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We compute the change in the vacuum polarization near a high-Z nucleus arising from the finite extent of the

nuclear charge density. A massless-electron technique is exploited to permit an analytical calculation of the
effect to all orders in Za. Applications to muonic atoms are of particular interest as tests of quantum

electrodynamics. The calculation of muonic energy level shifts is carried out to lowest order in the ratio of the

nuclear radius to the radius of the muonic orbit. This approximation is appropriate to many muonic states
with large orbits. Our analytical results are in excellent agreement with numerical studies by Gyulassy and

give as a special case the order a(Za)' calculation of Arafune. The effect on muonic x rays such as those

produced in the 5 g„,~4f, /2 transition in ' 'Pb is about 5 eV, increasing slightly the discrepancy between theory and

experiment in such systems.

I. INTRODUCTION

Quantum electrodynamics predicts deviations
from pure Coulombic behavior near a point
charge. The potential energy of a charge -e lo-
cated a distance r from a charge +Ze is modified
from V~, (r) = Zn/r -by the vacuum-polarization
charge density which extends out to a distance of
roughly half the Compton wavelength of the elec-
tron, k, /&. The term in the vacuum polarization
of order uZa, represented in Fig. 1(a), is called
the Uehling term'; after an infinite charge re-
normalization it yields a correction to Vc,„i given
by

2 lug

y, (/P 4 /pe 2)'~2

For large values of Z, the vacuum polarization
in orders a(Za)", n=3, 5, 7. . . must be considered
as well. These terms, represented in Fig. 1(b),
have been discussed extensively by Wichmann and
Kroll. ' In an earlier paper, ' we verified a central
result of Wichmann and Kroll: the value of the
induced vacuum-polarization point charge, 6Q',
in orders u(Zc. )", n = 3, 5, 7, . . . . We have also
extended the results of Wichmann and Kroll by
calculating the short-distance behavior of the
vacuum-polarization charge density near a point
nucleus. '

These corrections to Coulomb's law caused by
the vacuum polarization at small distances are of
great interest because they can be measured quite
accurately by x-ray transitions in muonic atoms.
Muons captured into atomic orbits cascade down

through electric dipole radiation and by the time
they reach low values of the principal quantum

number, populate preferentially circular orbits.
The radius of such an orbit is a„=n'/(Zct~ ),

which is, for several values of the principal quan-
tum number n, much smaller than the first elec-
tronic radius [a, = 1/(Znm, )] and the dimension
of the vacuum-polarization cloud [a,/3]. Except
for the very first values of n, the circular orbits
stay well outside the nucleus. In these circum-
stances the muon provides a sensitive measure
of the vacuum-polarization effects, unobscured
by the complexities of nuclear physics.

Both the Uehling result and the Wichmann-Kroll
result for the induced point charge have been sub-
stantially verified in such muonic x-ray exper-
iments. However, when many small, calculable
effects such as electron screening and the Lamb
shift are included, there still remains a discrep-
ancy between the theoretical predictions and the

(a)

n=1, 3, 5„~

(b)

FIG. 1. (a) A representation of the Uehling potential.
The nucleus is represented by x. (b) A representation
of all vacuum-polarization effects of order n(Ze)",
n =1,3, 5, . . . . If x represents a point source, the po-
tential is the one discussed in Refs. 2-4. The present
calculation corresponds to the difference between having
x represent a point source and having it represent a
nucleus of finite extent.
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V(r) =A(r'+ a') "' (2)

This potential is joined continuously to a pure
Coulomb field outside the nucleus. In Fig. 2 the
model potential with suitable values of the param-
eters is compared to the potential derived from
the measured charge distribution for ' Pb.

Our result for the modification of the vacuum-
polarization potential energy due to the finite nu-

clear size is'

experimental data for a number of transitions"
including 5g,l,- 4f», in 'OBPb.

A possible source of the discrepancy is the
finite extent of the nuclear charge distribution. ' "
By Gauss's law, a muon remaining outside the
nucleus is not affected directly by the details of a
spherically symmetric charge distribution inside.
However, the vacuum-polarization virtual elec-
trons and positrons which penetrate the nucleus
are influenced by the nuclear charge distribution.
The resulting distortion of the vacuum-polariza-
tion cloud extends out to the Bohr radius of the
orbiting muons and shifts their energy levels.

Since the vacuum polarization leaves the total
charge of the nucleus unchanged, the potential at
a distance r from the nucleus can be determined
once the vacuum-polarization charge density is
known at radii greater than ~: The charge inside
r is simply the negative of the charge outside r,
and contributes in a Coulomb-type fashion to the
potential. Thus it suffices to expand the vacuum-
polarization charge density in the ratio of the nu-
clear radius to r, since we shall be concerned
only with values of r & a„, which is itself much
larger than the nuclear radius for the cases of
interest to us.

Motivated by the large value of X, relative to
other length scales in the problem, we shall set
the mass of the electron to zero. Evidence for
the appropriateness of this approximation is given
below. It is essential to our techniques, which
then permit an analytical calculation to all orders
in Zn.

The details of the nuclear charge distribution
enter our calculation through a single quantity,
G/F, the ratio of the small to the large compon-
ents of the solution to the Dirac equation about
the nuclear charge distribution. The relevant
solution here is the one regular at the origin,
evaluated at the nuclear surface, for an electron
of zero energy and mass. Thus G/F can be ob-
tained by simple numerical integration using the
measured nuclear charge distribution.

In practice, we find it convenient to use a model
electrostatic potential inside the nucleus:

n b '" G/F-zo. /(1+~) r(4~)
mr r 1 [-Zn/(1+ A)] (G/F) ~ A.'(2X+ 1)'

I'(). +iZn) '
1'(2Z} (3)

where 5 is the nuclear radius and A. =[1-(Zo.)'] "'.
The result is completely general and has no model
dependence. If the finite-size correction were
required only for the aZn term, Eq. (1) could be
integrated over the nuclear charge density, with
the result'"

5V„,„(r)= 1 (r')„„1m. '(r')„„,
9 y3 3 y

1 (r4)... + ~ ~ ~

30 r' ]
' (4)

where ( )„„,denotes a mean value taken over
the nuclear charge density. When working to high-
er orders in Zn no such simple procedure is
available. However, Eq. (4}provides a convenient
check for our result. Solving the appropriate
Dirac equation to order Zu we find, generally,

(5)

Substituting Eq. (5) into Eq. (3) and expanding we

recover, as we must, the simple modification of
the Uehling potential given by the first term in
Eq. (4). The next two terms in Eq. (4) correspond
to terms we neglect, terms involving more powers
of m,a„or 5/a„. Since these dimensionless quan-
tities are of the order of 0.1 to 0.2, we anticipate
an accuracy satisfactory for the small effect being
calculated.

The form of Eq. (3) may be understood as
follows. Only 5 and r have dimensions since we
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FIG. 2. A comparison of the model potential {dashed
line) V=A{r +a ) {r&b),V =-Zn/t'r (r&b), [Eq. {2)],with
the electrostatic potential for Pb derived from its experi-
mental charge distribution [J. Heisenberg et al. , Phys.
Rev. Lett. 23, 1402 {1969)].
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have set m, =0. Thus 5V(r) is given by x ' times
a function of the dimensionless ratio 5/r The
ratio 5/r appears to the power 2A. as a consequence
of the well-known singular behavior of the Dirac
wave function of lowest angular momentum at
the origin of a Coulomb field. The factor in
square brackets represents the effect of the j=-,'

phase shift caused by the non-point-like nuclear
charge. Higher partial waves contribute with
greater powers of 5/r.

The energy shift of a muonic state due to the
potential in Eq. (2) may be calculated by finding
its expectation value for a Dirac wave function.
Typical results are shown in Table I. We have
calculated G/& for the model potential, Eq. (2},
described in detail in Sec. III. Also displayed in
Table I are the contributions from the finite-size
corrections to the Uehling term, Eq. (4). In all
these cases, the first term in Eq. (4}dominates,
supporting our expectations for the higher-order
terms in Zn that only the m, =0 term with the
lowest power of b/r need be retained.

Focusing on '"Pb, we see that finite nuclear
size effects lower the 4f», state by 20 eV and the

5g„, state by 6 eV. The Uehling piece accounts
for 12 eV and 3 eV, respectively. Thus the
u(Zo. }", n =3, 5, 7. . . terms of the finite-size ef-
fect increase the x-ray energy by 8 eV -3 eV
=5 eV. The resulting discrepancy is E(theory}
-&(expt. ) =54+ 17 eV for this transition. Similar
discrepancies exist for other high-Z atoms. '

These results are in agreement with the work
of Arafune and of Gyulassy. ' Arafune's calcu-
lation was done only to order o.(Za)' and used the

m, =0 approximation. The second term in an ex-
pansion in 5/r was retained, and the calculation
was done analytically for a model spherical nu-
cleus with uniform charge density. Our result,
Eq. (3), can be compared with Arafune's lower
term in 5/r by solving for G/& with his model
nucleus and expanding to order o. (Zo. )' only. Our

answer agrees precisely with his. Gyulassy cal-
culates numerically the finite-size effect on the
j=-,' partial wave of the vacuum polarization. He
keeps the electron mass finite, although his
studies indicate it could safely be set to zero. He
obtains excellent agreement with our analytical
result.

The procedure followed in our calculation is
straightforward, although technically complex.
The vacuum-polarization charge density is given
by the electron's Green's function with common
space-time coordinates. For the point-source
case, this is done in the conventional fashion of
multiplying regular and irregular solutions to the
radial Dirac equation for the Coulomb potential,
as described in (I). A similar procedure may be
followed for the nonpoint-source case. The solu-
tion which is regular at the origin, when evaluated
outside the nucleus, must be a linear combination
of the regular and irregular solutions to the pure
Coulombic case since it satisfies the same homo-
geneous equation. The required linear combina-
tion is determined by G/F, which characterizes
the regular solution to the true potential, evaluated
at the nuclear surface. The result of this pro-
cedure is that the regular solution outside the
nucleus has an admixture of the irregular solution
to the point problem. On the other hand, the other
function, which is bounded at infinity, evaluated
outside the nucleus is the same for the finite nu-
cleus and the point-nucleus cases. The difference
between the Green's functions for the finite size
and point-nuclear cases is then the product of two
irregular solutions to the point case. The equal-
time Green's function can be represented ex-
plicitly as an infinite integral in the complex-en-
ergy plane, along a contour which we choose to be
the imaginary axis. The integral may be evaluated
in closed form if we set m, =0.

The plan of this paper is as follows. In Sec. II
we calculate the change in the vacuum-polariza-

order 0. (Zo. ) only
m, & 0 higher order

correction in b /a&

m~ = 0, lowest
in b/a„

TABLE I. Finite-size corrections to vacuum-polarization shifts of atomic energy levels in
eV. The values of the parameters a and b (Eq. (2)j which were used were Ca, a=3.7 F, b=4.1
F; Ba, a=6.0 F; b=5.6 F; Pb, a=7.3 F, b=6.3 F.

order e (Zo. )", n =1,3, 5, ...
m~ =0, lowest
order in b/a&

"Ca20 3&v2
4f~]

138Base 3&5tp
4fv2~ si2

Pb82 3dg2
4fv2
5g si2

-0.11
-0.02

-15.9
2 ~ 7

-0.7
-104
-20
-6

-0 ~ 10
-0.02

-13.2
-2.0
-0.5
-83
-12
~3

0.02
0.01

0.24
0.14
0.09

0.69
0.38
0.25

0.00
0.00

-0.35
-0.01

0.00

-6.48
-0.15
-0.01
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II. THE VACUUM-POLARIZATION CHARGE DENSITY

The vacuum-polarization charge density is de-
termined by the electron's Green's function for
common space-time points. As discussed in (I),
this relation may be expressed as an integral
over the energy-dependent Green's function, Eq.
(I.85):

p»„„,(r) =-ie tr G (r, r; E)y'.
~jce

(6}

Here we write G to denote the true Green's func-
tion for the finite nucleus; G will denote the
Green's function for the pure Coulomb (point-nu-

tion charge density arising from the finite nuclear
size, in terms of a quantity depending on the nu-
clear charge distribution. The role of the nuclear
charge distribution is discussed in Sec. III. The
numerical results are given in Sec. IV. In Sec. V
the various theoretical perturbations on muonic
energy levels are discussed. The last section
summarizes the work. An integral is evaluated in
the Appendix.

where V(r} is the potential energy of a negative
charge in the actual electrostatic field of the nu-
cleus, which we shall assume always to be spher-
ically symmetric. The Coulomb-Dirac Green's
function, Gc, satisfies this equation with V(r}
= —Za/r Outs. ide the nucleus, the potential is
purely Coulombic. Thus if r and r' are greater
than the nuclear radius, b,

G (r, r';E) =Go(r, r';E)+ 5G(r, r';E),
in which 6G is a solution to the homogeneous
counterpart of Eq. (7}with a point Coulomb po-
tential.

The point Coulomb Green's function was con-
structed in paper I [Eq. (I.64)] in terms of an
angular momentum expansion,

(8)

cleus) case. The integration contour in Eq. (6)
is along the imaginary E axis. The inhomogeneous
equation satisfied by G is

P

y —.V -y'(E- V(r))+m G (r,r';E) =5(r-r'),

r&r' G(r. , r';E)= g g ———„—g (r;E)P» (r';E) —,
E' ss

r&r' G(r., r';E)=Q ————P» (r;E)g&r';E) —,
AK' 1 ~, 1

ge Nt

(9)

Here the sums run over the Dirac quantum num-
ber K'=a k=a (j+») and the magnetic quantum
number m. The parameter X =[k' -(Zo. )'] "', and

q = (m, ' E')"' is re-al and positive along the imag-
inary energy axis. The spinor functions Q and (I)

are regular at the origin and infinity, respective-
ly. The Green's function for a finite nucleus, G,
can be expanded in an entirely similar fashion.
When both of its coordinates (r, r'} lie outside the
nuclear surface, the solution regular at infinity
is the unique function g. However, the solution
regular at the origin becomes a linear combin-
ation, r&b:

' ' y".(r; E) = y». (r; E) + R ~ (E)P» (r; E) . (10)

The coefficient of the Q function which appears
here must be unity so that the discontinuity at
r = r' [cf. Eq. (9)] produces the inhomogeneous
5 function in the Green's function equation (7) with
a coefficient of unity. The coefficient R»i (E}is
determined by the condition that the function
be continuous across the nuclear surface into the
region where the potential is no longer Coulombic.
In view of Eqs. (6), (8), (9), and (10), we see that

outside the nuclear surface,
r&b: p„„„,(r)=p„„„(r)+bp(r),

where p„„„,(r} is the vacuum-polarization charge
induced by a point nucleus, and bp(r} is the finite-
size correction,

'" dE X K'
bp(r) =-ie g g ———R». (E)2m, q k

x —,$». (r; E}y'g (r; E} .

As explained in Sec. I, we shall compute bp(r)
to lowest order in b/r Thus, we ne.ed retain only
the lowest partial waves, K'=a I, and we can take
the electron mass to vanish, rn, =0. The Green's
function is chirally invariant when the electron
mass vanishes: G 'y' commutes with y, . Since
the Dirac operator K=yo(o" L + 1) anticommutes
with y„we conclude that terms with the two eigen-
values of this operator K' =+ k give identical con-
tribution to Eq. (12) in the massless limit. We
write E =i&(= iq) and note that the lower portion
of the integration ~& 0 is the same as the complex
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conjugation of the upper portion c &0. Thus, the
leading contribution to the finite size correction
may be written as

2eA.
"

dE
5p, (r) = — Re —R,(ie)

0

with now X = X, = [1 —(Zn )'] '"
The spinor functions that appear there were

constructed in paper I [Eq. (I.58)]. With the elec-
tron mass vanishing, we have

8 A,P(r; is) =i y'e + y„

xA x(r;ie)X„-x(r}, (14)

where y„=y r, and A q is proportional to the
Whittaker function regular at infinity. The spinor

z(r) is an eigenfunction of 8, and K with eigen-
values m and 1, respectively. It is also an eigen-
function of the operator 8 = -Ky'+ iZuy„y' with
eigenvalue -X. Using the properties of these
spinors listed in paper I [Eqs. (I.46) to (I.49)],
and noting that, since the sum over magnetic
quantum numbers is spherically symmetric we
can average over solid angle, we compute

e dk, , d A.
&p, (r) = —+, Re —R,(ie) -e'A q(r;ie)'+ ———A q(r;ie)

0
(i8)

The joining coefficient R,(ie) is determined by
the continuity of the wave function (10) at the nu-
clear surface, r =b. Since we are working only to
leading order in 5, we can use the short-distance
limits of the spinor functions P and g [Eqs. (I.42a),
(I.42b), (I.60), (I.61)] to write the joining formula
as

=b: "'4",(; )=- ~(2„,1) [X„()+&}(„,(r"}] .

(i8)

Now, with the electron mass vanishing, the func-
tions in the integral (15) depend only upon the di-
mensionless variable x = 2er,

2eb ' A q(r;ie) =I'(X iZn)-W, zq, ~, ( ),x (19)

+ ft, (ie)I'(2a)(2eb) (2e)x, &(r) .

(16)

We set

(2eb)'"
4ge[i'(2y}] ' (17)

to put the joining formula in the form

[Eq. (1.35)], where W is the Whittaker function
that is regular at infinity. We can use x as the
integration variable. Then the energy dependence
of the joining coefficient appears through 2e = x/r
Hence, the leading power of b/r involves the e
-0 limit of the joining formula (18}, where H be-
comes a dimensionless constant depending only
upon the nuclear shape. [The overall factor of
(2eb) in Eq. (18) is irrelevant. We are concerned
here only with the relative weights of the spinors
y, , ,z in ~ ~Q, .] Accordingly,

5p, (r) = —,—,—,Re dxx' -4 W&z &, ,&, (x)' ——— W&z„q, &, (x) I'(1 i n)'. —(20)x x

This integral is evaluated in the Appendix. Using
that result and solving Poisson's equation for the
potential energy, we secure

4a b z I'(4X} I'(X+ iZa) '
(2~)'(u+ i)' I"(2~)

(21)

There remains the computation of the dimension-
less joining coefficient H. It is determined by the
formula (18) with ~"~Q, (r;ie) the regular solution

yo&j. zm + ~Z, m (22)

Since y„anticommutes with y' and squares to -1,
we set

to the Dirac equation within the nuclear surface
evaluated at zero energy and zero mass. We shall
develop this equation in the usual spinor basis
provided by X&™,which are eigenfunctions of K
and t, with eigenvalues 1 and m, respectively.
These spinors also diagonalize y',
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yt X~' =&X&'

We write

(23)
Idb, b

[b'"H(b)] = — —V(b) [1+2ZnH(b) + EP(b)]/X.

(so}
"'4;(r; O) = —[F(r)X" (r)+ G(r)X' (r)], (24)

and use [Eq. (I.15)]

1~ 1 8 1 fyyICr —. V=y, —. —+-
i 'i ar r r (25)

to express the Dirac equation [Eq. (7) in homo-
geneous form with E =m=0] as the coupled equa-
tions

Outside the nuclear charge distribution V(b)
=-Zn/b and b' H(b) is indeed constant. Equation
(30) is nonlinear (a Ricattt equation), and we can-
not solve it directly. However, given V(b) (or
equivalently, the nuclear charge distribution) it
can be solved numerically to determine H (b
= nuclear radius). The lowest-order result in
Zn can be obtained from Eq. (30}in the form

dr
—+ — G(r) = -V(r)F(r)d 1

t

——— F(r) = V(r)G(r)
d 1

dr r

(26a)

(26b)

d(b'H'), Zn
V(b)

db

This can be integrated with the result

,
( )

Zn (r'&„„,
6

(sl)

(32)

Xg, xX+' (X+ 1) =ZnX,
~ -x X+'

ttt I s ttt tw
X

I ~ ttt

I atty tS I t ttl

(28a)

(28b)

(28c)

which, together with the orthonormality relations
between the X„&q [Eq. (1.49)], yield

H =H(b)

We shall solve these equations for a model po-
tential, Eq. (2), in the following section. We con-
clude this section by solving the general relation-
ship among I, G, and H for an arbitrary potential
v(r),

F(b)X" + G(b)X' =(const)[X„ i+HX„i]
(27)

This is accomplished by relating the two spinor
bases. We consider the action of y' and y„both to
the right and to the left in g, qy'X, ", and X,y

using Eqs. (22), (23), and Eqs. (I.46), (I.48).
These equations imply the relations

where (r')„„, is the mean squared radius of the
nuclear charge. This gives for the potential-en-
ergy change

«(r}=- 8~ (r'&„„, , (33)

V(r}=A(r'+ a') '" (2)

for r less than b, the nuclear radius. From the
coupled Dirac equations, Eq. (26), we can form
the second-order equation,

d' 1 dV d, —————— + V' F(r}=O.dr' V dr dr r (34)

With the model potential above, the equation has
only regular singular points. In fact, with r
=asinhu, we find

in agreement with Eq. (4).
While the differential equation (30) can be used

for any input potential, for our purposes it suf-
fices to use a model potential,

[Zn/(1+ X)]F(b}—G(b)
F(b) —[Zn/(1+ X)]G(b)

Inserting this into Eq. (21) gives the result (3}
quoted in the Introduction.

III. ROLE OF THE NUCLEAR CHARGE DENSITY

(28) , -1+A' & u) =0,

which has the regular solution

F C sinh(1 A2)'i2u

From Eq. (26b} we find then that

(35)

(36)

The expression for the change in the vacuum-
polarization potential energy due to the finite
nuclear size, Eq. (3), depends on the nuclear
charge density through the quantity b'"H(b). It
must be the same whether evaluated at the edge
of the charge distribution or somewhere outside
it. The coupled Dirac equations, Eq. (26), yield
a diff erential equation

G = —[(1-A '}'"cosh(1 -A')"' u
C
A

—cothu sinh(1 -A')'~'u] . (37)

A/(a'+ b')"'= -Zn/b . (38}

The parameters of the potential are A, a, and b,
the radius at which the potential becomes
Coulombic. Thus we have the constraint
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The remaining parameters, a and 5, can be chosen
to reproduce approximately the electrostatic po-
tential inside the nucleus. The nuclear charge
distributions are only known approximately, "and
our treatment is quite accurate enough, consider-
ing these uncertainties and the smallness of the
effect itself.

TABLE II. Theoretical determination of the x-ray
transition energy for 5g~2 4f,&2 in muonic Pb. The
values come from the present work, (I), (II), and Ref.
5. All numbers are in eV. The individual entries under
"short distance" and "Electron screening" contain con-
venient but arbitrary constant potential pieces. Only
the differences between the two columns for these fig-
ures, the transition energy contributions, are signifi-
cant.

IV. NUMERICAL RESULTS
Contribution 4f, 5~ 9/2

Table I displays some numerical results for the
level shifts resulting from the finite nuclear
charge distribution effect on vacuum polarization.
The values of the charge distribution parameters
which have been used, a and b, are also given.
A typical fit to the electrostatic potential is shown
in Fig. 2. The finite nuclear size correction for
the Uehling potential, Eq. (4}, is displayed for
comparison. We have calculated to all orders in
Za using m, =0 and keeping only the first term in
b/a„. This corresponds to the first term in Eq.
(4). The next two terms are corrections for m,
0 0 and higher-order terms in b/a&.

Table I reveals that it is necessary to go beyond
the Uehling order only for very large Z, as in
",,'Pb. The m, = 0 approximation seems very well
justified on the basis of the Uehling term. Higher-
order terms in b/a& are small except for the third
level in '"Pb. Even in this case, for the a(Zo!)"
terms with n ~ 3, the approximation is probably
good to = 2 eV. For the well-studied transition,
5g„,- 4f», in '"Pb, we find the levels shifted
down by 6 eV and 20 eV, respectively. The Uehl-
ing terms are responsible for 3 eV and 12 eV,
respectively. Altogether, the x-ray transition
energy is increased by 8 eV- 3 eV = 5 eV by the
&inite nuclear size correction to vacuum polariza-
tion in orders higher than n(Zo. ).

Our result for '"Pb is in agreement with the
k = 1 numerical calculation of Gyulassy. ' It also
agrees with the n(Zn }' analytical calculation of
Arafune. ' The first calculation of the effect was
a numerical computation by Rinker and Wilets. '
Although they reported a 16+ 2 eV rather than a
5 eV contribution for the finite-size correction
with the Uehling term removed, more recent work
by the same authors is in agreement with our re-
sults. "

V. REVIEW OF THEORETICAL CALCULATIONS
OF ENERGY LEVELS

The various corrections which must be made to
the Dirac energy levels have been described by
Blornqvist' and Sundaresan and Watson. ' In Table
II we display the corrections for the transition
5g,&,

—4f», in '"Pb. Some of the potentials asso-
ciated with these effects are displayed in Fig. 3.

Vacuum polarization:
point nucleus
0!ZQ
n (Zo. )" n = 3, 5, . ~ ~

induced point charge
short distance

2nd-order Uehling
G ZG
finite-nucleus correction

Total vacuum polarization
Dirac (with reduced mass)
Finite nucleus
Nuclear motion, rel.ativity
Radiative effects (Lamb shift)
Electron screening
Nuclear polarization

-3652

+ 152
+18
-9

-25
-20

-3536
-1188 316

+4
4

+10
-77

4

-1562

+97
+26
~3

-11
-6

-1459
-758 971

0
-2
+3

-155
0

-1191923 -760 584

E&-E4=431339 eV

Examination of Table 0 and Fig. 3 reveals that
the Coulomb potential is predominant of course,
and is of the order of MeV at the radii of these
orbits (50-SO F, or m, r = 0.15-0.22). The Uehling
potential is seen to be of the order of keV and
increases the x-ray energy.

The induced point charge for Pb is "-5.2
&&10 'e. It gives a potential of Coulombic be-
havior, but of sign opposite that of the direct
Coulomb potential. It thus decreases the x-ray
transition energy. The 4f state is shifted by
a(-5Q/e)(1/r) =+ 152 eV, while the 5g is shifted
by +97 eV.

Still treating the nucleus as a point charge, the
induced vacuum-polarization charge density may
be expanded in powers' of m, r. Since the Uehling
term has already been computed, terms of order
aZo. must not be included. In this way three po-
tentials beyond the aZe approximation are ob-
tained: (1) order m(mr), (2) order m(mr)'~, (3) the
difference between the o.Za piece of the m(mr)'~
potential and its nZa approximation which is of
order m(mr)~ As explai. ned in (II) these potentials
are of a significant size, about 50 eV for the
m(mr) potential. As indicated in Table II, their
cumulative effect is only 8 eV. Moreover, sub-
stantial cancellations occur among terms of order
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higher than a(Za)', so that they account for only
1 eV of this 8 eV.

The potential associated with the finite nuclear
size effect on vacuum polarization has a very
different r dependence. The m(mr) '" ' potential
decreases very quickly as r increases. In fact,
our calculation is applicable only for r much
greater than the nuclear radius, which for Pb is
about I F, or mr= 0.02. The 4f state has its
energy decreased by 20 eV and the 5g state is
lowered by 6 eV. These figures include the finite-
size corrections to the Uehling term.

To the above-mentioned effects, we must add
other vacuum-polarization effects which have been
calculated by other authors. These have been
compiled by Blomqvist. ' The first is the contri-
bution of the Uehling potential in second-order
perturbation. This then is an effect of order
(nZn)' Anot. her is the vacuum polarization of
order o.'Zn. Its contribution also has been cal-
culated by Blomqvist. ' A further correction re-
lated to vacuum polarization is the term of order
a'(Zu)' in which there is a single electron loop
with two attachments from the muon and two from
the nucleus. The contribution of this diagram is
still the subject of controversy, "'"and we have
not included it in our tabulation.

10

10

The remaining corrections are not directly re-
lated to vacuum polarization. These include the
finite nuclear size effect directly on the muon,
corrections to the static-nucleus approximation,
radiative effects (Lamb shift), electron screen-
ing, "and nuclear polarization. We shall use the
values cited by Blomqvist' for these corrections
in Table II.

The most recent experiment is that of Dixit
et al. ,

"who find an energy of 431285 eV a 17 eV.
The theoretical number itself has uncertainties.
The simplest of these is the uncertainty in the
muon mass and squared fine-structure constant
which scale the Dirac energy. The uncertainty in
the muon mass is about 3 parts per million, and
the uncertainty in cr' is about 2 parts per million.
These introduce an uncertainty of 1 eV in the
transition energy. The more serious uncertain-
ties arise from neglecting contributions such as
the single-loop diagram of order o, '(Zu)'. In
addition, contributions could arise from less con-
ventional sources. These might include hitherto
unobserved particles" and/or nonperturbative
effects. "

Except for the u'(Zo. )' term, the vacuum-polar-
ization corrections seem no longer to be con-
troversial. Our results are in good agreement
with those of Gyulassy, "whose computer studies
eliminate the need to expand in mr. Gyulassy
calculates only the k=j+ ~ =1 partial waves, and
then makes a small correction to approximate
the higher partial waves.

Vl. SUMMARY

10

104

10

10 I

0.01 0.02 0.05 0. I 0.2
(mer )

0.5

FIG. 3. Contributions to the potential energy of a p
in the electrostatic field about a Pb nucleus as a func-
tion of radius. (a) The Coulomb energy, (b) the Uehling
energy, (c) induced point charge contribution, (d) finite
nuclear size corrections to vacuum polarization, (e)
m(mr) term of vacuum polarization with Uehling term
removed, (f) o.Ze term of m(mr) ~ potential minus its
Uehling approximation, (g) m(mr)2~ term with the nZQ.

piece removed. Solid lines indicate negative potential
energy, dashed lines positive potential energy.

This paper concludes our three-part study of
vacuum polarization in the strong Coulomb field
surrounding a nucleus. Throughout, we have cal-
culated to all orders in Za, as is appropriate to
high-Z atoms such as ' Pb. In the first paper
techniques for using the massless electron ap-
proximation for the Dirac-Coulomb Green's func-
tion were presented and used to evaluate the in-
duced point charge. In the second paper the gen-
eral form of the induced vacuum-polarization
charge density was obtained. The first two pa-
pers provide a complete treatment of vacuum
polarization around a point nucleus, to first order
in 0. and all orders in Zo. .

In this paper we have accounted for the change
in the vacuum polarization resulting from the
finite extent of the nuclear charge distribution.
As in the two preceding papers, all calculations
were done analytically, and to all orders in Zn.

We have applied our calculations to the deter-
mination of muonic x-ray transitions. These pro-
vide critical tests of quantum electrodynamics.
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Even after all known effects are taken into ac-
count, discrepancies persist, especially in the
well-studied transition, 5g91,-4f», in '"Pb, where
we find E,„-E,„,= 54 eV+ 17 eV.

Note added in Proof. The single- electron-loop
graphs involving two-photon exchange with both the
muon and the nucleus, which are of order a'(Za)',
have been calculated recently by Fujimoto. " He
makes the plausible approximations of a static
muon and massless virtual electrons. Using a
Monte Carlo integration method, Fujimoto finds

an energy shift of 0.76(3) eV for the 5g, ~, -4f»,
transition in 2~Pb.
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APPENDIX

Equation (20) involves the integral

oo ( 2

I=Re ( dxx' -4W, ( g (y, (x)'+ ——— W, ( ~ (g, (x) F(X if)',
0

(Al)

where & =Zn. Using the differential equation

(A2)

integrations by parts yield the equivalent form

I =Re dxx'"-'W«, ,&, x ' 4X'- a+i(x--,'x' I" X-i& '.
0

(A3)

We define

Jp= dxx'" W]~ ), ,y2
x)'I' A, —if ',

0

which is needed for P =0, 1, 2. %'e represent one Whittaker function by

(A4)

( ) df -xt( I f)llgtx lf I(, +k
iC ~ &-I/2 I (g —ig)

(A5)

and use the integral'

„(..(g,) ( )
F(4X —P+1)F(2X —p+2)

( )
~)„~

F(3i( —P - if+ 2}

x E 4A. —P + 1, X —i g; 3A, —P-i f + 2; (A6)

where F(a, 5; c; z) is the usual hypergeometric function. It obeys

&(a, b; c; z) = (1 —z)' ' 'E(c —5, c —a; c; z) . (Av}

Inserting Eq. (A5) into Eq. (A4), using the integral (A6), the relation (A7), and changing variables to ~

=t(1+ t) ', we secure

J — J dv r '~' '(( —7(' F(2h+ 2 —(, ( —X —i(; 3h 2 —( —((; T).
F(3m+ 2 —p —i(",)

(A8)

The following formula" enables us to complete the calculation:
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r(2X+ 2 —s) dr T +' '~ 5'(2X+ 2 —s, 1- X —i&; 3k+ 2- s —i&; r)r(X+ ig)r(3~+ 2- s -ig),
+

I' 2X+ 2- s) f u '""" z'("2~ 2-, &-~ ic;s~ 2- c; )r(X-ig)r(n. + 2-s+ig),
r(X+ 1 —i s+ v)r(A. + 1 —i s —v)

r(2X+ I--,'s-if+ v)r(2X+ 1--,'s +if- v)
'

(A9)

First, we set v=i& to obtain

2Re . . dr T " ' F(2A. + 2-s, 1 —A. -i&; 3A. + 2 —s-ig; r) =
I(2X+ 2- s) '

g („),), , q r(~+ I --,' s+ it.) '
I' X+ig r 3A. + 2 —s —ig I' 2A. + 1 —is

(A10)

Specializing Eq. (A10) to s =2 gives directly

r(4& —1) I r(& it)—I'
2r(2~)'

Specializing Eq. (A10) to s =0 gives one piece of Re J, [that involving the cross term —2T in (1 —T)'] .
Next, we set s = 0 in Eq. (A9) and add the formulas for v =i & + 1 and v =i g —1 to obtain

(A11)

Re . . dTv' ' ' (1+ r')&(2K+ 2, 1-X—i&; 3A. + 2 —it; r)=Re
r(2m+ 2) ', , «, r(z ig)r-(x+ 2+ ig)

r X+ig I' 3X+ 2

(A12)

which gives the remaining pieces of ReJ, . Thus,

r(4~+ 1}
~
r(~ -i g) ~'

0 2&r(2&}2 2X+ 1 2X (A13)

Finally, we set s = 1 in Eq. (A9) and subtract the formula with v =i g —i f rom that with v =i g + —,
' to derive

r(4~)lr(~- ~)l'
I"(2X) 2X

It is now a trivial matter to evaluate

1= (4A. —1)A. Re J, —rIm8, ——,Re J,= r
r(4~) ~r(~-ig}~'

giving Eq. (21).

(A14)

(A15)
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