
PHYSICAL RE VlEW D VOLUME 12, NUMBER 2 15 JULY 1975

Renormahsable massive Yang-MilLe theory with intrinsic symmetry breaktiowne

J. P. Hsu and J. A. Underwood
Center for Particle Theory, The University of Texas, Austin, Texas 78712

(Received 14 October 1974)

We use the method of the Lagrange multiplier field to construct, within the framework of
indefinite-metric field theory, a model of a massive Yang-Mills field, the mass of which derives from an
intrinsic symmetry breakdown, rather than a spontaneous symmetry breakdown. The rules for the
Feynman diagrams are given. The dynamical structure of the interacting fields is intrinsically related to
a local non-Abelian gauge symmetry which renders the theory renormalizable by standard power
counting. The part of the amplitude due to the interaction of unphysical particles in the intermediate
states, which violates unitarity and gauge symmetry, is isolated and removed, leaving the unitary
physical S matrix. The unitarity of the resulting theory, together with its independence with respect to
the parameter (, is demonstrated in calculations at the one-loop and the two-loop levels.

I. INTRODUCTION

It is widely believed that a requirement for the
renormalizability of a theory of the massive
Yang-Mills field is that the Yang-Mills quanta
should acquire their mass through a spontaneous
breakdown of Local. isospin gauge symmetry. The
principal reasoning behind any conjecture in this
vein lies with 't Hooft's establ. ishment' of the
renormalizability of such gauge theories. The
generality of such an assertion, however, is
limited with the observation of certain renorma-
l.izabl. e theories, discussed in this paper and in
Ref. 2, characterized by an indefinite metric, not
employing the spontaneous-symmetry-breakdown
mechanism. Among the significant features of the
theory in Ref. 2, not generally shared by those
gauge theories employing multiplets of Higgs
mesons, is that of asymptotic freedom. Now, it
is worth noting that in elaborating this theory the
exercise of some care is required in the assigning
of statistical. weights to higher-order Feynman
diagrams. This is due, in fact, to a lack of
independence among the unphysicaL modes par-
ticipating dynamically in the various processes.
It is possible to circumvent this circumstance by
including a pair of auxiliary fields in the structure
of the Lagrangian: one an unphysical isovector
field Q of spin zero, the mass of which coincides
with that of the spin-zero part f, of the Yang-Mills
fiel.d f&., and the other a physical isoscalar field
'll, of zero spin and vanishing rest mass. The more
usual gauge formulation for the massive Yang-
Mil, ls field'4 centers on a gauge-invariant Lagran-
gian incorporating a quartic polynomial of scalar
fields. The parameters appearing as coefficients
in this polynomial. are of such a character that
one of the scalar fieLds (iet us say it) spontaneously
develops a vacuum expectation value. The La-
grangian that displays the particl. e content of the

theory is obtained by making a shift of the form
&-+const. in the structure of the original La-
grangian. This mechanism, in breaking down the
gauge symmetry, generates a mass for the vector
field. By contrast, the Lagrangian to be exhibited
shortly does not contain such a quartic polynomial
of scalar fields. The mass of the vector field is,
indeed, introduced in the Lagrangian at the be-
ginning. The Lagrangian derives from the orig-
inal gauge-invariant Lagrangian through the
shifting of %. by the value 2M/g, twice the ratio
of the mass of the Yang-Mills field and the atten-
dant coupling constant. The mass of the vector
boson originates, then, not through a spontaneous
breakdown in the gauge symmetrv. but rather
through what may be regarded as an intrinsic
symmetry breakdown.

Within the framework of indefinite-metric
field theories, ' the propagator of the massive
vector meson is quadratic convergent and the
resultant Lagrangian [cf. Eq. (15) below] does not
contain terms of dimension higher than four. Thus,
the renormalizability of the theory is manifest.
The Green's functions, on the other hand, are not
unitary in general on account of the unphysical
poles appearing in the prop3gators. This is pre-
cisely what happens in the R-gauge formulation of
the more usual. gauge theories. " The divergences
in this formulation are no stronger than those
cropping up in the well-known renormalizable
theories. ' The significant questions appear in
connection with handling the unitarity of the theo-
ry.

A Lagrange multiplier field g is introduced in
the Lagrangian in a manner which eventually does
not affect any physical properties of the system,
and such that all unitarity excess derives from
the source terms in the g equation of motion. A
fictitious Lagrangian Zzf is constructed by using
the X equation directly. The unitarization of the
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5 matrix is realized by incorporating Feynman
rules, derived from Z&I, involving a pair of fic-
titious scalar fermions D and D', which cancel the
effects of the unphysical particles order by order
in the perturbation series." The presence of the
fields Q and L all.ows deriving the g equation of
motion without invoking the constraint equation;
hence, the fields participating in the dynamics
are treated as statistically independent. ' The
gauge freedom of the theory is embodied in the
arbitrariness of the ratio E of the squared masses
of the physical and unphysical parts of the Yang-
Mills field, yet the physical. 5 matrix is $ indepen-
dent.

II. FORMALISM

Let us consider a physical. system consisting of
a massive Yang-Mills field 7„, an unphysical
spin-0 isovector field (I), and a spin-0 isoscalar
field , all obeying Bose statistics, with a La-
grangian density of the form

2=Z, +2),
7 ~" + —M fq2+ 2 8pL8"'ll

+-,' 8„$.(8" +gK"x)rp —,
'—g7„(&8"y —y 8~x)

—8 g'f~ (Q'+~'}+ 2 gMf„2'll+Mp 8„F~, (1)

2, = --.' t(8„f "+My/t)',

where 7„,= 8,f„—8„7„-gFPf„is the Yang-Mills
field strength tensor. The term 2& gives the
field 7, ~ 8„7"a well-defined equation of motion,
and hence is a legitimate way of introducing the
negative-metric spin-0 parti, of the 4-vector field

7„ in the theory. ' We introduce a Lagrange mul-
tiplier field X by replacing the last term in 2
according to

(2)

This replacement has no physical content [cf. Eq.
(8) below]. The Euler-Lagrange equations de-
riving from Z' = 8, + Z~ are

8„P'+M8 "x+M8'y —gP'xt'„-M'f" + —,'g8" pxg +-'g(tt8" p —Q8 "&)—gM~"&+-g'f '(y'+ ll') =0,

8„(8"y+-.'gf" yx--.'g~7")--.'g 8yxf"-- g27„8~ 4g'7-„'q M-8T"-M'x/(=0,

8„(8"&+-,'gf" (p)+-'g7„8"(p ——,'g'f„''ll- ,'gMf„'=0, —

(2)

(4)

(5)

and the constraint equation, by variation of
2' =2, +Z with respect to g, is

8„~"+M(x+0)/h =o. (6)

Taking the divergence of (3) and using (4) and (5}
one derives, after some manipulation, the g
equation of motion

( +M'/t}X+g&„x8"X+5(M/$)geX+ '(Mlk)gXx-4=o,

late and remove this extra ampl. itude completely.
The amplitude due to the Lagrangian (1), which

is not unitary, may be expressed as the functional.
integral

8= exp i d x g'+Z, ) d fq, fII), y, 'll g' =g, +g

d + ~+s (8)

which shows the X field also to have a mass M/v$.
One sees that the form of the interaction terms
conducts the derivation of the p equation of motion
around the necessity of employing the constraint
equation, while leaving the p equation with only
renormalizable source terms.

The equation (7) for the Lagrangian multiplier
field g shows that g couples to other fields. Thus,
the physical states cannot be defined consistently
for all times and the physical amplitude due to
the Lagrangian (1) is not unitary because it con-
tains an extra amplitude contributed by the inter-
actions of y in the intermediate states. This has
been discussed by, for example, Rudolph and
D'urr, s and Fradkin and Tyutin. ' (See also Ref. 2.)
In order to have a unitary theory, we must iso-

where we have integrated over g and omitted the
constant factor, with 2, the external source for
the physical fields, i.e., the spin-0 field and
the spin-1 part of the field 7„. As with the mass-
less Yang-Mills field, a the Lagrangian Z in (8)
involves two unphysical degrees of freedom-here
P and 7„with the same mass M/W$. Furthermore,
as in Ref. 2, the equation ('l) for the field X in-
dicates that the amplitude X due to the interactions
of f, and Q in the intermediate states can be ef-
fectively expressed by

exp i d x& X, X* d X, X*,
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&(X, X*)= —X*'[(p+M'/&)X+gfPs "X

+ (-.' Mlt)g&X+ (8 M/5)g XX4],

(10)

where we have constructed the Lagrangian
Z(X, X*}with complex fields to imitate the inter-
actions of the two real fields @ and 7,. Since
i'(X, Xa) is a quadratic form we can easily perform
the integration to obtain

const
det(5~+(p+M'/]) 'f(-', M/()g%6 —& fgf'„8"—(8 M/Gg4 17) ~

where the constant factor is irrelevant to physics.
Thus, the extra amplitude is completely isolated
formal. ly in a functional determinant factor. In

this case one may express the unitarized ampli-
tude formally as

ft„ = constx X 'exp i d'x(Z +2,}d[ Q, p, 71].

(12)

The factor X ' can be expressed by introducing
fictitious scalar fermions D and D',

2
Q» (19)

f '„(P)f'.(q)f ~(k):

—g8...[g„.(P- q)~+q, ~(q- k)„+g~, (k-P).],
(20)

f "„(P)f'.(q)f &(k)f.'(I ):

~g [ aas aiba(gp kgu a gp agu X)

+SanyS»S S(gpagu x —gpvgxa)

X '= ex i d'xZ&& d D D', (13)

Z»-- D"[(-P+M'/])D+g7„xs "D

+(8M/$)g ltD+(8 M/$)gDXQ]. (14)

In the unitarized amplitude (12), with X ex-
pressed by (13), the extra amplitude due to the two
unphysical fields 7, and Q in the Lagrangian 2 is
canceled by the two fictitious fields 0 and D' in

the computation of the physical S matrix. The
unitarized theory follows completely from the
effective Lagrangian Z,ff,

+SaaS~»Sy (gp vga a gp xgv a)} ~

f „"(p)(p (q)Q~(k): —,'gs sy(q —k)„,

f&(p) q '(q)&(k): 8 g5.8(q k) „-,

f „"(p}f8 (q)e(k): ig M5.,g„„
f „"(P)f'(q)4'(k)q '(~): -'ig'~ 85/. g...
f„"(P)f„(q}'ll(k)'1L(l): 2 ig'5aSg„u,

f „(P)D (q}D'&(k): —gs 8 k,
~(P)D (q)D'(k): - ,'iMg5„8/f. ,

-

q) "(P)D (q)D'~(k): ——,'iMge 8 /t

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(26)

(29)

g„f —g+ Zy~, (15)

III. FEYNMAN RULES

The Lagrangian Z,« in (15) can be quantized

according to the usual canonical. quantization
procedure within the framework of indefinite-
metric field theories. " Using 2,«. one is able
to derive the fol.lowing Feynman rules:

fp»
-i5 [g., -k.k, (I-& ')/(k'-M'/&)]

Q2 jg2

i5~
k' -M'/t' ' (17)

with the particles f„Q, D, and D' unphysical and

hence not appearing in the external states of

physical. processes.

(&, P, y, &, a, 5, c are isospin indices), where
we have used the convention that all 4-mo-
menta are outgoing from the vertices. All fer-
mion vertices are bilinear in the fermions, and

therefore the scalar fermions appear only in

closed loops. %e note that there is a factor of
—j. for each scalar-fermion loop. These Feynman
rules indicate that the theory is renormalizable
by standard power counting.

IV. UNITARITY

At this stage one is able to check if the theory
is unitary. One-loop unitarity is tested by cal-
culating the imaginary part of those diagrams
contributing to second order in the X self-energy
which possess a 2-particle cut. One must show

that the contributions to the imaginary part in the
unitarity relation

20~
k' -M'/g '

ImTy; = T~g„T„) (30)
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where

a,.5 p2 —~2 5 3
—'III' 5

q
—p~ —p3

&& s(P..)e(P,.)d'P. d'P„

a, =- —Iz[f'(p, )f;(P,)JI' = 0,

n, -=+klz[f'. (p, )f:(P,)JI'

(31)

= lp l-ge...e P, l',
b,c

n, =-+-'Iz[ 0'(p, )v'(p, )]l'

(32)

= zg I g&, y&'P I,
b, c

.=-- Iz[D'(p. }D.'(p. )]i'

(33)

= -P i-ge...e P, l',
b,c

(34)

arising from those diagrams with unphysical par-
ticles in the intermediate states sum to zero, and,
thus, that in the unitarity sum only the physical
degrees of freedom contribute. We decompose
the F„propagator into the physical spin-1 part
f and the unphysical spin-0 part f, . Denoting by
A; the amplitude for the process f'(p, ) -I, -f'(p. , ),
and by Z[I, J the amplitude for the decay process
f'(p, )-I, , with I, one of six distinct intermediate
states having at least one unphysical particl. e, we
have

n, =-+ iz[z(P, }e'(P,)JI'

=g Ig5.,e P, l', (35)

lz[f,"(p,}~(p,)J I

= -g ling&. ,'P. I', (36}

and therefore lmA =5, lmA, =0, where e„ is the
polarization vector of f'(P, ), e P, = 0, and we have
used the property of symmetric phase-space
integration when M, =M, . The over-al. l. minus
sign in a„a„and a, is due to the negative metric
of f, or the scalar-fermion loop.

In the case of two-loop unitarity the phase space
can be partitioned into six distinct sectors depend-
ing on the masses of the particles in the inter-
mediate states. The contributions to ImA from
the various sectors must vanish independently
for any $. We display here the calculation for the
sector Qp, ' =3M'/$. We denote the amplitude
for the direct transition f'(P„)-I; by Z[I, J and
the amplitude for the two-step transition f'(p, )
-w(P, )v(k)-I, by Y,.[w(P, )U(k)], where m and v

are some fields and i =1, 2, . . . . For the con-
tribution of three unphysical particles in the
intermediate step of the two-loop self-energy di-
agrams of f '(p, ) we have for I, =f,'(p, )f,'(p, )f—,(p, )

a, =- ——,p I Y,[f,(p2)f &(k)J+ Y,[f,'(P3)f'&(k}J+ Y,[f,(p~)f &(k)J
b, c,d

+ Y,[f,'(P, ) tt(k)]+ Y,[f;(P,)%t(k))+ Y,[f', (P,)~(k)J+ Z[I, JI'

2

([3&e,„es~~+2K(5~5~, T 4
—5,~5,~T~~)]E2 + [ 3e B~,e s~, + 2K(5~&~,T, —5„5~~T3)]E$

b, cp

f» I, =f.'(P, )e'(p, )9 "(p,)
(37)

a, —= ——p I Y,[f,(p2)f'„(k)J+ Y,[ p'(p, )M(k)]+ Y,[ p~(p, )~(k)]
b, c,d

+ Y[f,(p )e(k)J+ Y[y'(p) '4( )kJ +Y,[y (p, )@'( )]+kZ[I, ]l'

for I,=f', (P, )y'(P, )f', (P,)-

o, =- —,Q I Y.[f!(P.)&(k)l+ Y.[f',(p, ) tt(k)J+ Y,[4'(Ps) tt(k)J I'
b,c,d

([ qees~+K(5~5, ~T, -5~5,~T, )JE +[@8,~e8,~+K(5~5,~T~ —2 „~,gT„)JE~I
b, c,d

(39)
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«r f.=-f'.(P.)D"(P.)D'(P.)

a, =- Q I Y,[ f'.(P,)f'„(&}]+Yd[D"(P)D'(td)J+ Y,[Dt'(Pd)D" (tb}]+Yd[f d(P, )+fi}]Jb

b, c,d

b, c,d
2M~'Bcc'Bdb( ™ib)b- 'Bd'Bcb( — Mid)(E. +E,)

—e Bb,BBd,[(1+KMib}Eb+2Eb]+ 5~5cdKT, E t (40)

and for f, =4ib(p )D"(p,)Dd(p )

a, -=-Q J Y,[D"(p.)D'(&}]+Yb[D'(pd)D" (&)J+Yb[@'(p.)4'(}t)]+Y,[@'(p,)&(&)]I'
b, c,d

' g'M . f3

[ ab cd ib b + Bca BdbMibEB + Bd c Bcb Mid(EB + b) Bbc Bd&12 2 J
2$

where K=M'/(, -T,„=1/(p, -p, )', M„=1/[(p,. —p, )'-M'J, and E, = ec p,"-withi, j=1,2, 3, 4. As before
we have

ImA, = a,.6,'-m' ( 5,'-M' ( 6,'-m' ( O', -P, -P, -P, 6 „6J „8 „d'P,d'P, d'P„

(41)

from which it follows that ImA =&~; ImA, =0 be-
cause P„P„and P, are symmetric in the phase-
space integration. We have also carried out the
calculation for the sector 5~,' =M'/P, with the
same result. Furthermore, using the path in-
tegral method, one can give a general and formal
proof of the unitarity and gauge independence of
the theory (See Sec. . V.)

We note that the amplitudes a,-a, in Eqs. (3'l)-
(41) for the imaginary part of the two-loop self-
energy of the vector boson f' are different from
those obtained by using the Feynman rules in Ref.
2 or 9. To be specific, if one uses the Feynman
rules in Ref. 2 or 9 there will. be no amplitudes

a, and a„and the amplitudes a„a4, and a, will
be different. This is due to the fact that the
Lagrangian (1) involves scalar fields and, there-
fore, is different from the massive Yang-Mil. ls
Lagrangian in Ref. 2. An important difference
between this paper and Ref. 2 is that the Feynman
rules related to fictitious scalar fermions in this

paper are derived without using any constraint,
while those in Ref. 2 are derived by using a con-
straint. The use of a constraint in Ref. 2 leads
to complication of unitarity beyond one-loop dia-
grams as discussed in the "note added" in that
paper and also discussed in Ref. 9 by Mohapatra
et al. In the present work, the Lagrangian (1)
includes scalar fields in such a way that it has a
symmetry structure (cf. Ref. 13) and, furthermore.
the use of a constraint is avoided and hence the
compl. ication of unitarity beyond one-loop diagrams
in Ref. 2 is resolved at the same time.

V. REMARKS AND CONCLUS1ON

The mass term M'f„'/2 destroys the usual gauge
invariance of the Lagrangian 2 in (1}, yet the
resultant theory is independent of the parameter $.
This is a ref l.ection of the fact that the unphysical
particles with mass M/v $ in the Lagrangian are
not observable, just as the gauge independence of
a non-Hermitian field derives from the nonobser-
vability of its phase. Although the Lagrangian
Z, in (1) is not invariant under the usual gauge
transformation, the structure of couplings in

(1) is still highly symmetric and this theory can
be described as possessing a new type of "gauge
invariance. " We emphasize that in deriving the
field equation ('I) for }t, all the complicated non-
renormalizable source terms(which cannot be
tolerated in a renormalizable theory) cancel com-
pletely, just as in the gauge-invariant case
(i.e., 2 with M 0). In this sense, the intimate
relation between dynamics and symmetry in the
gauge-invariant Lagrangian 2 with M=0 is not
disturbed at al.l by the presence of the terms with
the factor M in Z, because of the intrinsic sym-
metry breakdown discussed in Sec. I. This is
why the present theory for the massive Yang-
Mills field is renormalizable. '" We may remark
that there is no genuine infrared divergence in the
theory even though the 'h field is massless. This
has been checked at the one-loop level.

If one applies the Lagrange multiplier formal. ism
of Sec. II to the Georgi-Glashow theory and the
Weinberg unified theory" and repeats the steps
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(1)-(15),"one obtains the same effective Lagran-
gians as those in the usual 8-gauge formalism. '
This indicates the general validity of our formal-
ism. On the basis of this formulation, we have
verified the unitarity and gauge independence of
several nontrivial S-matrix elements. This in-
dicates that the fictitious Lagrangian (14) is indeed
working. [In fact, one can give a general and
formal proof of the unitarity and gauge independ-
ence of the renormalized physical amplitudes to
all orders by using the "distorted" local gauge
symmetry' of the Lagrangian 2, in (1) and the

path integral. "]
To conclude, we have shown, to the two-loop

level, that one can construct a unitary and re-
normalizable theory of the massive Yang-Mills
field with an intrinsic symmetry breakdown and
hence without resorting to the device of spontane-
ous symmetry breakdown.
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