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Baryon-baryon scattering in a one-boson-exchange-potential approach.
I. Nucleon-nucleon scattering
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From a combined analysis of nucleon-nucleon and hyperon-nucleon scattering with a one-boson-exchange-

potential-model the NN results are presented. The model consists of local potentials due to exchanges of
members of the pseudoscalar and vector meson nonets and the scalar meson a taken as a unitary singlet.

Effects of the large widths of the c and p meson are included. The Schrodinger equation is solved in

configuration space with phenomenological hard-core potentials at short distances. The coupling constants and

hard-core radii are determined in a fit using the NN phase-shift analysis of the Livermore group up to 330
MeV laboratory kinetic energy and the low-energy parameters. The NN phase shifts are described well with

g'/data = 2.4 (as good as the purely phenomenological potentials) and good values are obtained for the

scattering lengths, effective ranges, and deuteron parameters.

I. INTRODUCTION

Extensive work i".. the past decade (for references
see the reviews of Refs. 1-4}shows that the long-
and medium-range nuclear forces can be describ-
ed more or less satisfactorily by a sum of one-
boson-exchange potentials (OBEP). However,
many of these models had to use unrealistic values
for the meson-nucleon coupling constants and
meson masses. To get sufficient attraction one
had to introduce either an uncorrelated two-pion-
exchange potential (TPEP) or some scalar mesons.
The advantage of the introduction of the scalar
mesons is that they also give sizable spin-orbit
potentiaLs besides attractive central potentials.
But to get a good fit to the NN data the mass of
an I = 0 scalar meson (often called o meson) had
to be unrealistically low: m, =400-500 MeV. No
evidence for such a meson has been found in na-
ture. ' Recently the situation with respect to the
OBEP models improved considerabl. y.' One of
the most important innovations has been the in-
clusion of effects due to the large width of the
E meson, thus getting rid of the fictitious o meson
with low mass.

Our program, outlined in more detail in Ref.
7, is to construct potential models which can
describe simultaneously all experimentally studied
baryon-baryon (BB) systems up to the pion pro-
duction threshold: nucleon-nucleon and hyperon-
nucleon scattering. The models in Ref. 6 were
evaluated in momentum space by solving the
Blanckenbecler-Sugar equation or the Lippmann-
Schwinger equation. Working in momentum space
has the advantage that momentum-dependent ef-
fects can be included easily. %'e evaluate our
models in configuration space by solving the
Schrodinger equation with local potentials, having

the advantage that Coulomb effects can be included
easily, and it permits simple parametrizations
for the short-range repulsion in the form of hard
or soft cores. At first we constructed an OBEP
+ TPEP model, calledmodel A (Refs. Vand8), con-
sisting of OBEP from the members of the pseudo-
scalar- and vector-meson nonets, and the Brueck-
ner and Watson TPEP. Model A, intended pri-
marily for a good description of the Low-energy
YN data, gave a reasonabl. e account of the NN

s waves, but failed to give a good quantitative
description of the &+ higher waves.

In our study of the pure OBEP models we insist
on dealing with the mesons in an SU(3} consistent
way. One reason for this is that only then can we
extend our NN calculations also to the Y& channels.
Another, no less important, reason is that only
when one uses the meson spectrum and the meson-
nucleon coupling constants as realistically as
possible can one expect that the determined cou-
pling constants make any sense. For example,
from the vector-meson nonet one should include
in N& calculations the p, &, and p mesons, and
one should use all our SU(3) knowledge about the
~-Q mixing and about the coupling constants. The
potential due to ~ and Q exchanges cannot be sim-
ulated sufficiently accurately in general by a po-
tential due to some effective cd only. From the
pseudoscalar-meson nonet one should include the

q as well as the Xo. In many NN models the q or
X' are often discarded because their contributions
can be hardly separated in N&, and they are re-
p Laced then for convenience by some effective

or g.
The OBEP models we studied so far can be di-

vided into two classes. The long- and medium-
range forces are given in all these models by the
sum of the pole contributions of the members of
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the pseudoscalar- and vector-meson nonets. The
classes differ in the treatment of the scalar me-
sons. In the first class the existence of only one
unitary singlet scalar meson, called &, is assumed
with a mass in the neighborhood of 700 MeV and
a very large width. The models in the second
class contain, in addition, an octet of scalar me-
sons. The reason. for these classes is that we
want to test with models in class I the assumption
of the e being dominantly a unitary singlet. In
the fit to YN models in class II we have one more
free parameter' [n~, the F/(F +D) ratio of the
scalar nonet] and the mass or even the existence
of the strange scalar meson, the ~, is very uncer-
tain. ' Furthermore, we want to study the effects
of the octet of scalar mesons in the differences
between the classes I and II. The first model in
class I, called modeL B,' had the pole parameters
for the &: m, =720 MeV, I', =400 MeV. It gave
a reasonable description of && with y'/data = 5.9
for the data up to 330 MeV. A better fit was ob-
tained aLready in the first model in cLass II: model
C, ' yielding y'/data=4. 0. In model C different
pole parameters for the E were used: m, =670 MeV,
and I', = 500 MeV. The present model D falls in
class I. The main differences with modeL B are:
(i) It contains q-X mixing; (ii) the e-pole para-
meters have been changed: m, = 760 MeV and
I', =640 MeV; (iii) a larger value for o'~, the
F/(F+D) ratio for the pseudoscalar octet, results
from the analysis of the YA channels, which is the
subject of paper II (see Ref. 10); (iv) the potential
forms of the vector and scalar mesons have been
changed slightly; and (v) there is a drastic im-
provement of the fit to y'/data =2.4 for model D.
Summarizing the considered mesons, model D
contains:

(i) the pseudoscalar-meson nonet, v, q, and

~, with the singlet-octet mixing angle from the
Gell-Mann-Okubo mass formula, 6)~ = —10.4';

(ii) the vector-meson nonet, p, Q, and &u, with
ideal mixing tan 6„=1/W2;

(iii) the scaLar-meson unitary singlet e.

The & and p mesons are treated as broad mesons.
Effects of the width have been taken into account
by assuming for the propagator in the timelike
region a Breit-Wigner-type form with proper thres-
hold behaviour continued analytically to spacelike
values of the momentum transfer. "'" It appears
that one can describe the potential due to these
broad mesons very accurately for our purpose by
a sum of the potentials of two effective narrow
mesons with different masses. The lower mass
(= 510 MeV} in the two-poles approximation for
the & explains the traditional o.

For very short ranges (x& 0.5 fm) we assume

a strong repulsion in all channels, which is des-
cribed phenomenologically by using hard-core
potentials. It should represent many unclear short-
range effects due to, e.g. , exchanges of very
heavy mesons (A„B, f, . . . ), coupling to negative
energy states, inelastic effects, etc. A different
method one uses often is the introduction of form
factors for the propagators' or at each vertex. "
These form factors lead in configuration space
to Less singular or even regular potentials near
r =0. The disadvantage of this approach seems to
us to be that only the meson dynamics is modified
so as to make the Schrodinger or Blankenbecler-
Sugar equation solvable, but there is almost no
independent phenomenological. representation for
the short-range effects. The hard-core para-
metrization has the virtue that it is rather in-
dependent of the considered meson dynamics.

The radii of the hard cores, x, for 'S„x, for
~ for I =1, and XI. , for I - 2 waves,

are free parameters. In addition, the model con-
tains 8 free meson-nucleon couplings: g(v),
g'(ZP), g(p), f(P}, g'(~), f(~), f(p), and g'(e),
where g'(ZP) and g'(w) denote the unitary singlet
parts of the X' and u couplings. The A& analysis
happens to be unable to give a, good splitting be-
tween the physical coupling constants g(q) and
g(X'). Various combinations of ge(g) and g'(X'}
can give the same y', where g'(rl) denotes the
octet part of the physical q coupling. On the other
hand, Y& is very sensitive to the value of a~, the
F/(F+D) ratio for the pseudoscalar octet. There-
fore we determine up in the fit to YN, " leading
to a particular value of g'(q). The NN fit then
pinpoints g'(X ). For the direct coupling of the
vector mesons we keep n~ =1, thus coupling the

p meson universal. ly to the isospin current. " Via
g(p) and uv =1 the physical coupling constants
g(v) and g(P) are fixed simultaneously by g'(u).
As to the derivative couplings of the vector mesons,
it appears that f(p) and f (a) are very well deter-
mined, but the sensitivity to f(P) is rather small.
Therefore n~ and hence f»~ is checked in the
Y& analysis, ' yielding about the same order of
uncertainty as in NK

The 12 free parameters are determined in a fit
to the low-energy parameters and the p' surface
data of the energy-independent phase-shift analy-
sis of the Livermore group" from 25-330 MeV,
which yields for small. deviations from their phase-
shifts the proper X' with respect to 1128 experi-
mental data.

We note that the obtained g'/data =2.4 for PP
and nP is even lower than Reid's phenomenological
hard-core (HC) potentials, "which give y'/data =2.7

for PP (Ref. 2). We want to point out that meson-
theoretical. potentials should be preferred above
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purely phenomenological ones. Firstly, we have
potentials acting in all waves in contrast to Reid's
potentials which are only given for s, p, and d
waves. Secondly, because of the big difference in
number and accuracy between the pp and np data
the I = 1 phenomenological potentials will be de-
termined very well by PP in contrast to the I =0
potentials, which are determined by the np data
alone. In the meson-theoretical case the free
parameters (coupling constants and short-range
parameters) are fixed mainly by the accurate Pp
data, thus producing at the same time reliable
I =0 potentials.

An important difference with model. A is that
beyond contributions leading to central, spin-
spin, tensor, and spin-orbit potentials we con-
sider in all. later models also contributions leading
to quadratic spin-orbit potentials. So we have for
&+ a complete set of independent potential forms"
for I = 0, 1, when the p-n mass difference is neg-
lected. The quadratic spin-orbit potentials are
important for the description of the P and d waves
(see also the Hamada-Johnston and Yale poten-
tials"'"). Omission of these potentials would
introduce bias in the determination of the meson
couplings.

The searched values for the meson-nucl. eon
coupling constants are realistic. The +N phase-
shifts are described very wel. l. In particular we
note that we find agreement for &, at higher ener-
gies with the values of the phase-shift analyses,
which seems to be a problem for most meson-
theoretical mode ls.'

The plan of the paper is as follows: In Sec. II
we describe the model. The results for the cou-
pling constants, phase shifts, s- and P-wave
scattering lengths, and effective ranges and deu-
teron parameters are presented in Sec. III. The
coupling constants are discussed in Sec. IV, where
we also analyze the results for the phase shifts and

low-energy parameters.

theory the following approximations are made":
(i) The dependence on the total energy is neg-

lected.
(ii) The energy factors are expanded as

—+ p2+M'
4

where q and p denote the momentum transfer and
the total momentum and M denotes the nucleon
mass. In the final. expressions for the potentials
in momentum space, terms are kept up to first
order in q'/M'.

(iii) the contributions to the quadratic spin-
orbit potentials are coming only from the Pauli
spin operators in the Dirac spinors and y matrices.
Possible contributions via recoil effects are ne-
glected, since these expressions depend on the
total energy. Hence the pseudoscalar y, coupling
does not yield potentials of this type. In the
Fourier transform to configuration space" we
neglect all terms involving V„, apart from the
ones occurring in the operators L, i.e. , we make
the approximation

3

2 ).e*'''[o, (qxp)J[o. (qxp)JV(q)

2

V(r) Q . (4)r ar 12'

Here V(r) denotes the Fourier transform of V(q),
and

Q,.=-.[(o, L)(o. L)+(o. L)(o, L)].

Be]ow we list the field-theoretical Hamiltonian
densities (suppressing isospin) and the correspond-
ing NS potentials.

(a) Pseudoscalar-meson exchange. We have

Ha = &gpss&Pip

II. THE MODEL

The NN interactions are described by local po-
tentials of the form

V= Vc+ V,o, o, + VrS„+ V~oL'S+ VoQ, ~. (1)

The local functions V,. (i = C, o, T, SO, Q) can be
decomposed as

V, =V. '+T, r V"
t 1 2 i

where V,"and V'," represent the contributions
of the exchanges of the I = 0 and I = 1 mesons,
respectively.

In the derivation of the potentials V, from field

2 m'
V =,m[ —,'(o, 5~)P(x)+S„g(x)].

In the formulas the following notation is used:
x =mr, where m is the average meson mass of the
isomu ltip let,

g(x) =

1 1 1 e"
X(x)= -+-+—

X X X

&denotes the proton mass, and M' denotes the
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proton mass in PP and the neutron mass in np
potentials.

(b) Vector-meson exchange. We have

with

1
o,.—

2 ly„yv], (10)

Hv =rC'v%y&)&((&()&v+
48)I W&)n%(~ ()&v —(& 4v)

and It, denoting a scaling mass, which is chosen
to be the proton mass, and

2

4 rr I
" 8MM' 2%(MM') 16%'MM'

pn2 m2 m2 m2
+ gv 4MM) +gvfv 2'(MM }&&r+nf v'

4II2 I+
M I n((r, (r, )(t&(x) -S»}('.(x)]

~ 3m' 2m , 3~4
M 'g f 6)I(MM }'n'f gg MM x 'P

m' 3
16&&'&r' " "2n(llnh& (M&& )' '" 2n'('M&r x' "I '

(c) Scalar-meson exchange. We have

Hs =as444s (12}

V = m — 1—,gx)—,—+ ~ ()&(x)l. ~ S — ~ „~}((x)Q„.

Effects of the width of a broad meson have been
incorporated by replacing the propagator for a
stable meson 1/(q +m ) by" '"

ft -j.
P(q') = q'+m'+y, (q'+4m, ')"'~

(14)

where

For the p meson (n = 1) we needed in (14) an ad-
ditional factor q'/m' added to the term (q'+4m, ')',
which is responsible for the correct

~
(1~' threshold

behaviour, in order to get rid of a pole of the
propagator at the real axis in the first Riemann
sheet, which mould be present otherwise. " The
superconvergent asymptotic behavior

P(q') ~ (I/q')+ for n =1 (18)
y =mr/(m' —4m, ')""~ (15)

with n =0 and 1 for & and p, respectively. " This
form has been chosen such that it has the following
properties:

(i) It has a cut in the complex q' plane starting
at the tmo-pion threshold q' = -4m„' with the
proper threshold behavior; and

(ii) it has a Breit-Wigner-type form in the
neighborhood of q' = —m' with width I', due to the
poles on the second Riemann sheet.

For both ~ and p we write the propagator P(q')
as a dispersion integral,

dm'p(m') = A
4m' 2

and {20)

leads to an additional pair of complex-conjugated
spurious poles in the first Riemann sheet,

A, 1 1
2 0*, ~, * —im„r„q'+m, ' ~ i „r„)'

{19)

which should be added to (16). The sum rules

with

j p(m")d
(16)

d&n'm'p(m') = m„'A
&4off 2

1 gm)2 4m n)n+&Q

rr (m' m')'+y'(m' /m ) "(m' —4m ')*""
ensure that P(q') decreases faster that (1/q')'
for large q'. We have looked numerically for the
position of these spurious poles for the values of
the p parameters,
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m, =7"to MeV, 1 ~ =146 MeV,

obtaining

(21) TABLE I. Values for the parameters in the two-poles
approximation for the broad mesons ~ and p. Masses
and widths are given in MeV.

m& =680 MeV, I „=2150MeV. (22} 8 m r m| m2

l on 77t F o 77l T -m2r
dm'2m'p(m") ~ )i, + P,r ' r ' r

For the & meson we insert the values

in, = 760 MeV, I', = 640 MeV

(23)

(24}

in order to have the e pole in (14) at the same
place as in the analysis of Protopopescu et al.23:

E(&) = 660 —i 320 MeV. (25}

With the inputs (21) and (24) we approximate the
"exact" potentials of the p and & between r =0.3-1.5
fm with the iwo-poles approximation of (23}. The
resulting values for P, , m, (i =1, 2} are given in
Table I. The agreement is within 0.5% for both
& and p.

At short distances r &0.5 fm the weH. -known
needed strong repulsion is described phenomeno-
logically by hard-core potentials, For a more
extensive discussion, see Ref. 7. The radii of
the hard cores will depend in general on the quan-
tum numbers of the states i &, f., S). However,
one introduces many phenomenological. parameters
this way. %'e have reduced the number of dif-
ferent hard-core radii, using the observation that
al.most all P and higher L, waves are not very sen-
sitive to hard-core variations ~ In particular we
have for the P waves in ~N that the 'P„'Po, and
'P, potentials are repulsive at distances r &0.5
fm, and only the 'P, potential is attractive there.
So we can just as well use one hard-core radius
for all P waves, which is determined in fact by
the 'P, phaseshifts. It turns out that we can use
a single hard-core radius for the I «2 waves,
which are much less core-dependent. Only for
too small values of the hard-core radius reso-
nances or even bound states can occur easily.
This way we end up with four hard-core radii in
our NN model, :

The contributions of these spurious poles, which
are very far from the region q' =0, are neglected.

After taking the Fourier transform of (16) to
configuration space, we obtain for a broad meson
a superposition of Yukawa potentials with 2m'p(m'3}
as mass distribution. For practical reasons we
have approximated such potentials by the sum of
Yukawa potentials from two effective narrow me-
sons

0 760 640 0.19986 50S.52 0.552 41 1043.79
p 1 770 146 0.158 74 62S.74 0.783 21 878.18

In the case of the coupled 'S,-'D, waves we can
just take one hard-core parameter needed for
'S„since the 'D, is very insensitive to the value
of the hard-core radius. A similar reasoning
applies to the coupl. ed 'P2-'F2 waves.

We note that an advantage of (26} is that the
s waves do not influence the determination of the
coupling constants too strongly because of the two
s-wave cores. Therefore the coupling constants
are mainly determined by the more peripheral
waves.

111. RESULTS

(27}

In (2'l) y'(T„b } denotes the contribution of the low-
energy parameters. P(T(),b) (i =1, . . . , 6) is cal-
culated by using the second-derivative matrices
at each energy T,'„via the relation

where Di,
"~ denotes the set of phase shifts which

give minimal g' with respect to the experimental
data: X,.„2. This way one gets for small devia-
tions from ~;"~ the true g2 compared to the ex-
perimental observables, since one takes into
account the full correlations between the 6~"~.

The hard-core radii which emerged from the
fit are

xs 0 52 1 83 fm7 &g 0 483 95 fm7

x, =O.34594 fm, ~, , =O.66254 fm.
(29)

The values of the 12 free parameters, 4 hard-
core radii and 8 coupling constants, are searched
by minimizing the total g' with respect to the NN

data. The g' is calculated at T,„, , =0 by comparing
the 'So(pp) and 'S, (np} scattering lengths and ef-
fective ranges with their experimental. values, and
at T„, =25, 50, 95, 142, 210, and 330 MeV by
comparing our cal.culated nuclear bar phase shifts
with the NN energy-independent phase-shift analy-
sis of the Livermore group, "i.e.,

x for 8, x, for Si- Di,
x~ for A=1, and &L, 2 for L, «2 waves. (26)

The obtained values for the coupling constants
are given in Table II. For the I =0 particl. es we
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TABLE II. Meson-nucleon coupling constants from
the fit to NN. The underlined couplings are constrained
via SU(3). With the given figures the potential can be
reproduced accurately. T lab

{MeV) 25 50 95 210

TABLE III. Nuclear bar pP and np phase shifts in
degrees.

330

fl

x'

m (MeV)

138.041

548.8

957.5

770 I'=146

1019.5

783.9

760 I'=640

g/(4m)

3.660 00

2.729 67

3.887 86

0.594 44

-1.124 12

3.373 08

5.032 08

f/(4~)

4.816 96

-0.51004

2.33992

ig

3S(

49.49 39.70 26.59 16.21 4.37 -11.59

80.12 61.94 43.47 30.86 17.72 1.43

1.87 2.31 2.86 3.50 4.6Q 6.88

P 2.31 5.53 10.24 13.27 15.37 15.92

-0.78 -1.72 -2.78 -3.25 -3.28 -2.56

Pp 9.03 12.70 11.86 7,79 P.81 -10.97

Pg -4.80 -8.11 -12.35 -15.93 -20.48 -27.47

P ) -5.61 -7.77 -9.69 -11.35 -13,99 -19.09

give the couplings of the physical particles in
cases of singlet-octet mixing. They are deter-
mined via fitting of unitary singlet couplings and
employing the F/(F+D) ratios &]from, theory
or u~ from our Y& analysis. '

In Table III we have listed the resulting nuclear
bar phase shifts, and we have depicted them in
Figs. 1-7. In Table IV we give the 'L&, 'I &, and
'L» phase shifts' for I =1, 2, 3. Compared to the
1128 data used in the Livermore analysis up to
330 MeV, we obtain If'/data=2. 37.

At low energies the effective range expansion
reads for L = 0, 1

(I+q'} fr'~[C, '(q}pc t5o+2qph(q}]

Dg -2.78 -6.43 -11.83 -16.13 -20.75 -26.04

D2 3.7Q 9.12 17.61 23.8Q 28.63 30.17

D2 0.64 1.58 3.48 8.45 11.79

D3 Q.06 0.38 3.54 6.27 9.60

5.60

1.68

0.54 1.59 3.32 4.69 6.01 7.16

E'4 -0.05 -0.18 -0.49 -0.79 -1.17 -1.67

Gg -0.05 -0.26 -0.86 -1.63 -2.81 M.72

G4 0.17 0.71 3.39 5.32 8.321.99

'F, 0.10 0.32 0.74 1.10 1.40 1.22

E3 -0.22 -0.66 -1.43 -2.08 -2 ~ 78 -3.70

'Es -0.41 1.11 -2.06 -2.66 -3.14 -3.61

E4 0.02 0.10 0.39 0.84 1.66 3.29

= —I /a + -,'r P' —PrP'+ ~ ~, (30) 1G 0.04 0.14 0.36 0.60 0.95 1.71

where q, C,(7I), and k(q) are standard (see, e.g. ,
Ref. 24). In the case of 'P, it is well known that
there is an accidental P' low-energy behavior"
due to one-pion exchange. In the Born approxi-
mation we have for the one-pion-exchange con-
tribution (OPEC}

pop .c(3p )

4 4E 5 '( 2P ) ( 2D')

G5 -0.01 -0.05 -0.15 -0.24 -0.26

0.04 0.20 0.65 1.19 1.85

0.03

2.85

H4 0.00 0.02 0.09 0.18 0.33 0.59

'H, Q.P1 -0.08 -0.27 -0.49 -0.'80 -1.23

H -0.03 -0.16 -0.49 -0.82 -1.21 -1.66

Hfa 0.00 0.01 0.03 0.08 0.18 0.45

-0.00 -0.02 —0.10 -0.20 —0.35 -0.59

s'() 8(P)*m. p(P' (31)

in radians. Therefore we give for the 'I', wave
the coefficients for the effective range expression,
where the one-pion-exchange contribution has
been subtracted':

(1+0')p'( C:(n)p cot[~ —&""C.'(n)(I+0 ')]+2np&(n))

= —I/a+ —,'rP + . (32) B=2.224644 MeV. (33)

The calculated s- and P-wave scattering lengths
and effective ranges are compared to the experi-
mental. values in Table V.

The hard-core radius x, in the 'S, -'D, waves
has been fixed such that the experimental value
for the binding energy of the deuteron is repro-
duced,
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3PLs 0.66 2.21 5.38 8.22 11.34 15.33

40
3Dc 0.70 1.93 4.29 6.36 8.32 9.33

3D 156 374 701 935 1125 1224

-8'- 3DLs 0.12 0.29 0.70 1.26 2.19 3.63

-10' "
-0.04 -0.10 -0.14 -0.0 7 0.12 0.47

2I
Tlab (MeV)

FIG. 6. e3(np), e4(pp), and F3(np) nuclear bar phase
shifts.

3F

FLs

-0.09 -0.28 -0.63 -0.96 -1.34 -1.82

0 00 0 01 0 03 0 09 0 22 0 54
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TABLE V, s- and P -wave effective range parameters in units of fm. Experimental values
for the p waves are taken from Ref. 24.

g exp &exp

-7.814

5.431

2.670

1.771

0.0368

-0.0084

-7.823 ~ 0.01

5.423 + 0.005

2.794 +0.015

1.761 +0.005

P 0

P1
3p

-3.042

1.828

-0.270

3.336

-7.463

4.561

-0.0065

-0.0006

-0.0113

-2.6 + 2.0

2.8+1.3
-0.45 ~ 0.28

4.3 ~2.0
-9.0+1.0

15 +10

2.397 -7 ~ 139 -0.0019

In Table VI the results for the deuteron parameters
are given: the d-state probability P„ the electric
quadrupole moment Q, the deuteron effective
range p(-B, —8), the asymptotic normalization
N, ', and the s-d admixture A =tane, (for defini-
tions see Ref. 25). The deuteron wave functions
are listed in Table VII, and they are drawn and
compared to Reid's wave functions" in Fig. 8.

IV. DISCUSSION

A. Coupling constants

The value g'(m}/4m =13.40 is more than two
standard deviations small. er than the result of
the 26 parameter solution in the &N anal. ysis of
the Livermore group, "g'(w)/4x = 14.43 + 0.41.
Similarly our value f'(v}/4v =0.0725 is two stand-
ard deviations away from the preferred value from
wN analyses" f'(m)/4=0. 061'oo'~~0', . The most re-
cent w& dispersion relation analyses ' seems to
give systematically lower values than f'(v)/4s
=0.081. The discrepancy with our value can be
covered at least partially by the observation that
we have approximated g'(m)/4ME in the derivation
of OPEP (Ref. 20} by g'(n)/4M'. This means that
we should compare our value perhaps with (M/E)
g'(v)/4~ (Table VIII). Because the more peripher-
al waves have only entries in the phase-shift an-
alyses at the higher energies, one expects before-
hand to obtain in our analysis a value for g'(r)
lower than the actual value. Also the d waves
try to depress the value of g'(v) (see Sec. IVB).
On the other hand, at very low energies the n'

coupling becomes too smal. l., which influences
strongly the effective ranges and deuteron para-
meters (see Sec. IVC). We have made a com-
promise in the sense that we have fixed g(z) such
that a, and r, are roughly one standard devia, tion
from their experimental values (Table V), thereby
keeping the binding energy of the deuteron at the

cor rect va. lue.
The physical particles q and &' are mixtures

of the pure octet state g, and the pure singlet state
X', . We use the mixing angle from the Gell-Mann-
Okubo mass formula 6~ = —10.4', which is con-
sistent with experiment. " The g and X are dif-
ficult to separate in WN, because the fit is mainly
sensitive to g~/nz' and not much to the particular
g' and m' separatel. y. Various combinations of
g(q) and g(X') can give the same y' after readjust-
ment of the hard-core radii ~ The virtue of a com-
bined NN and YN analysis is that we can fix the
octet coupling g'(q) via SU(3) using the value of
n~ =F/(F+D) from the y& analysis, which is at
some points very sensitive to a~. In the fit to
N& we have to determine still one para. meter for
both g and X'. the singlet coupling constant g'(X').
With the value'

ap = 0.485+ 0.012 (34)

TABLE VI. Calculated deuteron parameters. For
definitions see Ref. 25.

p(-B, -B)

5.92% 0.2721 fm 1.776 fm 0.7868 fm 0.0251

we arrive at g'(q)/4v = 7.45 and g'(X')/4v = 15.12.
The ratio g'(0)/g'(v) =0.56 is in good agreement
with the Tj/r ratio 0.45+ 0.11 resulting from
counter data on backward v P -qn and v P -n n

at 6 GeV/c. " In the analysis of the reaction
P+d - He +MM at 2.8 and 3.8 GeV/c Odorico gives
the estimates" g'(w}:g'(q):g'(X')
=1:0.75~ 0.03:0.4+ 0.02. However, there are many
uncertainties in his analysis. These ratios lead
to a very large mixing angle, e.g. , 6)~= —35' for
o.~ = 0.4, and still e~ ~ —20' for o.~ given in (34}.

The direct p coupling s g'(p)/4n =0.353 seems



BARYON-BARYON SCATTERING IN A. . . 753

TABLE VII. Deuteron wave functions in fm . u and w are the wave functions for ~S& and

D&, respectively.

r (fm) w(r) r (fm) u (r) w(r)

0.48395
0.60546
0.705 53
0.805 59
0.90565

1.005 72
1.105 78
1.205 85
1.305 91
1.405 98
1.506 04
1.606 10
1.706 17
1.806 23
1.906 30

2.006 36
2.206 49
2.406 62
2.606 75
2.806 88

0.0
0.134 10
0.230 96
0.31104
0.374 52

0.423 29
0.459 72
0.486 10
0.504 45
0.516 47
0.523 51
0.526 68
0.526 85
0.524 68
0.520 72

0.515 39
0.501 82
0.485 83
0.468 55
0.450 69

0.0
0.069 61
0.106 73
0.132 23
0.150 18

0.162 49
0.170 31
0.174 52
0.175 85
0.174 96
0.172 40
0.16860
0.16394
0.15868
0.15305

0.147 22
0.13541
0.123 88
0.11300
0.102 90

3.007 01
3.207 14
3.407 27
3.607 40
3.807 53

4.007 66
4.493 68
5.008 30
5.522 92
6.037 54
6.494 98
7.009 60
7.524 21
8.038 83
8.496 27

9.010 89
10.040 12
11.012 18
' 2.041 42
13.013 47

0.432 73
0.414 92
0.397 46
0.380 45
0.363 98

0.348 07
0.31187
0.277 32
0.246 42
0.218 87
0.196 94
0.174 86
0.155 23
0.137 81
0.123 96

0.11004
0.086 70
0.069 23
0.054 54
0.043 55

0.093 65
0.085 22
0.077 58
0.070 68
0.064 45

0.058 83
0 ~ 047 36
0.037 94
0.030 65
0.024 95
0.020 91
0.017 25
0.014 31
0.01195
0.010 21

0.008 60
0.006 16
0.004 55
0.003 32
0.002 47

to be rather small. The assumption of universal
coupling of the p to the isospin current'4 and the
vector dominance model (VDM) for the electro-
magnetic current leads to numerous estimates'
of g(p) yielding aU values in the band 0.5& @'(p)/4n
& 0.7. In particular the assumption of p dominance

for the isovector electric form factor of the nu-
cleon leads to the equality

g'(p)/4r = y'(p)/4v, (35)

where y p
denotes the p-photon coupling constant.

This coupling has been determined rather ac-

OL-

0.2-

0.1-

6

r (fm]
10

FIG. 8. The deuteron wave functions u and w. For comparison, Reid's (hard-core) Qef. 16) deuteron wave functions
are also drawn.
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TABLE VIII. Pion effective couplings strengths at various energies. At energy 0 the
value of the NN phase-shift analysis {Ref. 15) is used as input.

T lab

(Me~ 50 95 142 210 330

(M/s)g'(~) I« 14.43 14.33 14.24 14.08 13.91 13.66 13.27

I ~& =(f)'~
I ~, ) +(r)'~

i @,&

I 4 &
= - (3)'~

I ~, &
+ (~)'~

i 4,&,

(36)

where j ~}denotes the unitary singlet and I Q, )
the octet isoscalar. With the theoretical input
a'„=1 for the direct coupling the three coupling
constants g(p), g(~), and g(P) are determined
by searching g(p) and g'(~}. We find opposite
signs for g(u) and g(P) (Table II). This leads to

curately in e'e colliding-beam experiments",
yielding P(p)/4z =0.58a 0.06. However, total
hadronic photoabsorption cross sections and vec-
tor-meson photoproduction lead to smaller values
of y (p)/4', even when the p' is included. '' Fur-
thermore, in (35) there is in principle also some
contamination of the recently discovered p', which
has the same quantum numbers as the p. It is
interesting to compare the values of the direct
p couplings" and the 5 couplings for the various
analyses in the compilation. ' A simultaneous
occurrence of both smaller or both larger p and
0 couplings becomes apparent. The explanation
may be found in the fact that the central potentials
of the p and ~ cancel each other largely, whereas
the spin-orbit potentials reinforce each other,
although being much small. er than the strong spin-
orbit forces of the e and e (see below). Since
we neglect the & completely in this model, we
expect to find a low value for g(p). We may draw
the conclusion that the direct p coupling is not
very we1.1 determined in ~N analyses.

The value f(p)/(4v)' =4.82 is slightly larger
than most NA analyses" give, having values & 4.
The ratio f (p)/g(p) = 8.10 expresses the repercus-
sion of our small value of g(p). Most NN analyses
have values for this ratio f (p)/g(p) a 5, which are
larger than 3.7 as expected from p dominance
of the isovector electromagnetic form factors
when the p' is neglected completely. Values of
about 7 for this ratio are obtained in ~N disper-
sion r el.ations. "'"

The ~ and P coupling constants are discussed
together, since they are related via SU(3). Con-
sequently the signs are determined as well. Our
convention for the physical. ~ and Q states involving
the ideal mixing angle &v = arctan(l/v2 ) reads

an excel. lent agreement with VDM for the iso-
scalar electric form factor of the nucleon. VDM
gives the relation

~$ (f }
g wNN /2~ ur + g INN /2 ~ 5
1-t/m 1 —t/m 2 '

where f = —q', and the normalization condition
reads

(37)

+~'(0) = ~2 (38)

yj.y~:y@= 3.1:1/v2 . (40)

Inserting our values for the NN coupling constants
(Table II) together with y„and y @ from (39) with
the signs as predicted by SU(3), we have at t =0

PS(0) guNN g dNhf

2f~ 2p Q

= 0.48' 0.04, (41)

which is to be compared with (38).
The derivative couplings of the vector mesons

f (p) and f(~) are very well fixed in the NN search.
Unfortunately, we do not have in this case such
a firm theoretical value for n& as in the case of
the direct couplings for av. Therefore f(P) is
searched too in ~W in spite of its smaller sen-
sitivity. In fact, varying f (&j)/(4v)'~ between
—0.3 and —0.9 (which corresponds to 0.34& nP
& 0.30), the &('/data changes only 0.1. Since o.v
is not too well determined in fVN via f(p}, f(u),
and f(g}, we have checked its value by searching
it in YN, thereby keeping f,„„anfd~„ fixed.
The result is'

nv =0 334+ 0.035 (42)

indicating the same order of uncertainty as in
NK We note that the searched derivative cou-
plings of ~ and Q have the same signs as the direct
ones and hence have opposite signs. The iso-
scalar magnetic form factor of the nucleon re-
quires at t = 0

The photo-vector meson couplings are rather well
known, "

y ~/4m=4. 6s0.45, y~'/4w =3.6+ 0.3. (39)

SU(3) symmetry together with ideal mixing leads
in our convention to the relation
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F~(0) =-,(a~+z„) approximation from the pole parameters (25) we
obtain

= —0.06, (43)

where K~ and ~„denote the anomalous magnetic
moments of the proton and the neutron.

For our values of f(td) and f(Q) (Table II), using
(39) and the signs as predicted by SU(3) we obtain
from naive VDM

2

4z

Combining (45) and (46) leads to

( ),@
='t.2a 2.0,

(46)

Fs(0) f wNN +
2y.

'
2y.

= 0.41~ 0.03; (44)

'"" =(1.8a0.5)m, '. (45)

When we try to estimate g, „, in the narrow-width

i.e. , the test fails. The agreement for the iso-
scalar electric form factor and the failure for
the magnetic one may be inderstood in the light
of the Siegert theorem, "which states that electric
moments can be calculated reliably, whereas for
magnetic moments such a theorem does not exist.
The formula (44) may therefore be much too sim-
plistic. Both the ~II) coupl. ings are much smaller
than the ~ couplings (Table II). This is compatible
with the observation of a backward peak in
K P-A~ and almost no events in the backward
hemisphere in K p-AQ.

The coupling constants g(&) and g(~) are mainly
determined via the collaboration that together
they build up the strong spin-orbit force needed to
separate the 'Po, , waves, while the central at-
traction of the & and the central repulsion of the
~ cancel each other largely. Above, we noticed
that our g(~) has a realistic value. However, the
~N coupling is much harder to guess from other
work. Petersen and Pisut" obtain in an analysis
of wv-NZ and wv- wn (inserting the "between-up,
up-down, down-down" solutions for the n n I = 0
s-wave phase shift, which seem to be the most
reasonable ones experimentally) the ratio

B. The e, and'D, phases

The simultaneous fit to the &, and 'D, phases
poses one of the major problems for potential
models. For a review see Ref. 16, where phe-
nomenological potentials of the form

V = Vc + V~c, ~ o~+ VrS»+ Vso L (48)

are examined.
In Table IX we compare the &, and 'D, phase

shifts of this work and of the recent work of Bryan
and Gersten (BG)6 with the Livermore phase shifts.
Most meson-theoretical models obtain too small
values for &, at 210 and 330 MeV. ' We obtain
good values for &y just as the BG model' and the
OBEP model of Holinde, Erkelenz, and Alzetta
(HEA).

In Table IX we notice that the models of Ref. 6
predict too high 'D, phases. The same remark
applies to the HEA model. It is well known that
the 'D, phase shift from OPEP alone grows above

which agrees with our result (Table II). In field-
theoretical calculations of uncorrelated 2m ex-
change (TPEP) ' one obtains a spin-orbit potential
of reasonable magnitude and of the same sign as
the ~ and & contributions. If TPEP is an important
contribution to the nuclear potential, it will prob-
ably depress g(e) and possibly also g(&u). There-
fore we conclude that such high values of the direct
~ coupling as one uses in photoproduction, electro-
production, and weak pion production ' would cause
a disaster in NN.

TABLE IX. Comparison of the D2 and e( phase for several OBE models and the Livermore
phase-shift analysis (Ref. 15).

Thb
(Me V) 50

3D

142 330 50 142 330

This work 9.12 23.80 30.17 2.31 3.50 6.88
BS IV 10.34 28.37 37.92 2.10 2.56 3.76
BG 10.37 27.60 34.11 2.78 4.73 8.66
Livermore X 9.36 + 2.24 22.54+ 0.79 23.44 + 3.01 3.53 + 3.27 4.28 + 0.96 20.93 b + 5.63

' Updated version of BS III (Ref. 40) published together with the BG model in Ref. 6.
b Alternative solution of the Livermore analysis [M. H. Mac Gregor, R. A. Amdt, and R. M.

Wright, Phys. Rev. 173, 1272 (1968)]: 6(D2) =17.27 +2.18 and e& —-7.24+2.63.
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60' at 330 MeV. Therefore one has to damp the
OPEP strongly in OBEP models. The phenomeno-
logical Hamada- Johnston" and Yale" potentials
have a strong quadratic spin-orbit potential V
mainly to depress the 'D, phase. However, it
seems that such a strong quadratic spin-orbit
force as in Ref. 18 and 19 cannot be produced by
the p, ~, &p, and &. Although our 'D, phases are
rather good (cf. Table IX), our model does not
provide a genuine solution to the 'D, problem,
since the 'D, phases are suppressed also phenom-
enologically by the large x~~ core.

Tr. . BS IV (Bryan-Scott) model (updated BS III"),'
which has momentum dependence in Vc but not a
V& potential, gives only slightly higher 'D, phase
shifts than the BG model (Table IX). However,
their &, is too smal. l. at higher energies. The BG
model. ' using the Blankenbecler-Sugar equation
differs substantially from BS IV only for its good
&, and having at the same time l.ower 'D, phases
(Table IX) but still significantly too high. Note
that the BG model is evaluated in momentum space
and so it contains implicitly energy dependence
and quadratic spin-orbit effects. The situation in

the HEA model" is similar. Therefore we may
conclude that the inclusion of momentum depend-
ence in the potentials may improve things a little,
but does not solve the problem in the 'D, wave.

Finally, we want to remark that one-pion ex-
change (OPE) treated by geometric unitarization
yields lower OPE phases, "but also in such an
approach the problem persists.

C. Hard cores and low-energy parameters of & and p waves

Our model has 3 s and P hard-core parameters.
For waves with L =1 one core was necessary,
mainly determined by the 'P, wave. For the s
waves we have introduced two hard cores in order
to obtain a close fit to the low-energy parameters
and the phase-shift analysis. Physically this is

quite acceptable, since the '5, and '5, states dif-
fer in spin, isospin, and SU(3) representation.
Therefore imaginable contributions to the short-
range repulsion, such as, e.g. , relativistic effects
(multiparticle states) or heavy mesons, are dif-
ferent for 'S, and 'S, . The BG model and BS IV
model' employ one cutoff parameter only. Their
results for the low-energy parameters naturally
come out worse than ours, but are not bad at all.
Taking only one s-wave hard core in our model
and adjusting the coupling constants [mainly
g' (X )I, also gives good low-energy parameters
and almost the same y'. The main reason we
used 2 s-wave hard cores is to avoid as much
bias as possible in the determination of the cou-
pling constants due to the short-range parametriz-
ation. For comparison we have shown the 'S, low-
energy parameters of various models in Table X
together with the experimental values.

We note that in our model the hard core x, in
the 'S, -'D, waves has been fixed such as to re-
produce the experimental value of the deuteron
binding energy B. The values of a, and r, are
determined then. They turn out to be about two
standard deviations higher than their experimental
values.

Our value for the electric quadrupole moment
Q of the deuteron is too low. The sensitivity of
Q to parameter variations is by far the largest
with respect to g(rr), even such that it may be used
as a tool to determine g(rr) very accurately. There-
fore our low Q value is a consequence of the low
value of g(rr). Raising g(rr) to g' (rr)/4rr = 14.43
yields, after readjustment of the hard-core radii,
the values of Table XI for the low-energy para-
meters. Q turns out to be all right now, but be-
cause of the larger value of r, in this case, a,
needs to be larger too in order to reproduce B.
We have fixed g(rr) such that B exactly has and

a, almost has its experimental value (see Table X).
The larger value of g(rr) raises also the effective

range r, in the '50(Pp), but it remains still 5 stan-
dard deviations lower than its experimental value. "

TABLE X. Comparison with experiment of the S& low-energy parameters and the binding
energy B and the electric quadrupole moment Q of the deuteron for several OBE models.

a, (fm) r, (fm) 8 {MeV) Q (fm)

Experiment 'b
This work
BSIV '

BG c

5.423 ~ 0.005
5.431
5.41
5.39

1.761 + 0.005
1~ 771
1.84
1.81

2.224 644 a 0.000 046
2.224 644
2.24

0.2875 + 0.002
0.2721
0.277

'a„r„B from Ref. 41.
"Q from R. V. Reid, Jr. and M. L.Vaida, Phys. Rev. Lett. 29, 494 (1972).
Ref. 6,
a, , r„and B inconsistent with effective range formula.
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TABLE XI. Lom-energy parameters, calculated with g 2(n)/4n =14.43.

3$i Pi 3P() 3p 3P

a
r
p

-7.833
2.721
0.0366

5.466
1 ~ 817

-0.0106

2.577
-6.677
-0.0022

3 0333
2.966

-0.0080

1.966
-6.970
-0.0006

-0.282
4.215

-0.0111

2.224 644 6.25% 0.2878 fm

p{-a, -s)
1.818 fm 0.8001 fm 0.0265

In the latest PP phase-shift analysis lower values
of r, are also obtained: r, =2.687+0.015 fm
or r, =2.669~ 0.009 fm. The only difference with
Ref. 41 in the low-energy experimental input set
used consists of not taking the datum at 382.43
keV (Ref. 43) in the latter analysis. At the same
time, of course, slightly different values of a,
are also obtained: a, =- 7.761*0.010 fm
or a, = —7.745*0.007 fm, respectively. These
could be obtained easily in our model by changing
x, slightly.

In Table IV we have al.so displayed the calcu-
lated P-wave effective range parameters. From
Table XI one can get some feeling about the model
dependence. The 'P. .. scattering l.engths and
effective ranges agree best with set III of Sher,

Signell, and Heller", i.e. , the analysis where
the Wisconsin and Berkeley data are omitted.
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