

⁹W. J. Robertson and W. D. Walker, Phys. Rev. D 7, 2554 (1973).

¹⁰E. P. Tryon, Phys. Rev. D <u>11</u>, 698 (1975).