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Vacuum polarf~~tion in a strong Coulomb field. II. Short-distance corrections*
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We continue our study of the behavior of the vacuum polarization near the nucleus, the region of importance
for heavy muonic atoms. We show that the vacuum polarization potential induced by a point nuclear charge
can be expanded in certain integral and nonintegral powers of the radius r, an expansion involving r ', r, r',
and higher terms. The coefficient of the r ' term was computed in the previous paper, analytically, to all orders
of Za. In this paper we compute the coefficients of the r and r'" terms analytically, to all orders in Za. Our
results agree in third order with earlier calculations, which had been done only to this order. Parts of our
calculation are considerably simplified by an expansion in powers of the electron mass using formal operator
and determinantal techniques.

I. INTRODUCTION AND SUMMARY

Vacuum polarization in heavy muonic atoms is
a large effect, and it must be treated to all orders
in the coupling strength Zu between the virtual-
electron loop and the nucleus. As we discussed in
the previous paper, ' only the short-distance limit
of the higher-order terms [o,(Zo. )', . . . ] is impor-
tant. In that paper' we computed, analytically,
and to all orders in Za, the higher-order vacuum-
polarization point charge which is induced by a
point nuclear charge. The induced point charge
is the major effect of the higher-order vacuum
polarization. In this paper we discuss the nature
of smaller terms in the vacuum-polarization po-
tential about a point nuclear charge. In particular,
we compute, analytically, and to all orders in Zn,
the coefficients of the first two short-distance cor-
rections to the induced point charge potential. '
The following paper' discusses the corrections
to the vacuum-polarization potential brought about
by the finite nuclear size and surveys the experi-
mental situation.

Before entering into the details of our calcula-
tion, we shall discuss our results. Vfe develop
a short-distance expansion of the vacuum-polar-
ization potential energy, V„„(r), in ascending pow-
ers of the radial distance r scaled by the electron-
ic Compton wavelength +, = m '. The general form
1s

V„,(r) = m Q a„,(mr)" '+a,
-1=0

4k k'
a, = n(Zo, )P, Re)'(i.„+i Zo. )

mA.k 4A.k —1
k=1

A.k +k'
2k'(2X~ + 1)

(2)

where g'(z) = (d'/dz') 1nI'(z). The first two terms
of the series expansion of a, in powers of Zn are
computed in the Appendix, with the result that

ber k=j+ &. We have omitted from Eq. (1) the
well-known portion of the Uehling potential,
aZo(2 lnmr + 2y+ —', )/3', which arises from the
infinite charge renormalization in order n(Za)
Equation (1) contains all the remaining portions
of the Uehling potential, as well as all higher-or-
der contributions. The coefficient of the leading
term is, up to a factor, the induced point charge
computed in paper 1, a, = —a6Q'/e. The constant
term a, does not affect transition energies, and
there is no need to compute it. Any of the other
terms in the potential (1) can be calculated by the
methods of this paper, but the evaluation of only
the coefficients a, and a» is adequate to deter-
mine accurately the energy shifts in heavy muonic
atoms.

The coefficients a2g 1 of the odd-integer powers
in potential (1) are related to an expansion of the
electron's Green's function in powers of the
squared electron mass. These terms are related
essentially to the high-energy behavior of the
Green's function. They can be evaluated by for-
mal operator and determinantal techniques. For
the first term we find

(m )2 a~+ n

k=1 n=0

where the coefficients a„,and a»„+„are func-
tions of Za. In the second double sum, Ak

=[k' -(Zo. )']'~' is the effective angular momen-
tum in the relativistic Coulomb problem for an
electron with an angular momentum quantum num-

a, = —((Zo.)+[—,', v'+ —,' v' —6)(3)](Zc.)'+ ~ ~ }

where g(p) =Qn ~ is the Riemann g function. The
coefficients that appear here agree with the pre-
vious calculations to third order of Blomqvist4
and Bell, ' who worked from expressions obtained
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some time ago by Wichmann and Kroll. ' Our meth-
ods are entirely different from those used in the
arlier work 4-s

The coefficients a2~ „of the noninteger powers
in the potential (1) depend essentially only on the
low-energy behavior of the electron's Green's
function. They can be evaluated from the series
development of the Green's function in powers of
the radius r. We find that the first of these terms
can be expressed as a limit of a regularized inte-
gral,

Sn(Zn) I'(- 2A) coswX
2~(2~+ 1) r(2m+1)

2

Re/'(& —iZn) =—1 ~ ~ 1 1

dZ&
2 ln) I ( ~ —i Zu))'

1 d
ln coshmZz . (7)

Ieg 4 1
3 (cosh —'wv3 ) A. —'

(8)

It is convenient to separate this pole from the
coefficients so as to obtain smooth, slowly vary-
ing functions of Ze. We also separate the lowest-
order [n(Zn}] contribution. Thus, we define reg-
ular parts of the coefficients by writing

u(Zn)
m

e I'(X+ i(Zn)e/q)
q I'(1+ i (Zn)e/q)

(4)
and

a, = —-', (Zu)
Here p =q —~ and, for notational simplicj. ty,
we write X =A., =[1-(ZnP]'i'. This limit is to be
taken in the following manner: First, the inte-
gral is evaluated in a region Re(v —2A) &1 where
it converges. The result is then analytically con-
tinued to the point' v=0 along a route in the com-
plex v plane that avoids the poles at v —2A. =1,
v —2A. =O, and v —2A. = —1. The integral (4) can
be expanded in powers of Zz in a straightforward
fashion using a standard representation of the
beta function. ' We find

a,„=n(- ~9(Zn) + &[y+3g(3) +2 ln2 -~8'](Zu)'

+ ~ ~ ~ (5)

where y =0.577 ~ ~ ~ is Euler's constant. The co-
efficients that appear here agree with those found
previously. '

Both coefficients a, and a2~ are singular at A. = 2.
However, at this point both terms are of order
(mw)', and the singularities cancel. The pole in
a, at X = w is evident in the first term (k = 1) in the
k sum, Eq. (2). The pole in a, at X= & comes from
the large-q range of the integral (4}; at X = -', the
continuation is singular at v=0. The pole in Eq.
(4) is easily extracted by expanding the integrand
in the first few leading powers of m/q. We have

reg 1
3 (cosh-,'wW3)' z —-'

(9)

and

= 0.276 (10a)

4 m 1(, ~), , =0.198 —0.240

At the point X= w, one has (Zn) '=~~, so we have
removed poles with the correct residues. Figures
1 and 2 display our numerical evaluations of the
functions aP' and a,"~g computed from the sum (2),
the integral (4), and the definitions (8) and (9).
Accurate numerical values of a, and a, ~ may be
determined from these figures and Eqs. (8) and
(9). The coefficients aP and a,'~~ are indeed
smooth and slowly varying functions except for
singularities as Za -1. It can be shown that
these singularities cancel in the complete poten-
tial.

In order to assess the significance of our cal-
culations" done to all orders in Zu, let us con-
sider the (not atypical) case of a Pb nucleus where
Z~ —0.6, A, —0.8. Now

llm 0, = —lim a2„
X ~1/2 X ~1/2 = —0.042 . (11a)

&vS= u(Zn) —Ref' —+
m 2 2 A. ——

lj 1= n(Zn) (cosh-, wv3 }' Z ——,
1

Here the last equality follows from the identities
—6g(3) = 0.166

16 6
{10b)

These numbers should be compared t:o the corre-
sponding coefficients previously calculated ' for
the order-(Zn)' terms Referrin. g to Eqs. (3) and
(5), we see that these are
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FIG. 2. The coefficient aPg as a function of {Zu)
~Eq. {9)1.
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FIG. 1. The coefficient a&" as a function of {Zn)
[Eq. {8)].

and

9[@+3)(3}+2ln2 —~~'] =+0.090. (11b)

There are very large differences between Eqs.
(10a) and (10b) and between Eqs. (lla) and (lib).
Thus, the higher-order corrections are very im-
portant in these coefficients. However, when all
the contributions are added up, including the third-
and higher-order contributions to the potential
from the difference

—m+9 n(Zn }[(mr}'"—(mr }']

[cf. Eqs. (1) and (9)], the higher-order correc-
tions have little effect on transition energies.
Substantial cancellations occur. For example, '
in the 5g-4f transition in muonic Pb, the terms
which we have calculated to all orders in Zn raise
the transition energy by 7.9 eV. The previous
calculations~' of these terms to only order (Za)'
gave a transition energy shift of 6.6 eV. Since
large cancellations do occur, small errors could
change results considerably. Our confirmation of
previous work is thus not without significance.

The plan of this paper is as follows: In Sec. II
we develop the general formulation of the problem,
deriving an expansion of the vacuum-polarization
potential in ascending powers of m~. The general
method for calculating the odd-integer terms is

given in Sec. III, and the leading odd-integer term
is explicitly evaluated. The general method for
calculating the remaining, noninteger terms is
given in Sec. IV, and the leading noninteger term
is explicitly evaluated. The sums needed for the
expansion (3) are worked out in the Appendix.

lI. GENERAL FORMULATION

In the notation of paper I, the vacuum-polariza-
tion charge density

p Ir}= —e(]I)t(r, t)]))(r, t))
vacpo

may be written in the form

(1.84)

j oo

p (r) = —ie —trG(r, r; E)y'.
vacpol j oo 2' (1.85)

4m'2p Ir) =eQ o,(r) .
vacpo

k=x

Changing variables from E =ie to q =(e'+ m')' '
and making use of Eqs. (1.89) and (1.90) gives

(12)

(13)

with

An angular momentum decomposition of the Dirac-
Coulomb Green's function G yields

f (qr; — = —Re — 2 (a ~ (q trr; aa)+q (rr; aa)]+ ~ ]qa(rr; (a') —q (rr; aa')]
2k q . Zu ZQ d

'
q r

(14)

We now write, as we often shall, ](.=]].„=[k' -(Z(].)']'t' to achieve some notational simplicity. Here 9,„are
radial Green's functions for the second-order Dirac-Coulomb equation. They may be expressed as

9,~(r, r';E) =A, „(r„E)B,),(r„E), ' (1.33}
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with A, z and B,~ proportional to Whittaker functions [(1.35) and (1.36)j which are regular at infinity and the

origin, respectively. It is convenient to define the functions

and

I'z qr; = q Q„r, r; ie)+9 z r, r; ie
q

(15)

Zat E Ze&
H~ qr; =q A„r ic)B „r ie — A'+ A ~ r ie B~ r ie) (16)

It follows from Eqs. (I.35) and (L36) that, if X is
considered an independent parameter, then

these functions depend upon the variables q, r,
Za, and c only in the combination displayed in
Eqs. (15) and (16). This simplicity will be of im-
portance in the next section. Now, using Eqs.
(I.56) and (I.57),

new regularized integral (21) defines an analytic
function of v for Re v&0. Now, if Re v&N+ 1, the
separate regularized integrals converge, and we

have

This enables us to write Eq. (14) as

(17)

with

(22)

r~" "l(r) = dqft"' qr (23}

+Z~ —H ~ qr;

(18)

We turn now to the development of o~(r) in

ascending powers of mr. The Whittaker functions
which appear in the integrand (18) can be expanded
as a sum of powers of qr, (qr), which includes
noninteger as well as integer powers. We can
use these expansions to decompose the integrand

f,(qr; c/q) into a finite power series and a remain-
der, f," (qr; e/q}, which is of order r":

f, (qr, —)=I c,q( )IqrIq f i( r~, —
)q

However, we cannot insert this decomposition
into the integral (13) and integrate the sum and
the remainder separately because the two inte-
grals would not converge at large q values. To
remedy this situation, we return to the original
integral (13) and note that it can be written as a
limit of a regularized integral

0 (r) = llm cr "(r),
v~0

where

(21)

Since the original integral (13) converges, the

The integrals in the P sum in Eq. (22) have only
simple poles in v in the interval 0 &Rev &N+1.
These poles arise from the large-q region of the
integration where Q~(e/q) can be expanded in pow-
ers of m'/q' since Cq, (e/q) is analytic in e/q
=(I -m'/q'}'q' when je/q} is less than h/Zo. . This
expansion generates poles at v = P —(odd integers).
We show in Sec. IV that the powers p are either
even integers, P = 2n, or nonintegral, P = 2k~ +n.
Hence, there is no ambiguity in analytically con-
tinuing any of the integrals in the P sum in Eq.
(22} from the region Rev&%+I to the point v =0.
Since oP(r) is analytic in v for 0 & Rev &N+ I, the
remaining term in Eq. (22), o~&'"~(r), must have

only simple poles in this region which precisely
cancel the poles in the P sum. Hence, F~" "'(r)
can be analytically continued to the point v=0
without ambiguity. We can, therefore, compute
the expansion of oq, (r) in powers of mr up to terms
of order (mr)" by separately computing the P sum
and the remainder o~&""l(r) in Eq. (22) for Rev
&N+1 and then analytically continuing the two
parts to the point v=0. We show in Sec. IV that
the even-integer terms P=2n vanish when they
are analytically continued to the point v=0. Thus,
the P sum in Eq. (22}, the sum coming from a sim-
ple power-series expansion of the integrand, gives
only the nonintegral powers P =2A~+n in the series
expansion (1) of the vacuum-polarization potential.
We show now that the remainder term Fq,

""(r}
gives the odd-integer powers in the series expan-
sion (1) of the vacuum-polarization potential.
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This can be done by the use of power-series ex-
pansions in the squared electron mass. Since this
mass appears only in the variable e/q = (1-m'/q')'&',
such an expansion gives ascending powers of
m'/q'. We expand the original integrand

r dqf&~'~' qr — - dq 8&"~l qrk t
q

k

Zm(mr) ( /m}" " '

21 +1 -N
m'

q iq = fal~q ~

l =0

and also each of the coefficients of its power-
series development in qr,

Ck — = Ck

We now write the remainder in Eq (19.) as

L 2
f&"~ qr; — =Pf, , (qr)

l=o

+f&"" qrk

(24)

(26)

(29)

Thus both portions of the integral (27) are indeed
of order m(mr)" as r 0.-

The bound for 8(&"~'(qr; m/q) may be demon-
strated by considering

H(qr;m/q) =(qr) "(m/q) '~ '8(&"~~(qr; m/q) .

Now H(qr; m/q) is analytic in m/q within the circle
~m/q)&m/M, with qr fixed. From the maximum-
modulus theorem, if ~m/q[&m/M, then

IH(qr; m/q)I& sup~ &,~= &~IH(qr;m/q)l=ff„

We shall have our bound if K,„ is a bounded func-
tion of qr. As qr-~, H(qr; m/q)-0 since
F~"' ~(qr; m/q) goes as (qy), p&N In pa.rticular,
on the circle (m/q~= m/M, H(qr; m/q)-0 and con-
sequently

K,„ = 0.
We choose the upper limit on the l sum to satisfy
2I, +1&N so that f&" ~'((qr; e/q) is smaller than

O(q ') for large q. This ensures that the contri-
bution of g&"' ~(qr; e/q) to P~&'"i(r } at v = 0 con-
verges:

(27}

For qr 0, H-(qr; m/q) approaches a finite limit,
implying that K«does as well. It follows that K«
is bounded as a function of qx, K,„&K. This estab-
lishes the bound, Eq. (28).

We may now insert the decomposition (26) in the
remainder integral (23) and compute

We now demonstrate that HP~&(mr) is of order
m(mr)" for r-0. Since jf" '(qr;e/q) has the pow-
ers (qr)8 deleted for p&N, f&&,

"'~ ~(qr; e/q) =O(r")
as r -0 at fixed q. It follows that the integral (27)
up toq=M»m is O(r") For the. intervalM&q&~
we exploit the analyticity of S,(qr; e/q), the com-
plex function whose real part is f,(qr; e/q) [cf. Eq.
(14}]. We shall consider this a function of two
independent variables, qr and e/q, with e/q ex-
tended to complex values. This function is also
analytic regarded as a function of m/q for [m/q~
& m/M since s, (qr; e/q} is analytic in e/q for
0& [ ~/q}& A/Zo&, while e/q is analytic in m/q for
Im/ql&1 I.et s& '~~((qr;m/q) represent the cor-
responding analytic function of m/q, whose real
part is f&"' '(qr; e/q). Below we establish the uni-
form bound

m ""
F&""~(r)= Q dq f, , (qr)

l=p

+O((mr)" ) . (30)

The sum of integrals which appears here is just
the first L terms of the expansion of the conver-
gent integral (21) in powers of the squared elec-
tron mass, and there is no difficulty in analytical-
ly continuing it to the point v=0. The analytic
continuation of the P sum appearing in Eq. (29)
is manifest, and so

(28)

where K is some constant. From this follows the
bound

PÃ P72J"P+1-2l
8&N l=p

+O((mr)" ) . (31)
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This result can be simplified by observing that

(32}

(2x, +n+1)(2z, +n)

xlim —Ck k'"

where quotation marks on the lower limit indicate
that if P —2l&1, the divergent lower limit of the
indefinite integral is to be deleted. Using this
prescription, the P sum occurring in Eq. (31)
ma, y be written as

(37)

where the limit is actually the analytic continua-
tion to v = 0. The constant term in the potential,
a„cannot be determined by our methods since it
involves an integration of the charge density over
all space. The constant term is, however, irrele-
vant in the calculation of transition energy differ-
ences.

(33)

Accordingly, we can rewrite Eq. (31) in the simple
form

o[,'=o'" (r) = g m(mr)" ' dxf»(x)x
~ I p %1

1=0

III. ODD-INTEGER POWERS

The odd-integer terms in the vacuum-polariza-
tion potential are obtained from an expansion of
the integrand

4Ai' (e; — =, Re ie'Ii'i er;e'e-'
q mA.

2 - '
q

+O((mr)" ) .
q+Za —II& qr; Zn— (18)

4xr'p (r) = e Pa, (r),
k=l

(12}

we see that each term in the vacuum-polarization
potential energy obeys the Poisson equation in the
form

Let us recapitulate. We have shown that the
vacuum-polarization charge density can be ex-
panded in a power series of mr, the sum contain-
ing odd-integer powers and certain noninteger
powers. The odd-integer terms are obtained from
an expansion of the integral (13}in powers of the
squared electron mass, Eq. (24), with the result
given in Eq. (34). Recalling that

in powers of the squared electron mass. This
mass enters only through the ratio

e /q [I m2/q2] 1/2

The term of zero order in the electron mass gives
rise to the induced point charge: a 5 function in
the charge density. This term must be separated
and computed as a generalized function, as done
in paper I. In view of Eq. (18), the term of first
order in the squared electron mass can be ex-
pressed [in the notation of Eq. (24)] as

f, ,(x)=, Re —iJP(Za)
( }

F~'(x; Za)

-r, rV, (r) = n&, (r),- (35) 8
+ Za 1-(Za) H z(x; Za)

Zn)

where e2/4v=a is the fine-structure constant. It
is straightforward to insert Eq. (34) into Eq. (35)
and to solve for the odd-integer terms in V,(r)
Comparing this with the general form (1), we
find that the coefficients of the odd-integer pow-
ers are given by

0 40

2l~ 2I(2I - I)
k=1

&I p IO

(36)

The noninteger terms in the potential are obtained
from an expansion of the integral (13) in powers
of the radius using Eq. (19). We have already
noted that these powers are of the form p=2Ak+n.
Thus, referring to Eq. (22), we see that the co-
efficients of the noninteger powers are given by and

dx F%,'~(» Zn)»-"
~Ip ~ ~

(39)

(38)

Here A. is considered an independent parameter,
and it is not to be differentiated. The higher-or-
der terms in the expansion can be expressed sim-
ilarly by differential operators of Ze applied to
the two functions F%,+~(x; Zn) andH~(x; Zn), but
there is no need to work them out explicitly. We
shall, however, outline the calculation to arbi-
trary order. This we see, according to Eq. (36),
involves the computation of the parameters
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hq „= dxH!,(x; Za)x ",
~ I 0 1~

(40)
tential of arbitrary order. Recalling the defini-
tion, (15), of r!~ ', we see that

with n even.
These parameters can be computed recursively.

In the previous section we observed that Eqs.
(I.56} and (1.57} enabled us to express a deriva-
tive of r&~ & in terms of I'( and H~, Eq. (17).
Specializing this result to the case e/q =1 gives

Reyt~-I=Re dr[9 ~{r,r; ie)
0

-9 ~(r, r; i e )] —,q (47)

—r„- (x; Za) = 2 - - r I; (x; Za)( ) SZQ A. +)
dx ' '

Z x

2
+ H„(x;—Za}. (41)

The same technique can also be employed to der-
ive

with the Green's functions evaluated at zero elec-
tron mass. Here we have dispensed with the "0"
notation since the integral converges at its lower
limit. This integral can be viewed as the trace
of an operator. It was evaluated in paper I, Eq.
(1.77):

Rey!~ ] = —
& Re[!}(X+I —i Za) !}(A-—i Zn)]

—rt' (x; Zn) =2 —— r( (x; Z )
6 +) SZOt A. )

dx '
A. x

(42) 1= —2 Re
A, —iZo. (48)

and

H „(x;Za) = —(!P+ (Zn }')r( !(x; Zn } .
2 2 (43)

We write x "=-(n —1) '(d/dx)x "", integrate by
parts, and use Eq. (43) to obtain our first recur-
sion relation:

1
q(z + 1) = —+ !}I(z). (49)

There remains the determination of

with the last form following from the relationship
between f functions

h „„= —()P + (Za)') yI „',. (44) Imys;~! =Im dr[9), (r, r; ie)
l4 0 tl

There are no end-point contributions at x = 0 by
virtue of the "0"prescription introduced in the
previous section. In an entirely similar fashion
we find that

~h,!,-&r!-,!) (45)

x [(n 1)ytz-~! ~ i Za(2n 3)ytz-~! ~] (46)

Thus, all the various parameters are determined
uniquely by two parameters which start the itera-
tion sequence.

Since Eq. (44} directly relates h ~ » to y(,!,
we find from Eq. (18) that a term in the potential
of order 2/ —1 involves Imyt~'~, and Reys, ~!,

Moreover, Eqs. (45) and (46) relate the imagin-
ary parts of y),'„'s with n even to the real parts
of y(„'„'s with n odd. Thus, we may start with

Rey&, and Imy&+2 to determine a term in the po-

Finally, the same technique relates y~ „ to y(„'),
y~t'! „andh~ „,. Using Eqs. (44} and (45} for
these latter parameters, all quantities may be
expressed in terms of y„'s to secure the second-
order recursion relation

( ) 1 1
n —2 —,'(n —1)' —h'

1+9 ~{r,r; ie] —,. (50)

In this case, the integral does not converge at its
lower limit, and it is necessary to use the "0"
prescription. However, this divergence is a
purely real quantity, and it disappears when
the imaginary part is taken. We can dispose of
the "0"prescription by subtracting free-particle
Green's functions 9&,'~~(r, r; i e) which are purely
real and have the same limiting behavior for
small r as +9~(r, r; ie). Thus

Imy~', =Im dr 8~ r, r; ic)-8~' r, r; ie)
0

1
+ 9 „(r,r; i e) Q~'„(r, r-; i e )] —,

(51)

Imys, +~! = —Im[(23. + 1) 'g(P. + 1 —i Zn)

+ (2Z —1 } 'q(!!.—i Zn) ] . (52)

Using the relationship between g functions, Eq.
(49), this result may be expressed as

and we again obtain the trace of an operator eval-
uated in paper I, Eq. (I.31),
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ImyI+,l = —Im 4, 1
](!((X—i Za) +

2

4z . 1 1 e, =-', eQ J e f, ,(e)» *.
k~y

(54)

(53)

We specialize now to the leading correction with
coefficient [Eq. (36)]

Using Eq. (38) and the results of the paragraphs
above, we find that

, Re
I

—'e (Ze] y[',) ~ Ze (-(Ze) —[e' ~ (Ze]']y[,
Ik=I.

(55)

Inserting the evaluations (52) and (53) of the y
parameters into Eq. (55), we achieve the result
(2) quoted in Sec. I.

a z a(a+1) z'
4(a, c; z) =1+ ——+ + ~ ~ P

c I! c(c+1) 2! (56)

It is convenient to make use of Kummer's trans-
formation"

IV. NONINTEGER TERMS

The noninteger terms in the vacuum-polariza-
tion potential are obtained by an expansion of the
integrand f],(qr; e/q) in powers of the radius. Such
an expansion can be carried out if the integrand is
written entirely in terms of the regular confluent
hypergeometric function

Z6
'g =ZQ-

Q'
(59)

is purely imaginary. The other Whittaker function
which we employ, the function which is regular at
infinity (I.35), can be expressed by the qy functions
according to the formula"

%(a;c;z) = }4(a,c;z)F(l —c)
I a —c+1

our Whittaker function (I.36), which is regular at
the origin as

B ~(r; ie) =F(2A+I + I) '(2q) '(2e') "~"'~'e"'
x 4 (]].—t} + & +&, 2l(. + 1 +I; —2qr),

(58)
where

4(a, c; z) =e'4(c —a, c; —z) (57)

to remove an overall exponential factor from the
integrand. We use this transformation and write We obtain

+ z' '4y(a —c+1,2 —c;z).I'(c —1)
I a

(60)

A~&(r; iz) =F(2][jl)(2qr) +' '~' 'e '"4((- x —r]+ 2+ 2, 1 —2][+ I;2qr)
1 (

+ I'(- 2](.v1), , (2qr )""'"'e '"4 (]].—q + z + z, 2]].+ 1 +I; 2qr }. (61)

The integrand f~(qr; z/q) is a bilinear form in A, „B,],. By virtue of Eqs. (58) and (61), it is of the form

f (qr; e/q) =E],(qr; e/q) + (2qr}' F,(qr; e/q),

where both E,(qr; e/q) and F,(qr; z/q) possess a series development in integer powers of qr.
We refer to Eqs. (15), (16), (18), and (58), (61}, (62) to compute

4k ~, 1
Ek qr; — =, Re ik' qr 4 -A, -g, -2A,;2qr 4 A. -@+1,21+2;-2qr)

(62)

1
+ 4(- A —]}+I,2 —2][.; 2qr)4(]]. —[7, 2X; —2')2x-1

+ Za — ]]4((-g —qe —2][.!2qy)4(g —r]» 2][,; —2''}

x 4(- l(. —t}+ I, 2 —2]].; 2' )4 (l(. —t} + I, 2](. (- 2; —2' ) (63)
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We shall need only the general, qualitative fea-
tures of this gross expression. First, by virtue
of Kummer's transformation (57), none of the pro-
ducts of the two 4 functions is altered by the si-
multaneous substitutions g - —q, qr -—qr. Since
all the quantities in the curly bracket in Eq. (63)
are real except for the purely imaginary parame-
ter q and the factor i(qr) in front of the first
square brackets, complex conjugation of the curly
brackets is equivalent to the reflection (qr}- —(qr).
Since we are to take the real part of the curly
brackets, the result is an even function of qr,

a maximum power r}'" '. Hence, C',"(e/q) is a
finite polynomial in e/q, containing only odd pow-
ers (e/q)'" ', with 0-~n'-~n, and Eq. (65) involves
a finite series of terms of the form'

df(sjnhf)~" (cosh)) "+

E, —qr; — =E~ qr;— (64) 1 I'(n'+ —)~I'(-n —~+ v/2)
2 I'(n' —n + v/2)

We can now prove that the even powers of mr
in the )3 sum in Eq. (22} vanish when the analytic
continuation to v=0 is performed,

lim —C~" — — = 0. (65)

C~ C~ (66)

The coefficient C',"(e/q) is obtained from the terms
of order (qr}'" in the power-series expansion of

Eq. (63). Note that we are to take the imaginary
part of the first square brackets in Eq. (63).
Hence, it is odd in the imaginary parameter
t) =is/q. Moreover, taking the real part of the
second square brackets in Eq. (63) renders it
even in e/q, but there is an additional, overall
multiplicative factor of q/e. Thus E,(q, e/q) is
an odd function of e/q and the coefficients C',"(e/q)
must be odd as well,

(67)

I (x n) I (Z —q+ I)——(~' —7i') I'(I -~-q) I'(-~-t}) ' (68)

Each of these vanishes when analytically continued
to the point v=0.

We have now shown that only the noninteger
terms (2qr)' F~(qr; e/q) in Eq. (62} contribute to
the P sum (22). The expansion of F,(qr; c/q) in in-
teger powers of qr yields the functions C~ +"(e/q)
which enter in Eq. (37)—the formula which deter-
mines the noninteger coefficients a, ~,„of the vac-
uum-polarization potential. We can again use Eqs.
(15), (16), (18) and (58), (61}, (62) to express
F,(qr; e/q) in terms of the regular 4 functions,
functions which can be expanded in integer powers
of qx. This expression can be simplified some-
what by using

According to the structure of the power series
(56), the coefficient of (qr)'" in Eg. (63) involves
limited, non-negative, integer powers of g, with

I'(- 2~+ 1) I"(- 2t —1}
I'(2A. + 2} I'(2X}

and Kummer's transformation (57). We find

(69)

2& . I'(- 2X —1) I'(A. —q + 1)
E& qr; — =, Re ik' 2qr)'4 A. —q+1, 2A. +2; 2qr}4(A. +@+1,2A. +2; —2')'

q mA.
' I 2x+2) I —z -7i)

+
1 }

e(~- ,t}x2; 2'}e(Z q+, ~2; 2rq)-r(- 2m+ I) r(~ —q)
I' 2z I'1-x-g

+2Zo. — (2qr)4(X —t}+I, 21+2; 2qr)4(A. +q, 2A. ; —2qr)q I'(-2a —1) I'(x —r}+I)
1" 2A. I (- z-t})

(70}



12 VACUUM POLARIZATION IN A STRONG COULOMB. . . . II. 605

As discussed in Sec. I, we need work out ex-
plicitly only the first term in Eq. (70), E,(0, e/q),
which gives

( 2) 22&y 0

to write

e 8k' 2), I'(- 2A, )
C2, — = 22' (cos2A)Za-

q z I'(2A. + 1) q

2k' „ I'(- 2~+ I) I'(~ —2)), 2 Im I'(2~} I'(1 - Z -2))
I'(z+ i Zae/q)
I'(1+ i Zue/q)

(74)

We use

22
8k', I'(- 2X) I'(A —2}) 1)Im (~1

m I'(2Z+1) I'(1 —A. —2))

Im
1

=
I I'(a+2})i' Im —sinn(X+@)

I'(X —q) 1
I'1 —Z-q) jr

1I' A. + iZe — —cosmic. sinhwZz—
lT q

(72)
and

The lowest angular momentum value k =1 gives
the leading power with A. =[1—(Za)']' '. Taking
k = 1 and inserting Eq. (74) into Eq. (37), we
arrive at the formula (4) quoted in Sec. I.
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APPENDIX

We shall compute the first two members of the expansion of |2, [Eq. (2)] in powers of Za,

&k O' A+0
a, = a(Za) —,Re/'(A+i Zu)—

mz 4x'-1 2k2 j2A. +1
k=1,

= u(Za)aI" + a(Zu}'aI" + ~ ~ . (A1)

In addition to its explicit appearance in the g function, Za also occurs in the parameter A. = [k' —(Za)2]'i2,

and so we have

(A2)

and

v Z 4k' 1
4' +

k ~ +
(4k2 I)2+ 4k2 1 ~( } k2 (2k+I}2

@=I

(A3)

Here a prime denotes a derivative. Note that

1
o( )-Q[f ]2

1=0

which implies the recursion formula

g'(z) = (2'(z+ I)+ I/z2 .

(A4)

(A5)
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We may write the first coefficient in the form

ir ~ k 2 22 —1 2k ~ 1 k(2k+1) I
We use Eq. (A5) to calculate

(A6)

I (}'(k)= g 2 I g'(k+I)+ —,
k=1

k=l k=l

Expressing g'(I) by the sum (A4), the last three terms in Eq. (A6) cancel and there remains only

,) 1 ", 1
aP' = —Q (}'(k)——

(A7)

(A8)

We represent

1 " 1 1

k ~ k+I k+I+1

use the sum (A4), and change variables from k to m=k+ I to secure

(A10)

2, " 1 1

+ 4k' —1 ~ k' 2k+1 '

k=l k=1

where we have identified (})'(I)=g(2). We use Eq. (A5) to compute

(4k' —1} ~ ~ (2k —1} 2k —1 ~ .(2k+1) (2k+1) k'
k=1

(2) kg g' 1 1 1 1

=1 1~0

This is the coefficient appearing in Eq. (3) of the text.
We turn now to evaluate the other sum, Eq. (A3}. First we simplify the sums involving (})'s. We use Eq.

(A7) to write

1 i 1

(2k —1)2 ~ ~ k (2k+1}

We use the derivative of Eq. (A5) to compute

2k+1,
(A12)

I 2 '-12"("'= * I 22-12"('22 1
2"(""' ' I

k=l

, q" ( )+~( ) -g —„.,„„,
k=l k=l

where we have identified (})"(1)= —2&(3}. We use the second derivative of Eq. (A5) to compute

40 2k
OO 1 1

12"'(k)=*I 2"(2)+~ I 22
12"'(2)— 2"'(kk))

k=l k=l k~1

= ~ Q (I "'(k) + a &(4) - a Q k4 2k
1 1

k=1

where we have identified (I)"(1}=61'(4). The sum over (}) (k) was calculated in paper I:

g q"(k) =61(3).
k~1

Inserting these results in Eq. (A3) yields

(A13)

(A14)

(IA17}
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, ) 1 1 3 2 1 2 I 1 IIep'= —[C(2)-4L(3)--'L(4)]+ —g —,——
3 + —g 2 0'(k) — t} "(k)r m 2k' k' x (2k —1)' 2k —1

(A15)

with

1 1= —[g(2) —6g(3)] + —S, + —S, ,
1r 7

CC

(2k 1)a 4 (k)
k=1

(A16)

(A17)S, = -Q g"(k) .

The sums S, and S, possess integral representations. If we change variables x =e, expand the inte-
grand, and integrate term by term, we find that

(lnx) 1+x " 1 "
2

1 —x 1 —x + 2k —1 +[k+1] (A18)

Similarly,

(-lnx) * 1 1+y "
2"

1 x', y 1 —y, + (2k —1)'+ [k+1)'

An integration by parts,

(A18)

dy- ln = lnxln + dyJ 1 1+y 1+x * 2(- lny)

p 0

yields

(A20)

S +S, =8 dx + dy
(- lnx) * (- lny)

0 0

=4 ch — dy
d " (- lny)
dg o 1-p

Now

(- lny)
dy

0
(A21)

(- lny) ", t
dyl —y"

= dte 1—

1
(2m+ 1)'

1 1
n2 2n

and so

=!1(2)

7r21
8 (A22)
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Thus,

A23)

This is the coefficient appearing in Eq. (3) of the tezt.

(A24)
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