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Vacuum polarizatio in a strong Coulomb field. I. Induced point charges
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This is the first of a series of three papers concerned with the short-distance behavior of the vacuum

polarization potential. It is this region that gives the principal energy level shift in heavy muonic atoms. In
this paper we compute the induced vacuum polarization point charge that appears in the limit of a point
nuclear charge source. Our result, computed analytically to all orders of Za, agrees with an earlier calculation
of Wichmann and Kroll. We have been able to simplify the calculation considerably by taking advantage of a
zero-electron-mass limit and by using formal operator and determinantal techniques.

I. INTRODUCTION AND SUMMARY

Recent measurements of energy-level differences
in heavy muonic atoms have risen in accuracy to
such an extent that they now probe high-order cor-
rections to the polarization of the vacuum. These
corrections are those that involve multiple virtual-
photon exchange between the highly charged nu-

cleus and the virtual electron. They are impor-
tant because the nuclear charge, Z, is very large.
Transitions between rather highly excited states
of maximal angular momentum ("circular orbits")
that are still inside the electronic K shell are of
particular interest. The vacuum-polarization po-
tential is the dominant correction to their unper-
turbed Dirac energy levels. Present measure-
ments' ' of such transitions are in conflict with

theory.
Although the muonic orbits of interest are large

in the scale set by the first muonic Bohr orbit,
they are very small in the scale set by the Comp-
ton wavelength of the electron, W, . Since the range
of the vacuum-polarization potential is given by

A, /2, we are interested in the short-distance limit
of the induced vacuum-polarization charge density.
In the idealization where the finite nucleus is re-
placed by a point charge, an induced vacuum-po-
larization point charge &Q' appears in order (Za)'
and higher. ' The other portions of the vacuum-
polarization charge density give much smaller
effects, roughly of order (2a„/+,)' and smaller,
where a„ is the radius of the muonic orbit. Thus,
the induced point charge &Q' is the major term.
In this, the first in a sequence of three papers,
we compute the induced point charge &Q' to all
orders of Ze. Our result is in complete accord
with that of Wichmann and Kroll. '

In the second paper of this sequence, we cal-
culate explicitly (to all orders in Zo.) the next
two corrections to the short-distance limit of the
vacuum-polarization potential. We find that these

2& &-(~ ) 2)i ~2terms, of order (m, r) and (m,r)'i' ~ l l, do

0 odcI
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FIG. 1. Graphical representation of the vacuum-
polarization induced charge density to all orders in Z~.
The double lines represent the electron propagating in
the Coulomb field of the nucleus.

indeed make a very small contribution to the in-
teresting muonic x-ray transitions. Finally, in
the third paper of this sequence, we relax the
previous idealization of a point nuclear charge
and consider the short-distance effects of the fi-
nite nuclear size. As in all of our work, we do
this analytically, including all orders in Z0..4

Before entering into the details of the present
calculation, we shall discuss the result for the
induced point charge &Q' and compare it with the
important early work of Wichmann and Kroll, who

made an extensive investigation of many aspects
of the vacuum polarization in addition to calcu-
lating &Q'.

The induced vacuum-polarization charge-den-
sity terms that concern us are depicted in Fig. 1.
As shown in the figure, the multiple-photon-ex-
change graphs sum to give the electron propagator
(the Green's function) in the external Coulomb
field. The lowest-order vacuum potential, the
potential of order nZa first computed by Uehling, '
V„,„(r), must be treated separately. It has a. di-
vergence that must be removed by a logarithmi-
cally infinite charge renormalization. Although
the charge-renormalization procedure makes the
potential finite, it alters its short-distance be-
havior, producing as r-0
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with m the electron mass. The charge density of
this potential is more singular than the & function
at the origin. Thus, we must remove the lowest-
order contribution and compute only the terms of
order (Zn)' and higher in 6Q'.

A simple power-counting estimate shows that the
amplitude corresponding to the graph of any order
in Fig. 1 is superficially logarithmically diver-
gent. However, because the theory is formally
gauge-invariant, all of the graphs of order (Za)'
and higher converge. The potential divergence is
reflected, nonetheless, in the fact that the eval-
uation of the graphs is ambiguous, depending upon
the order in which the integrations are performed.
If the electron-loop integration is performed first,
then the correct gauge-invariant result which has
a vanishing total induced charge is obtained. This
method of integration is, unfortunately, an im-
practical one, and, in order to get results in a
closed analytical form, we are forced to do the
external photon integrations first. This procedure
yields a finite, but nonvanishing, total induced
vacuum-polarization charge which must be sub-
tracted from the original induced point charge to
secure the correctly normalized value.

To be more specific, we compute

'"dE
C,(p, m) = —ie —dQ r'drtr G,(r, r; &)y',

0

(2)

where G„(r, r'; 8) is the energy-dependent elec-
tron Green's function in the Coulomb field, pro-

jected into states that have angular momentum

j=k ——,'. The energy integration produces the
time-dependent Green's function evaluated at equal
times. Thus, the coefficient C,(p, m) is a partial-
wave component of the unrenormalized vacuum-
polarization charge density integrated over the
volume of a sphere of radius p (cf. the right-hand
side of Fig. I). It is crucial to do the integrations
in the order indicated in Eq. (2) so as to pick up
the & function produced by the energy integration.
We may write the renormalized induced point
charge &Q' as a partial-wave sum

40

&Q' = P lim C,(p, m) —lim C,(p, m)
p

(3)

Note that, since the electron mass m is the only
parameter that bears a dimension, the limit p-0
with m fixed is equivalent to the limit m-0 with p
fixed; thus

6Q'=g [C,(p, m=O} —C,(p=~, m)] .
0=1

(4)

The zero-mass limit is scale-invariant, and so
the coefficients C,(p, m=O) are independent of the
radius p. The use of this zero-mass limit greatly
simplifies the calculation.

We employ operator and Fredholm determinant
techniques that are very different from the methods
of Wichmann and Kroll, who did not take advan-
tage of the simplicity of the massless limit. We
find that the renormalized induced point charge of
order (Zn)' and higher can be expressed as

6Q'=g Im[(k —iZo) P(A. —iZa) —Ini'(A. —iZa) ——,In(X-iZa)+iZakg'(k) —iZa/2k].4ek ~ ~ ~ 1

0=1
(5)

Here we use the notation

X = [k' —(Z a)'] ' ~'

and

I('(z) = —lnI'(z}, g'(z} = —g(z) .d d
dz dg

(6)

The charge of the electron is —e. Our result (5) should be compared to that found by Wichmann and Kroll'.

ek I, Za 2Zo.'(Za)'
k

' 3k'

Zan Z an (Z )' n'n, Z a Za (Z o.}' (Zo.)'
(n + X)2+ (Za)2 (n + k)' k(n + k)~ n+ X (n+ k) 3(n+ k)' 2k(n +k)'

8 3 g (t 2——(Z o.)' —————&(3)
m -6 9 3

(8)

where
oo ]

I(k) =Q
n=1

(9)
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is the Riemann g function. An expansion of our result (5) produces precisely their result (8).
The behavior of &Q' as a function of Za is shown in Fig. 2. Although the point-charge idealization breaks

down at Zn =1, a critical nuclear charge where the total energy of the lowest-lying bound state vanishes,
the limit of 6Q' as Za approaches unity from below is finite, with —6Q /e= 0.0483. A surprising feature
of Eq. (5) is that the sum is dominated by the k =1 term, which gives more than 90/p of the total for 0 (Zo.
(1. The ratio of the k =1 term to the full sum of Eq. (5) is displayed in Fig. 3.

For small Za we may expand 6Q' in a power series (see Appendix A), with the result

6Q' = —((Za)' [2&(3) + '; ——,
' v'] —(Zo)'[2&(5) + —", &(3) ——,",, w']+6((Zo)'}}

= —e [(Za)' (0.020940) +(Za)'(0. 007 121 3) + 6((Za)'}], (10a)

which agrees with the expansion given by Wichmann and Kroll. Extraordinary cancellations are respon-
sible for the small numerical coefficients which occur in Eq. (10a). If only the k =1 terms are retained
in the expansion of the coefficients, the results are

5Q»-, = —[(Zn)' [6g(2) —20&(3) + 12&(4) + 1]

+(Za)'[ —,
'

g(2) +3g(3) —27)(4) + -'P g(5) —12&(6) +»»0 ]+6((Zo)'}j
e[(Za)'(0.019486)+(Za)'(0.0070558) +6((Zo.)'}] .

Again, remarkable cancellations occur to produce
very small coefficients for (Za)' and (Za)', nearly
identical to those for the full k sum, Eq. (10a).

Following Wichmann and Kroll, we can display
an accurate numerical evaluation of the induced
point charge by writing

6Q' = —e [(Za)' (0.020 940) + (Zn)' (0.007 121)Fo(Za) ]

(10c)

Here, as shown in Fig. 4, F,(Za) rises slowly

lO'

10

f

from E, =1 at Zn=0 to F, =3.845 at Ze=1. Our
numerical results for Fo(Zo.) are in approximate
agreement with those of Wichmann and Kroll.

An approximate description of the size of the
effects that we are considering is worthwhile.
Consider, for example, the ciruclar orbit 5g-4f
transition in rnuonic lead, where Zn= 0.6. The
transition energy is about 400 000 eV. The lowest-
order vacuum-polarization correction is about
+2000 eV, and the energy shift brought about by
6Q' is about —50 eV. Finite-range (m, &0) cor-
rections4' ' to the higher-order vacuum-polar-
ization potential amount to some + 5 eV and are
thus corrections on the order of 10%. This is only
slightly larger than our estimate of (2a„/W, )' -7%,
although the coefficients in Eq. (10a) are anoma-
lously small. This is so because cancellations
also occur in the finite-range corrections. '' Tak-
ing other small corrections into account, there
remains a discrepancy between theory and experi-
ment hE(th. —exp. ) = 54 +17 eV, which is typical

0.98
I I I I I I

0.97—

lO
0.95-

0.94—

i0 0.4
Z+

0.8 I.O

FIG. 2. The induced poirLt charge, 6(q}', as a function
of Ze.

0.93
O. I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I.O

Za

FIG. 3. The ratio of the 4 =1 term in the expansion of
6(q]', the induced point charge, to the full value of 6(qt}',

as a function of Zo. .
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of a number of such transitions. ' ' Note that the
experimental precision is a factor of 2 smaller
than the size of the effects of &Q'. Thus, our con-
firmation of the previous calculation' of this num-
ber is significant.

The plan of this paper is as follows: In Sec. II,
in order to make this paper self-contained, we
review and discuss the Green's function for a Dirac
particle moving in a point Coulomb field, with
particular emphasis on the formulation advocated
by Martin and Glauber. ' In Sec. III we discuss and
evaluate an infinite determinantal representation
of the Coulomb- Jost function using the method of
Brown. ' %'ith these results in hand, we compute
the induced point charge &Q' in Sec. IV. Appendix
A gives the derivation of sums necessary for the
expansion (10a). Appendix B contains some minor
details of the calculation.

II. GREEN'S FUNCTION

The Green's function for a Dirac field in an at-
tractive point Coulomb field obeys'

where"

which one can verify with a little calculation.
Moreover, the operator

Ze
y —. V-yo E+ r

(17)

1 8 1 in+ ZOI= p~ ——+- —P E+
2 ~r r

(18)

now appears as the sum of three quantities which,
except when a derivative acts, are mutually anti-
commutative. Hence,

1 o Ze ' & 1 ' PK ia„Zg
y —. V-yo E+ —+ — + ) +r~ r

X=P(o L+1),
because the operator K, in addition to commuting
with p, also commutes with n„,

y —. V —y E+ —+m G(r, r'; E) =&(r —r') .
J

It proves convenient to write this Green's function
in terms of a second-order Green's function
9(r, r';E),

K' —PEC- ia„(Za) —(Za)' = Z(2+1), (20)

with

The terms involving I/r' can be written in a sim-
ple form' "using

1 ZQ'
G(r, r';E)= m —y —. V+y E+ 9(r, r';E) 2=- PK-io.„Za . (21)

~ ) o=9(r, r';E) m —y i V'+y' E+

But, before substituting Eg. (12) into Eq. (11) to
secure the second-order Green's function equation,
we note that a partial-wave decomposition must be
performed eventually in order to secure a solu-
tion in closed form. A transformation to spherical
variables is obtained if we use e a'=6"'+i&~' r
and

It is now a trivial matter to insert Eq. (12) into
Eq. (11) and obtain the second-order Green's func-
tion equation:

1 8' a(I+ I) ~, 2EZar+ +r ar'

1 1
y —. V=Pr 'n r a r n —. V

2 2

1a
= PQ ——+ —0'OL

2

Fp

where

1~e =a r, L=rx —. v
2

It is advantageous to write this as

1 1 8 1 i~y. —V =P~ — —+-
i i 8r r r

0 0.2 0.4 0.8 1.0
(ZaI

FIG. 4. The correction, FOgn), to the (Z~)5 approxi-
mation to the induced point charge, Eq. (10c).
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(o.L)' =L' —o'L,
we find that

(23)

In a basis where 2 is diagonal, this is essen-
tially the equation for a nonrelativistic Coulomb
Green's function with nonintegral orbital angular
momentum. In order to discuss this basis, we
must first return to the operator K defined in Eq.
(16) and discuss its properties. It is Hermitian
and commutes with the total angular momentum
operator J = L + & o, and it can, therefore, be
diagonalized in states of fixed total angular mo-
mentum j. Since

we infer that

d' X(X ~ 1) 2EZa
dr2 r2, +, +re —E'- 9,(r r'E)

= 5(r —r') (32)

This equation has the familiar, standard solution

9, q(r, r'; E) =A, q(r&, E)'E, z(r&, E), (33)

in which the functions A and B are two independent
solutions to the homogeneous counterpart of Eq.
(32}, r, (r, ) is the larger (smaller) of r and r',
and the solutions are normalized to have a
Wronskian of unity:

K =J' +~

Thus, the eigenvalues of K are K'=+k, where
k =j+-,' =1, 2, 3, . . . . Since

(24) d d
A, ~(r; E) B,~—(r; E) ——A, ~(r; E', B,~(r; E) =1 .

(34)

K(E —P) =L', (25)

in the nonrelativistic limit where, effectively,
P-1, positive eigenvalues of K correspond to
orbital angular momentum l =j—&, negative eigen-
values to l =j+&. Now, commutes with K and

2'=K' —(Zc)' (28)

Hence, I can be diagonalized in eigenstates of
K with a single K eigenvalue and has eigenvalues
2' = + A., where

X = [k' —(Za)'] '~' (27)

In the limit Za-0, 2 ——pK, and the two eigen-
values + ~ correspond to eigenstates of opposite
parity.

Projection operators P, q can be constructed that
diagonalize 8,

ZP, g(r", r') = + XP, ~(r, r"'),

and resolve the identity,

(28}

(29)

Note that while a single projection operator P~
has a definite value of the total angular momentum,
it does not diagonalize K but contains projections
onto the two eigenvalues K'=+k. In this way, the
formalism exploits the well-known doublet de-
generacy of the Dirac-Coulomb problem. We may
insert the decomposition

1 1
9(r, r'; E) = P Pe. (r, r') —Qe.(r, r'; E) —, (30)

(31)

in the second-order equation (22). From the ortho-
normality relation

The functions A and B are confluent hypergeo
metric functions which are discussed at some
length in Refs. 12 and 13.

We must specify boundary conditions to obtain a
unique solution. Clearly, the function &, which
involves the smaller coordinate r„must be the
solution that is regular at the origin. In order to
arrive at the correct boundary condition on the
other function A, it is useful to recall the analytic
nature of the Green's function as a function of its
energy variable, E, which is illustrated in Fig. 5.
We may assume that initially the energy lies on
the real axis in the gap between the left-hand cut
and the lowest-lying bound state, -m&E&E, . The
Green's function can then be obtained at general
energy values by analytic continuation. In the gap
region, one of the independent solutions to the
homogeneous counterpart of Eq. (32} decreases
exponentially as r-~; the other increases expo-
nentially as r-~. Clearly, we must choose the
former solution for the function A which involves
the larger coordinate, r, . Thus, in the notation of
Whittaker and Watson" and Bateman, " respec-
tively, we have

A, z(r; E) = I'(X —7+-, +-, ) W„~„~,(2qr)

= I'(Z —q+-2+-,'}(2qr) ""' 'e ~

xq (x —q+-,'+-,'; 2K+ I + I; 2qr) (35}

E) FA

FIG. 5. The analytic structure of the Green's function
as a function of energy. There are branch cuts along the
t-~, -m] and [m, ) portions of the real axis. Poles
appear at the bound-state energy eigenvalues which
accumulate at the tip of the right-hand cut. The energy
of the lowest-lying bound state is denoted by E&. The
contour shown is that which defines the time-ordered
Green's function.
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and

B,~(r; E) = I'(2X+ 1 + 1) ' (2q) 'M„~» ~,(2qr)

= p(2x+I + I) '(2q) '(2qr) ""' 'e [2, y„)= 0, y„' = —1 . (45)

that this matrix commutes with K and J, but anti-
commutes with 2 and squares to —1:

Here

x4(x-t)+-,' ~-,';2x+I+1;2qr} . (36}
Thus y„ transforms X, q into X, q with a phase fac-
tor which squares to —1. We adopt the phase con-
vention

and

q =(m' —E')'~'

q = ti(E) = ZaE/q . (38)

(46)

Using this convention and requiring that the eigen-
spinors diagonalize Z, which we may write as

g(E, ~ „)=x+-,' +-,'+n, ,

in which

(39)

We define the branch cuts of the square root in Eq.
(37) to lie on the real axis in the intervals
[-~, -m] and [m, ~] in conformity with the cut
structure of the Green's functions, as illustrated
in Fig. 5. In the gap —m&8&m, q is positive. The
F-function factors were chosen to satisfy the
Wronskian normalization (34) in a way that proves
convenient. Note that bound states appear as poles
in the Green's function. These poles arise from
the I' function in Eq. (35). Thus, the bound-state
energies are determined by

2 = -KP+ iZny„P, (47)

gives the two-dimensional matrix representation

XKt, + X

(48}

The familiar technique of computing X ~ X matrix
elements of K, Z, J„considering the operators
to act either to the right or to the left, shows that
the scalar product of one X with another X vanishes
unless they have identical eigenvalues. Hence,
with a convenient choice of normalization,

n„=0, 1, 2, . . . (4o)

A, &,(r) -I'(X —tf+-', +-,')(2qr)'e

B,~(r) - I'(X —q +-, + &) '(2q) ' (2qr) "e'
(41a)

(41b)

is the radial quantum number. Something of the
nature of these functions is illustrated by their
limits as r-~,

(49)

The metric factor —E'2'/kX= + I is necessary to
satisfy Eq. (48) and the positivity of x x. We now
have the representation

and as r-0,
A, ~(r) -I'(2X+I) (2qr) +'~'~'~',

B,z(r) -I'(2X+I + I) '(2q) '(2qr)

(42a)

(42b)

Although we will not need an explicit construc-
tion of the projection operators Pz, we will need
some of their properties. We can write the pro-
jection operators in terms of eigenspinors XK ~
of the commuting operators K, Z, and J„

K ~%A m

(50&

where, it should be recalled, k and X are related
by P, = [k' —(Zo.)'] '

In our later work, we shall need the spinor
traces

( 51)

IfXr" e (r) =E'Xr e (r),
&xg, (r) =&'xg, (r),
&.x, , (r) =mX , (r) .

(43} and

dQ trPP», (r, r) = 0, (52)

(5S}

Xr, (r) & = &'X», (r) . (44)

The other operators K and J, are Hermitian and
they commute with p, and so the XK.~. are also
their left eigenspinors. We write y„= y r" and note

The operator 2 is not Hermitian, but 2 P= PZ, sc,

that X =X p is a left eigenspinor of 2,
These results are easily derived with the aid of
the formulas of the previous paragraph. The fac-
tor 4k =2(2j+ I) arises from the K' and m sums in

Eq. (50}. The remaining numbers follow from Eqs.
(46), (48), and (49).

In the present paper we shall make use only of
the second-order Green's function, Q. However,
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we will use the first-order version, G, in a later
paper. For the sake of completeness, we shall
give some discussion of this function here. If we
make use of the definition of 2, Eq. (21}, in Eq.
(18}, we can write the relationship (12) between
the first- and second-order Green's functions as'

2+1
G(r, r'; E) = m+PE+Zy„—+ 9(r, r'; E) .

(54)

In order to carry out the indicated differentiation,
we observe that

d2 X(X +1) 2 2EZa d X EZn d X EZa d2 A(X 71), , 2EZa

(55)
'Ihe right-hand side of this equation annihilates A, z or B,z. Hence the operator [d/dr+a/r+EZo/xj ap-
plied to A,& or B,z must produce, up to an overall constant factor, the same functions but with the sign of
their index reversed, because this operation does not alter the regular or irregular character of the func-
tions, and it does give a solution to the appropriate differential equation. The constant factor is readily
determined by referring to the long-distance limits Eqs. (41), with the results

(~A,(;E)
/

EZc
+

dr r
B g(r;E)[

——A, ~(r; E)q

(A.
' —rP) —B, (r; E) l~

, q
(56)

—B (r; E)qB„(r;E)

/)
A, g(r; E)

)f ()

—(A.
' —rP} —A (y; E)

d X EZg
dy r

Recalling the structure of Eq. (54), we define the
spinors

a
g» (r; E) -=m + P E + iy„

EK'
(r;E)= ~-

~
B,~(»;E)X,.~(r)

—
~ B-~(»;E)X».—~(~), (61)

and

xA i(»;E)X», ~(&)

8 A.

P» (r; E}—= m+ PE+zy„—+—

(58) and

9 A.m+PE+iy„—+ — A+ ~(r; E}y» +q(r)ar r

XB,.(»;E)X» „.(~) . (58)

These spinor functions, when multiplied by x ',
become solutions of the first-order Dirac equa-
tion. We may use Eqs. (56), (57), (46), and the
adjoint of Eq. (48} to compute

EK'g (r; E}= m+ A g(r; E))(». g(r)

+ —A, z(r; E) g". , ~(r),

A. EK'
m — g» (r; E), (62)

q

a
m+ PE+iy, s

—— B,(r; E)y», (r)

EK'
m+ y' (r E) . (63}

q

Finally, we can insert the partial-wave decom-
positions (30) and (50) into Eq. (54) and use Eqs.
(58}-(63)to secure the expansions

ZK' 1 . , 1r &r'. G(r, r'; E) = g P ————Pz (r; E) Q» (r'; E) —,,
g' m

AK' 1, 1r(r'. G(r, r', E) = g g ————P» (r; E) g'(r', E) —,.
g' m

(64)
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We should remark that the adjoint spinor wave
functions ig and Pz that appear here are analytic
continuations of the wave functions from the gap
—m& E &m, where the functions A, q(r; E) and

B,&(r; E}are real. Thus, these adjoint wave func-
tions are obtained from Eqs. (60) and (61) by sim-
ply replacing the spinor factors p~. , z by their
(Dirac) adjoints )(r, z.

III. INFINITE DETERMINANTS

The calculation of the vacuum-polarization in-
duced point charge is considerably simplified if we
make use of operator techniques involving an in-
finite determinant. We shall discuss the deter-
minant in this section so as to have all the math-
ematical tools we need when we perform the cal-
culation in the following section. In order to intro-
duce this determinant, we write the radial Green's
function equation (32) in an operator notation,

r' r
(65)

We denote the corresponding free Green's function
where Zo = 0 by 9'„'q~(E), so that Eq. (65) may be
written in the form

1 —9';&(E) 9„(E)=9';,'(E) .r (66)

The infinite determinant which we shall employ is
the Fredholm determinant" associated with Eq.
(66),

I

F„(E)=Det 1 —9'"(E) r (67)

It is the Jost function" of relativistic Coulomb
scattering: The ratio F, q(E)*/F, z(E) is the par-
tial-wave scattering function e" +&+l, and F, q(E) "

is the ratio of the interacting to noninteracting
wave functions evaluated at the origin.

An infinite determinant involving an operator of
the form (1 —XA), where X is a numerical param-
eter, may be defined by

Det t I —AA] = exp [Tr ln(1 —AA)j . (68)

Here the trace of the operator logarithm is under-
stood to be the infinite sum of traces that result
from a formal expansion of the logarithm in power»
of A. If the operator A can be diagonalized in
some basis, then formula (68) would express the
determinant as an infinite product of eigenvalues,
just as a finite determinant can be expressed as a.

finite product of eigenvalues. If ~TrA(&~ and Tr
TrA A &~, then" the power series for the ex-
ponent in Eq. (68) converges for sufficiently small

One can then easily prove that the definition
(68} obeys all the usual rules of operation for
finite determinants such as the determinant of a
product of operators being the product of deter-
minants of the individual operators. When

~
X~

becomes large, the determinant may vanish some-
where on the circle

~
A~ =constant, and the power

series for the exponent will diverge. However, if
the exponential is expanded and the resulting dou-
ble power series rearranged so as to form a sin-
gle power series in A. for the determinant itself
rather than its logarithm, then this new series
converges absolutely" for any value of ~. Thus,
if ~TrA(&~ and TrA A &~, the infinite deter-
minant exists and is well-defined. In the situation
where Tr A does not converge but Tr A A is finite,
a modified determinant may be defined by simply
deleting the first trace TrA in its expansion. This
modified determinant will then possess an abso-
lutely converging power series in A. and has es-
sentially the same properties as an ordinary de-
terminant. We conclude this brief summary with
a remark that will be crucial for our later cal-
culation: It follows from the definition (68) and the
cyclic symmetry of the trace (TrAB= TrBA) that

~ ln DetX = TrX '4X . (69)

We may easily compute the infinite determinant
(67) if the following method' is employed. We take
the energy E to be initially fixed at some place in
the bound-state interval 0& E&m. After the cal-
culation is performed, the result can be analyt-
ically continued to any energy value. Now, with
the energy fixed in the bound-state interval, solu-
tions to the homogeneous counterpart of Eq. (65),
or its equiva, lent (66}, will exist for critical values
of the coupling constant Zn, which we denote gen-
erically by (Za)'. These critical coupling con-
stant values are those for which a bound state
exists at energy E. They are given by the rela-
tivistic Balmer formula (39)

1/2
(Za)'=(X+-,' +-,'+n„) (70)

(71)

We may now compute the determinant (67} by eval-

where we now treat A. as an independent parameter.
When the coupling constant assumes a critical
value (Zo)' the determinant (67) must vanish, for
otherwise the homogeneous counterpart of Eq. (66)
would have no solution. Hence, the eigenvalues of
the kernel 9~o)(E) 2E/r are the reciprocals of the
eigenvalues of Za,

1/2
9", ((E) —=(A+-,'+-,'+n, )

' ~
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uating the definition (68) in the basis which diag-
onalizes the kernel. Since the energy lies in the
bound-state interval, the kernel is square-inte-
grable, and this discrete basis is complete. Thus

ln F, g(E)

I nF, g( E) = ln 1— n(E)
X+2 kg+Pl~

n =Q

where, we recall,

(72)

(38)

(Q) (E) g 2EZG 2E
r r

2E= —Tr 9, ~(E) —,
while from our result

inF, z(E) =(Zo.) 'q(E) (((A+-,' +-,' —ri(E)).

The first term in the expansion of the logarithm,
which is the first trace term, diverges,

(76)

Hence, comparing the two forms, we conclude that

1—=ln~ .
n„

(73)
2EZa 2EZndr 9, j,(r, r; E) =Tr9, q(E) r

This divergence arises from the infinite range of
the Coulomb potential, Tr I/r -f dr/r = In~. It
is the familiar, divergent phase that appears in
the Coulomb scattering amplitude. If we delete
this first trace, defining the modified determinant,
then the remaining sum converges for sufficiently
small q(E), and it can be analytically continued to
any value of g(E) The div.ergence in the first
trace is independent of X and appears only to first
order in Zo. in ln F, q(E), the quantity that will
later be used in the induced point charge calcula-
tion. Since we are interested only in the terms of
order (Zo)' and higher in the induced point charge,
the divergence will not affect our calculation, and
we can discard it. The argument of the logarithm
in Eq. (72) has poles when X+-,'+ —,

' is a negative
integer and zeros when A. +-, +-, —g(E) is a negative
integer. Thus, the result of performing' the sum
(72) is a natural one,

F, y(E} =Det 1 —9~'g~(E) r

= —q(E) P(A+-,' +-,' —g(E)).

(77)

Next, again treating ~ as an independent vari-
able, we use

8 t

g
9(o((E) 9(o) (E} 9(o) (E}-a 9(o) (E}

= —9.~(E) 2 9.~(E)(Q) 2A. k 1 (Q)

to calculate

ln F, (E) = Tr 9, (E), 9, [(E)
2A. + 1 ( 2EZ(y
r' r

= T 9i'((E) 9 (E)r " r'

= » I9.i(E}—9"((E)], (79)

On the other hand,

&A.

—lnF, g(E) = —(((A+-,'+-,' —q(E))+P(X+-,'+-,') .

(74)
Hence

(80)

We should emphasize again that the result (74) is
a slightly formal one in the sense that the diver-
gent part of the first trace is implicitly understood
to have been discarded.

We shall need the evaluation of certain traces
for our subsequent calculation which we now derive
with the aid of the variational formula (69) and our
result (74).

We consider first the derivative with respect to
Zo. treating X as an independent parameter. From
the var iational formula

Tr [9, (E) —9", ((E)]
= —g(X+ z t z —g(E))+ g(X+ 2 + ~) .

(81)
Finally, using entirely similar methods, we

compute the energy derivative

ln E»(E) = Tr 9, ),(E) 2E+ 9,' (E)r r
(82}
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to derive

T [9,~(E) —I';[(E)](2Z~ r
ln I'(X+-, +-, —[I(E}).

a 1 1

(83)

IV. INDUCED POINT CHARGE

The vacuum-polarization induced charge density
can be expressed formally as

p„„p.[(r) = —e(y'(r, I ) y(r, f )), (84)

'"dE
p„„„(r)= —fe tr G—(r, r; E}y

j ce 1T
(85)

We shall use the subscript k to denote a projection
into the union of subspaces having eigenvalues
K'= +k of the operator K [Eq. (16)]. This gives
a precise meaning to our previous definition,

where tjt} is the electron field operator, and the
expectation value is taken in the external point
Coulomb field of the nucleus. This matrix ele-
ment is the electron Green's function with common
space-time coordinates. The equal-time Green's
function may be expressed as an energy integral
over its Fourier transform with the contour illus-
trated in Fig. 5. This contour may be deformed
to run along the imaginary axis without crossing
any singularities, and we secure the formal ex-
pression

p, (r}=6q'6(r)+ ~ ~,

as being

(86}

5q'= g Iim C,(p, m) —lim C„(p,m}
a p

(3)

And, as we remarked in Sec. I, since m is the
only parameter which carries a dimension, the
limit p -0 is equivalent to the limit m - 0,

5 Q' = g [C~(p, m = 0) —C~(p = ~, m)] .
A=i

(4)

We write the first-order Green's function G in
terms of the second-order function 9 using a sym-
metrical average of the two forms in Eq. (12}, for
this makes the derivative terms combine into a
total derivative. Taking the expansion for 9 given
in Eq. (30), we have

""dr rP
C~(p, m) = —fe dQ r'dr tr G~(r, r; E) y

W 0

(2)

As we remarked in Sec. I, the p-~ limit of this
quantity does not vanish, and we obtain a nonvan-
ishing total unrenormalized induced vacuum polar-
ization charge in order (Za)' and higher. This
total charge must be removed by the subtraction
of a constant in momentum space or, equivalently,
by the subtraction of a constant times the & func-
tion in configuration space. Thus, we must iden-
tify the renormalized induced point charge &Q',

'"dE
C,(p, m) = —fe —dD-„tr

2 a, p Pe (r, r) 9et(p, p;E}
-g'= ~ X

P

+ dr yam+E+ g Pe (i, r) 9e (r, r; E)
0 -Z, '= & X

(87)

In writing Eq. (87), we have used the equivalence of the union of the subspaces with K' = + k to the union of
the subspaces with 8'=+X= +[k' —(Za}']' '. Using the traces of the projection operators given by Eqs.
(51)-(53), we find that

C,(p, m) = C„(p, m) + C,(p, m}, (88}

with

""dE ZQ
V~(p, m) = —fe4k — dr E+ [9 (r,+r; E)+9 „(r,r; E)]

j~ lr 0 r (89)

and

C„(p, m) = —fe2k —[9,~(p, p; E) —9 ~(p, p; E)] .
Ze ""dz

F
(90)
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We demonstrate in Appendix 8 that the quantity
C,(p, m), which came from the total derivative
term, does not contribute to the induced point
charge. Thus, we need consider only the quantity
C„(p,m}.

With the aid of our previous determinantal devel-
opment, the computation of the charge renormal-
ization is trivial, for it immediately appears as
a trace,

C,(~, m}

= —2ik — dE Tr [9+ q(E) +9 q(E)] E +
e Z(M

W r
(91)

We may regularize the trace by subtracting the
free Green's functions 9,'[(E) inside the square
brackets since such a subtraction affects only
terms of order (Za} which we omit. Thus, we

obts. in the trace (83) and hence the result

2ek
C,(~, m) = — Im[ln I'(A+1 —iZa}+In I'(X —iZa}],

(92)

since q(+i~) = +iZa We n. oted briefly in the pre-
vious section that the determinant which we use
is a Jost function F, q(E) and that for real energies

F~q(E)*/F, q(E) =e' »+. We now find that the
partial-wave charge renormalization is related to
the infinite-energy limit of the phase shifts,

C,(,rn) =e2k —[6 ( )+6 ~( )] .1

In a normal nonrelativistic problem, phase shifts
vanish in the infinite-energy limit. Note that
2k =2j+1 is simply the multiplicity of the states
with angular momentum j.

The calculation of the remaining limit C„(p, 0}
requires more work. We recall that the Green's
function has the bilinear form

9, ~(r, r'; E) =A, ~(r„E)B,~(r&, E), (33)

d~ X(A. + 1) 2EZ
+ ~ +m -E

d'Y B.~(&; E)
=0

(93)

The radial integration in Eq. (89) can be performed
by the following device: Consider the radial de-
rivative of a Wronskian-like structure involving
regular and irregular solutions with different en-
ergies. Using Eq. (93) we get

with the functions A, ), and B,q satisfying the homo-
geneous counterpart of Eq. (32),

d, 9 8 „2EZa, 2EZa
A, z(r; E') ———B~q(r; E) = E"+ — E'+ A~q(x; E')B,z(r; E) .

When E' approaches E, the right-hand side of Eq. (94} approaches 2(E'- E} times(E+ Za/r}A, ~B, ~,
which are the terms in the integrand of Eq. (89). Thus, the device (94) expresses the integrand as a total
radial derivative when the limit E'-E is taken, and we get

. ek "" sA~(p;E) l s
C,(p, m) = —i — dE ~ ' ———B~(p; E)+(X-—X)

g ~
BE Bp Bp

(95)

The r = 0 limit of the radial integration vanishes by virtue of the limiting behavior given in Eqs. (42).
We may now pass to the massless limit m = 0. In this limit A», (p; E}and EB»,(p; E}become scale-invari-

ant functions of the single variable (Er) [cf. Eqs. (35) and (36)], and thus the radial derivatives in Eq. (95)
can be replaced by energy derivatives,

8 E 8
A. i(p; E) = —sEA~~(p;E),ap ' '

p aE

8 E a—[EB.~(p; E)]= — [EB.~(E; p)]
Sp p 8E

(96a)

(96b)

We make use of these replacements and perform two partial integrations to put the result in a convenient
form:

C~(p, 0) = —I — dE —2 sE,
' —B),(p; E)—,Ax(p; E)—Bg(p; E)

(97)zPy — xP'y ~E + ~ ~ ~EB( E} A( E} ' ' (X- Z)

The end points of the partial integrations vanish by virtue of Eqs. (41). It should be emphasized that we
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are now using the m=0 limit of the functions A and EK Since these are functions of the single variable

(Er}, they are not altered by the interchange p-E, E- p, and they must obey the correspondingly inter-
changed version of Eq. (93) in the m = 0 limit,

82 X(A +I}, 2PZa
2+ E2 -P

EB.~(p' E}
=0. (98)

This enables us to replace the double derivative of A in Eq. (97}by terms involving no derivatives. More-

over, the Wronskian of the two solutions of Eq. (98) is independent of E and can thus be evaluated in the
E-O limit displayed in Eqs. (42),

BA, y(p;E) EB ( E) -A ( .E)
sEB, ),(p; E)

aE '"P (99)

The terms in the square bracket in Eq. (97) contribute, therefore, a term I/2E to the integrand which is
independent of Za. Hence, it can be omitted, and we have now achieved the result

2ek A(Z+ I) +-,', 42PZa
C (p, 0) = — Im de Aq(p; fe) —Bq(p; 2e) 2, +2p' — +(A -—g)

0

In order to proceed in a lucid manner, we note that by Eq. (36}

(100)

—B,„(p; fe) =B,z(~; fp),
p

and we accordingly change variables, denoting e by r and p by E:

(101)

c=r, p=E.
Now

(102)

4ek A(A+ I) +4, 2iEZa
C (p, 0) = — Im dr Qz(y, y; IE}, +E' — +(X- —g)

0
r' r

4ek ZA A.(X + I) + 2 —iEZa
Im Tr Qq(IE}(- fE) IE+ + Tr Qq(iE) 2 +Tr 9&(iE) +(A, ——X)

1r r r' r
(103)

We may regularize the first two traces above by
subtracting the same quantities with the Green's
function Qq(iE) replaced by the free Green's func-
tion 9(I(2E). Because 9'z'l(fE) is real, this sub-
traction does not change the terms of order (Za)2
and higher after the imaginary part has been taken.
Using the m = 0 limit of the formulas at the end of
the previous section, Eqs. (77), (81), and (83), we
find that

Tr 9, q(2E) —Q~,'I (iE) jE + = 0, (104)

Im Tr [9,~(iE) —9,'OiE)] X(X+I)+2

= —Im 2(~ + 2) $(~+ 2 + 2 2Z~}, (105)

—iEZa i 1Im Tr 9, z(iE) = Im —Zap(X+-2+ 2- iZa) .r 2

(106)

Using

1
g(X+ I —iZa) = . +P(A —iZc2)

A. —iZ~

and adding up the numbers gives

4ek
C,(p, 0) = Im(A —iZa) P(~ —iZa)r

(107)

(108)

plus terms of order Za that are of no interest.
Subtracting Eq. (92) from Eq. (108), deleting

terms of order Ze, and summing over k gives
the result (5) quoted in Sec. I.
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APPENDIX A

The result Eq. (5}for the point charge induced by the vacuum polarization may be expaned in powers of
Zo,

5 Q' = a,(Zo)' +a,(Za)' + O((Z a)'),
where the coefficients are given by

(Al)

4e" 1, 5k „k' „, 1a = —Q —g'(k) + —
g "(k) + —g "(k) +

g 2 6 6 12k' (A2)

and

4e" 1, 1 3 „, Vk,„k' „3
v + 8k2 8k~ 8 ~ 60 120 80k' (AS)

Here a prime denotes a derivative. By employing the formula

1
( ) Q (f )2 I

l=0
(A4)

we shall reduce the coefficients to terms involving the Reimann g function,

The infinite sums of the individual terms in Eq. (A2) do not separately converge. Hence, we must ex-
ercise some care and write

3v r z Z Q v 2 (k+1) 8 (k+f} (k+f) g4=1 l= 1

(A6)

where the limits must be performed in the order indicated. We write k+7 =m and interchange the order of
the sums (but not the limits) to secure

e &+L
a, = —g(2)+ lim lim —g g + P Q —————+—,

E L 7 ' 2 m 3 m m
(A7)

The k sum is now elementary, giving

e . . 4e ~» 1 1 1 1 ~ 1K 5K(K+1) 3K +2K +~8Ka, = —g(2) + lim lim — ~ ———+ ——+
m sc L m ~ - 3' 6'- ~ -2m' 6 nP mSl= ]. %= IC+ 1

Since the second sum involves large numbers, it
can be replaced by an integral, and we find

u = 8„&(2}+—„(--'f(2)+-'L(8)+ ~)e 4e

e F'
7

3g 2 3

the sake of completeness, we derive here the re-
sults which are needed below. We have

OO OO 1 " 1~ k (k+1) + Z k'm~

We need some double sums to evaluate o,. An
extensive tabulation of such sums is given in an
appendix to the work of Wichmann and Kroll. ' For

4=1 Pl= 1

(A10)
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1
oo ~ J 1

Z ~(k.f) =ZZ a, = —[—;,', s' —z'- g(3) - 2g(5)] . (A20)

= &(P —1) —&(p), (A11)
The results Eqs. (A9) and {A20) are those quoted

in Eq. (10a) of the text.

and

= a l(P- 2) —2 &(p 1),— (A12)

APPENDIX B

We prove here that the quantity

Za ""dE
C,(p, I) = —fe2k —[8, ~(p, p; E}

2~
rit - I

~ ~ (k+l)~ Z Z

(A13}

—8-~(p, p; E)]
(90)

does not contribute to the induced point charge. It
follows from the asymptotic forms (41) and the
construction (33) that, as p-~,

Using (A10) with P=2, we derive1, " "
1 1 1

k(k+I)' ' ~ ~ k I (k+I)'

g y2
0'(k) =2[&(4)+f(2)'], (A15)

1 (k+I}' 1 1
~ zf z (k+1)' 2k'I' 2k'

k=1 i= 1

(A14)

Using these relations and the formula (A4), we

compute the list:

8, i(p, p;E)-(2e) '. (B1)

C, (~, m) =0 . (B2)

We can proceed as in the text, interchanging the
roles of E and p, to obtain

ek 2iggz
C~(p, 0) =—Im Tr [Q~(iE) —8 q(iE}]

gA. r
(B3)

The difference 8, q(p, p; E) —8 z(p, p; E) vanishes
as p —~. Moreover, on dimensional grounds, the
leading correction must involve (q'p) ', producing
a finite energy integral that vanishes as p-~.
Hence, the charge-renormalization term vanishes,

k=x

1
Q kg"(k) = —-'0(4), (A16)

where 8, ~(iE) is now understood to be the zero-
mass Green's function. With the aid of Eq. (77),
we obtain

g Ic'"(k) =60(3),
k= 1

P ky'"(k) = -12[1(3)+ I(4)],
k= 1

Q k'g "(k) = 120[—' g(3) + —' g(4) + —f(5)] .
k= 1

(A17}

(A 18)

(A19)

ek
C,(p, 0) = ——Im[iZag(A+I —IZa)

—iZo.g(A —iZo.}],
which, employing Eq. (107), reduces to

C,(p, 0) = ——Im
ek iZ(y

ekZe
wk'

(B4}

(B5)

It is now a simple matter to add up the sums in
Eq. (A3) and obtain

This quantity is only first order in Zn and can be,
therefore, omitted.
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