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Uiewed in the crossed channel, the $' Mandelstam diagrams for the Reggeon-particle cut represent repeated

interaction between two of the three exchanged particles. A much larger class of Feynman diagrams is

obtained by allowing all three exchanged particles to participate in the interaction, as required by Bose

statistics. It is found that, in the limit of high energies, all diagrams of the same order in this larger class

contribute comparably. In particular, the contributions from the Mandelstam and non-Mandelstam diagrams

are of the same order of magnitude. This larger class of diagrams is summed in terms of an integral equation.

It is found from this integral equation that if the momentum transfer is not too large, then the leading

singularity in the angular momentum plane is a pole, As the momentum transfer increases this pole eventually

disappears into a cut. These considerations are generalized, in a nontrivial way, to the case of the Reggeon-

Reggeon cut. The signature factor plays a most important role, and some of the contributing diagrams show

unexpected high-energy behavior. The profound effect of these additional diagrams on the program of
Reggeon calculus is discussed.

I. INTRODUCTION

In 1963, Mandelstam' invented his famous dia-
grams, shown in Fig. 1, that give the Reggeon-
particle cut in f' theory. In the ensuing decade,
many authors' ' have studied the properties of

Regge cuts from various point of view.
Let us look at the Mandelstam diagrams of Fig.

1 from the crossed, or t, channel. We see three
particles, two of which interact repeatedly with

each other, while the third one participates only

at the two ends. We recall, however, that in P'
theory all the particles are the same. Thus the
idea of emphasizing the Mandelstam diagrams,
with their choice of interaction mainly between
two of the three particles, seems inconsistent
with the concept of identical Particles.

It was Mandelstam himself who warned that at
high energies there may be other diagrams which

are just as important as those that he explicitly
considered. In fact, Polkinghorne' subsequently
produced such a diagram. However, the complete

set of diagrams which, at high energies, are corn-
parable to the Mandelstam diagrams has never
been obtained. It is the purpose of this paper to
present this complete set of diagrams and to study
the properties of the resulting amplitude.

From the point of view of identical particles,
this complete set of diagrams can be easily de-
scribed. Aside from the technical problem of
avoiding the pitfall of the AFS (Amati-Fubini-
Stanghellini) diagrams, "the complete set of dia-
grams is obtained by permitting arbitrary orders
of repeated pairwise interaction between the three
exchanged particles. In this way, the direct and
exchange interactions are treated comPletely on
the same footing. Some examples of such diagrams
are shown in Fig. 2. As s -~ with fixed t, the

(a) 10th order
diagram No. l

(b) 12th order
diagram No. l

(a) 8th order (b) lOth order (c) l2th order

FIG. 1. The Q~ Feynman diagrams of Mandelstam.
The s channel runs horizontally from left to right, and

the t channel is vertical.

(c) 12th order (d) 12th order
diagram No. 2 diagram No.3

FIG. 2. Non-Mandelstam diagrams, which in P3 are
of comparable magnitude as the Mandelstam diagrams
of the same order.
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contribution from the diagram of Fig. 2(a} is of the
same order of magnitude as that of the diagram of
Fig. 1(b), while those from Figs. 2(b), 2(c), and
2(d) are of the same magnitude as that of Fig. 1(c).
More generally, the contribution from any diagram
of this class is of the same order of magnitude
as that of the Mandelstam diagram with the same
number of Q' vertices.

All the above considerations are also valid for
the Reggeon-Reggeon case with 4 particles ex-
changed in the t channel.

Let us now go into some of the more technical
details. The contributions from both diagram 1(b)
and diagram 2(a) are of the order g"s '(lns)' as
s -~ with fixed t. Similarly, the contributions
from diagrams 1(c), 2(b), 2(c), and 2(d) are each
of the order of g "s '(lns)'. However, all these
contributions are cancelled by the corresponding
crossed diagrams obtained by exchanging s and u;
this happens for both the Mandelstam diagrams
and the non-Mandelstam diagrams. Thus the re-
sulting contributions are of the orders of
g "s '(lns)' and g "s '(lns)', respectively. If only
the Mandelstam diagrams are kept, the resulting
series of leading terms is essentially a geometric
series and the summation can be carried out easily.
%hen the additional diagrams are also retained,
the series is much more complicated. In fact,
the summation of this series cannot be carried out
explicitly, and the structure in the complex an-
gular momentum plane must be studied through a
non- Fredholm integral equation. For forward
scattering t = 0, there is, in addition to a branch
cut, also at least one pole to the right of the
branch cut. %'hen —t increases, the pole moves
closer to the branch cut, and at some finite value
of

~ t~ this pole disappears into the branch cut. The
discontinuity across the branch cut is of course
quite different from the contributions from the
Mandelstam diagrams alone. In view of the pres-
ence of the pole, we find the term "Reggeon-par-
ticle cut" somewhat misleading; the diagrams are
in fact characterized by the presence of the three-
particle intermediate states. The properties of
such diagrams are discussed in Sec. II.

In Sec. III, we deal with the corresponding dia-
grams with four-particle intermediate states.
These diagrams include in particular the usual
double Mandelstam diagrams that give the Reggeon-
Reggeon cut. The physics is essentially the same
but the details are more complicated. In particu-
lar, the signature factors play a role of paramount
importance. This fact makes the analysis much
more delicate. For this reason, we present in

great detail the necessary calculations. In order
not to lose sight of the chain of reasoning, which
is really quite elementary, we relegate such de-

tails to a series of appendixes.
It is perhaps illuminating to rephrase the results

of this Q' calculation in terms of the Reggeon cal-
culus of Gribov and collaborators. ' ' " This cal-
culus embodies not only the concept of the Regge
cut but also deals with the possibility of repeated
Reggeon-particle (and Reggeon-Reggeon} scatter-
ing. Such processes can occur in perturbation
theory only through non-Mandelstam diagrams.
In the language of Reggeon calculus, the study of
this paper demonstrates, in the perturbation the-
ory of Feynman diagrams, that such repeated in-
teractions of Reggeons are not small compared to
the single Reggeon-particle (or Reggeon-Reggeon)
term. In other words, in the sense of leading
terms, Reggeon calculus replaces an infinite set
of Feynman diagrams with simple vertices by an
infinite set of Reggeon diagrams with nonlocal,
s-independent vertices, which are not small even
in the beak couPling limit. In order for the so-
called hybrid diagrams of Reggeon calculus to be
useful, this infinite set must be treated nonper-
turbatively. This is discussed in Sec. IV.

II. THREE-PARTICLE INTERMEDIATE STATES

P, +P, =P,'+P,'

Define the usual Mandelstam variables

s =(P, +P,)',
t =(P, —P,')',

and

u=(P, —P,')'

(2.1)

(2.2a)

(2.2b)

(2.2c)

[with the metric (+ ——-}j.We are interested in
the limit s -~ with t fixed and nonpositive. Since
t is spacelike we may write

P, —P,' = (0, 0, Z), (2 2)

where b is a two-dimensional vector.
The plan of this section is as follows: In Sec.

II A we will recall a few well-known properties
of Mandelstam diagrams. Next, in Sec. II B we
discuss the tenth-order diagram of Fig. 2(a). We
then, in Sec. II 0, discuss the role of signature
and, in Sec. IID, consider the twelfth-order dia-
grams of Figs. 2(b), 2(c), and 2(d). In Sec. IIE
we describe the general class of diagrams which
contributes to the Reggeon-particle cut and in
Sec. II F we derive an integral equation which sums
the contributing diagrams. Finally, in Sec. IIQ

In this section we consider all Feynman diagrams
which contribute to the Reggeon-particle cut in
leading order. Let P, and P, be the momentum
of the incoming particles and Pl and P,' be the mo-
mentum of the outgoing particles; then
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we demonstrate the existence of the three-particle
Hegge pole.

A. Mandelstam diagrams

The leading term in the s -~ expansion of the
amplitude for the Mandelstam diagram in 2(n+1)-
order perturbation theory (n) 3) is well known' '
to be

n-I
bubbles ",

I

(a) (b)

3g('"+') = —2wis 'g lno 'sf o (n)
1

(n —1)!

+O(s 'ln" 's),
where

(2.4}

f(n)(d)
d'k 1

, a" '( —k) (2.5)

and

n(&)=g' 22, ~, — -» (2.5)
d'k 1 1

2 2w P+m (6—k +m

The function f„"(3) may be symbolically repre-
sented by the diagram in transverse-momentum
space of Fig. 3(a).

(c)

FTG. 3. The transverse diagrams for (a) the 2(n+1)th-
order Mandelstam diagram, (b) the tenth-order diagram
1 of Fig. 2(a), (c) the twelfth-order diagrams 1 and 2 of
Figs. 2(b) and 2(c), and (d) the twelfth-order diagram 3
of Fig. 2(d).

B. Tenth-order non-Mandelstam diagram

The lowest order in which there are important diagrams other than Mandelstam's is tenth, where we have
the diagrams of Fig. 2(a). This diagram is analyzed in Appendix B and we find

K'"' =-s 'g" 2wi —ln's f '"'(6) +O(s 'ln's)1 sf 1 (2.7)

where

2(2wIo 2(2w)o 2(2w}, 2(2 }, (k, '+m') '(ko'+nP) '( s'+nP) '(k, '+H)

x[(Z —k, —k)'+m'] '[(d -k, -k,}'+nP] '[(6—k, —ko)'+nP] (2.3)

This amplitude is represented by the transverse diagram of Fig. 3(b). The amplitude (2.7) is indeed of the
same order of magnitude as the Mandelstam amplitude (2.4}with n =4.

C. Signature

Of course, even in eighth order the Mandelstam
diagram of Fig. 1(a) is not the only diagram which
contributes, as it is always possible to interchange
the s and u channels to obtain the "crossed" dia-
gram of Fig. 4(a}. Similarly, for the tenth-order
diagram of Sec. II 8 we have the crossed diagram
of Fig. 4(b). For both of these crossed diagrams
it is easily verified that the leading term of the
s -~ expansion is precisely the negative of the
leading term (2.4) and (2.7) of the uncrossed dia-
grams. Therefore, this leading-order expansion
for the individual diagrams is not accurate enough

+As 'Ln's+0(s 'Lns), (2.7')

where A is purely imaginary. Moreover, the ex-
pansion of the amplitude for the crossed diagram
%(") is].C

to study the sum of all the contributing diagrams.
However, it is not difficult to refine the asymp-

totic expansion to compute the leading term of the
sum of the diagram and the crossed diagram. As
shown in Appendix B the expansion (2.7) of 3g(, 'o)

is more precisely given as

(xo) =-s 'g'o2wi —(lns —wi)'f '"(d)~ 1
1 1
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3R„"=s 'g" 2w2 —ln's f I"'(2)

-As 'ln's +0(s 'lns) . (2 9)

3R "'+ 3R'" = —2w's 'g"-'ln's f I'"(n)

+O(s 'lns) . (2.10)

Therefore A cancels out when we sum%, " and
and we obtain

Similarly for the 2(n+2)-order Mandelstam dia-
gram we have

3R"""' 3R""+4' =-2w2s 'g4 ln" 's f'"'"(a)+O(s 'ln" 's) .
1

s + sc
( 1)l w (2.11)

D. Twelfth-order non-Mandelstam diagrams

In twelfth order we consider the three diagrams" of Figs. 2(b), 2(c), 2(d) and the three crossed diagrams
of Figs. 4(c), 4(d), 4(e). These diagrams are explicitly expanded in Appendixes C, D, and E and we find

3R " + 3R " = —2w's 'g" —ln's f " (Z) +O(s 'ln's)1 1C 3I 1

3R 12 + 3R 12 = 3R 12 + 3R 12 +O(s 21 2s)2 2C 1 1C

(2. 12)

(2.13)

3R ' +3R ' = —2w's 'g" —ln sf "(Z)+O(s 'ln s)3 3C 2 (2.14)

where

and

f I ( ) 2(2 ) 2(2 ) 2(2 ) 2(2 ) 2(2 )
l +nP) (k2 +nP) (k2 nP) (k4 +nP) (k2 +nP)

x[(i—gl —k2)'+m'] '[(Z —k, —k, )'+nP] '[(Z-k, —k,)'+nP] '[(3—k, —k, )'+nP] (2.15)

2(2w)' 2(2w)' 2(2w)' ] 2(2w)'

(2.16)x(k, '+nP) '(k, '+nP) '(k, '+nP) '[(Z —k, —k, )'+nP] '[(n-k, —k, )2+nP]

The transverse diagrams for f I"' and f 2I"' are given in Figs. 3(c) and 3(d). Again, these expansions are
of the same magnitude as the corresponding expansion (2.11) for the twelfth-order Mandelstam diagram.

E. The class of contributing diagrams

We now wish to generalize the results of the
tenth- and twelfth-order perturbation-theory cal-
culations to arbitrary order. The result is that
there is a class of diagrams (which includes the
Mandelstam diagrams) that contributes to the lead-
ing order. " Several examples are given in Fig. 5.
The class is described as follows:

(I) From the upper horizontal line draw three
vertical lines (labeled "1", "2", and "3"in Fig. 5).

(2) Line 1 (the left-most vertical line) and line
3 {the right-most vertical line) are then immedi-
ately connected by a horizontal line.

(3) An arbitrary number of horizontal lines may
then be drawn in an arbitrary order between 1 and
2, 1 and 3, and 2 and 3.

(4) The three vertical lines must be connected
to the lower horizontal line so that the right- and

the left-most vertical lines are connected by a
horizontal line. This step can always be carried
out in two ways and the two diagrams so construc-
ted transform into each other under s —u exchange.

It is clear that the Mandelstam diagrams are the
subclass of diagrams obtained by only allowing
horizontal lines between particles 1 and 3. It is
also clear that the tenth- and twelfth-order non-
Mandelstam diagrams of Fig. 2 are included in this
class of diagrams.

The contribution of one of these diagrams plus
its s —u crossed diagram in 2(n+1)-order per-
turbation theory is

2m's 'g'"+ 1
Inn -2s

(n —2)!
x(integral from the transverse diagram),

(2.17)
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(0) (b)

(c)

(e)

FIG. 4. The s u crossed diagrams corresponding
to (a) the eighth-order Mandelstam diagram of Fig. 1(a),
(b) the tenth-order diagram 1 of Fig. 2(a), (c) the
twelfth-order diagram 1 of Fig. 2(b), (d) the bvelfth-
order diagram 2 of Fig. 2(c), and (e) the twelfth-order
diagram 3 of Fig. 2(d).

(c)

FIG. 5. Four examples of the class of diagrams that
are as large as the Mandelstam diagrams when s
(a) an eighteenth-order diagram, (b) the eighteenth-
order diagram obtained from {a) by s u exchange,
(c) a twentieth-order diagram, and {d) the twentieth-
order diagram obtained from (c) by s u exchange.

where the transverse diagram is obtained by
shrinking all horizontal lines.

F. Integral equation

We now study the s -~ behavior of the sum of
the class of diagrams of Sec. IIE. For this pur-
pose it is advantageous to pass from s to the con-
jugate angular momentum variable j by making
the Mellin transform

We may now write an integral equation for 5R( j)
valid near j=-2.

Consider a general transverse diagram and cut
all three lines just before they join the bottom
line (Fig. 8). With each line there is associated
a transverse propagator. Therefore consider the
function obtained by omitting the three propagators
cut by the dashed line (and the associated inte-
grations). In (2n+2)-order perturbation theory

9R(j) = dss ~ 'K(s) . (2.18)

we have

for 0&s & 1,

If for 8R(s) in (2.18) we use

1 -2—s 'ln s for 1&sn! 7

(2.19)

nl, dss ' ~ln"s =(2+j) " ' (2.20)

Therefore, using (2.20) we find that in the vicinity
of j = —2 the Mellin transform of (2.17) is

2v2g2" +2( j +2) "+ &

x(integral from the transverse diagram) .

(2.21)

FIG. 6. A typical transverse diagram of twentieth
order. The dashed line indicates the cut used to derive
the integral equation (2.29).
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call this function f(")(k„k„k,}, where k, +k, +k,
= Z is the momentum transfer (2.3). From inspec-
tion of Fig. 6 we see that, for given 6,
f("'(k„k„k,) must of the form

f " (k„k„k,) =f," (k,) +f," (k, ) +f(" (k ) . (2.22)

the amplitude 3g( j) for the sum of all diagrams of
our class is related to f(k) by

d'k
3g( j ) =g'0 '

16,, f(k) -k. , 2 n(n -&} .

(2.26)

Furthermore, define, for i = 1, 2, 3,

f((&() = Q f'"'(k )
n=3

and

f(k) =f,(k) +f,(k) +f,(k) .

Then, in terms of the variable

f=j+2

(2.23)

(2.24)

(2.25)

Furthermore, since our class of diagrams begins
with the eighth-order Mandelstam diagram we
find from (2.11) that

and

f(3)(k )
—f(3)(k ) —0

f,")(k,) =-2v'g'g 'a(i-k, ) .

(2.27a)

(2.27b)

The functions f(")(k,) satisfy the recursion rela-
tion, for n~3,

f (n+ 1)(k) f',"'(k)
P

0 1 1 f(")(k/)

f,'"'"(k) =4 'a(&-k) f,'"'(k) +0 'g'
2(2v) k' +m (n —k —k'} +m

f(n+ i) (k) f( )(k) 1 1 0 f("'(k')

Therefore, summing over n and using the initial condition (2.27) we obtain the desired equation for f, (k)

f,(k) 0 0 1 1 f(k')

(2.28)

d2ki
[1—g 'n(4-k)] f (k) = —2&'g'g 'n(Z-k) +f 'g' . .. - -, , 2 1 0 1 f (k')

2(2v ' k" + (2 k-k')' ym

f,(k) 0 1 1 0 f~(t(') (2.29)

from which, by adding together the three equations, we obtain the integral equation for f(R),
d2k'

[1—g 'n(Z —k)] f(k) = —2v'g'g 'a(Z —k)+2/ 'g', „-,2 f(k') . (2.30)

G. Three-particle Regge pole

We conclude Sec. II by studying the singularities
of %(j}.

Consider first the equation obtained from (2.30)
by omitting the last term. This is the equation we
would obtain if we considered only the Mandelstam
diagram. The equation is easily solved and, call-
ing K„(j) the resulting amplitude, we find

d'k 1 a'(3 —k)
],6vn k2+m2 1 —g 'a(g k) '

(2.31)

plitude %(j) has a pole to the right of this cut
when 6 is not too large.

The amplitude K(j } will have a pole if f(k} has
a pole for some value of g = n, (Z). At this three-
particle Regge pole, the inhomogeneous term in
(2.30) is to be neglected and thus the homogeneous
equation

[1 —n, (Z) a(Z- k)]f,(k)

(2.33)
which clearly has a branch point at

j = —2+n(0) . (2.32)
has a nontrivial solution f,(k}. Define

n(Z- k) =g '16m' n(Z —k) (2.34)
This branch cut is known in the literature as the
R eggeon-particle cut.

We now demonstrate that, in fact, the full am-

and

)(=g '16m' a, (Z) . (2.35)
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Then multiply (2.33) by X to obtain an equation with
no coupling constant,

[A —a(Z-%)]f,(R) =2 d'h' -„
(2.36}

so that

[a —a(Z-tt)]h(k) =2fd'k'(P+nP) '~'

x(R" +m'} '~'

h(k')
(Z-k-tt')'+m' '

(2.38)

Symmetrize (2.36) by defining

h(k} =(9+m') '~'f, (k) (2.3V)

This integral equation may be obtained by a vari-
ational principle. Therefore we find that the
largest eigenvalue A, ,„obeys

max= ~p
[

d ((h (li) i*i(X'-Kl ~ x f d ((*xli('(( ~'I*IP) ' *(P ~ilP) ' *— -1 j
d'k h'(k)

(2.39)

To demonstrate that

X,„&a(0) =))m '

it suffices to use as a trial function in (2.39)

(2.40)

h(k) =

0 otherwise .

Then we have the estimate

(2.41)

2~ 2~ I ~ I 2 2 ~ I ~2
hkhk'd'kd'k' k" +m' '~' +rrP ' — « ~ +a '+rrP ' 4 +2a '+rrP '

ma
' . 2.42

Moreover, if we use the inequality valid for x&-1
1 «1-x+x -x2 3

1+x

we find that

(2.43)

d qh(q) a(Z-q) =
k/2 p~ QI 2 +~ 2k kl +k2

Therefore, using (2.42) and (2.44) in (2.39) we find

] [( I &I+&)'+m'] [( I d I+2a)'+m'] 12m' 18 16

The expression on the right-hand side is positive for sufficiently small values of a if

(2.44)

(2.45)

5'm '&2v 6 —1 . (2.46}

Hence it follows that if Z satisfies (2.46), then the amplitude SR(j) has a three-particle Regge pole which
lies to the right of the Mandelstam cut.

III. FOUR-PARTICLE INTERMEDIATE STATES

We now turn our attention to the case of four-
particle intermediate states in the t channel. Our
results are qualitatively the same as those of Sec.

II. In particular we show the following:
(1) The class of diagrams which contributes to

the leading order as s -~ is much larger than the
class of double Mandelstam diagrams illustrated
in Fig. 7.
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(2) When the momentum transfer Z is zero, the
singularity of the amplitude in the j plane which is
farthest to the right is not the "Reggeon-Reggeon"
cut at

j=- 3+2a(0), (3.1)

A. Double Mandelstam diagrams

The diagrams analogous to the Mandelstam dia-
grams for the exchange of a Regge pole and a par-
ticle are the double Mandelstam diagrams of Fig.
7. These diagrams have been analyzed by Cicuta

because there is a cut due to the convolution of the
three-particle Reggeon of Sec. II G with an addi-
tional elementary particle which lies to the right
of (3.1).

This case of "Reggeon-Reggeon" scattering has
been extensively discussed by previous authors. '
Our treatment differs from these previous treat-
ments in two respects:

(1) Many diagrams previously thought to be neg-
ligible are demonstrated to be important.

(2) The effects of signature are properly taken
into account. These signature effects are par-
ticularly important for the diagrams which pre-
vious authors thought were small.

if)

2 I

I
C I

I

(0)

I
I
I
I
I
I

rungs
I
I
I
I
I
I
I NJ

(b)

and Sugar' and by Hasslacher and Sinclair. " They
find for the general diagram of Fig. 7 with m rungs
in the outer ladder and n rungs in the inner ladder
that, for m ~ 1 and n ~ 0,

(c)

FIG. 7. Double Mandelstam diagrams with m rungs in
the outer ladder and n rungs in the inner ladder. Dia-
grams (c) and (d) are obtained from diagrams (b) and

(a), respectively, by s u.

1 1 n+m+ l
(n+ 3)! (m —1)! (3.2)

where for m &0

d'kf „(Z)= 16, a (k) a"(Z- It), (3.3a)

and

f „(Z)=0, (3.3b)

if ps = pl + 2

1 otherw ise
(3 4)

We note that the method of specifying diagrams
given by Fig. 7 is not unique and that the diagrams

specified by (m, n) and by (n+2, m- 2) are the same.
Therefore, when (3.2) is summed over m and n,
one must divide by two to avoid double counting.

Along with the diagrams of Fig. V(a) we must
also consider the three additional diagrams ob-
tained by twisting the legs of the ladders as shown

in Figs. V(b), V(c), and V(d). These four diagrams
are each of the order g +"+ s '].n" + s. How-

ever, when added together their sum is only of the
order g' '""s 'ln '"s. This loss of two powers
of lns is expected on the basis of considerations
of the signature of each constituent ladder. Call-
ing the four separate amplitudes of Fig. 7 1, 2, 3
and 4, respectively, we find"' "

1
+

( +2) I ( 2) I f l, n+nl3(h) +O(s ln"+ s) (3.5)
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8. Non-Mandelstam diagrams

The lowest order in which there are non-Mandel-
stam diagrams which are comparable to the double
Mandelstam diagrams of Fig. '? is twelfth order.
These lowest-order diagrams are given in Fig. &

and are obtained by adding a vertical line to the
tenth-order non-Mandelstam diagrams of Fig. 2(a)
in all possible ways plus the crossed diagrams. We
note that the diagrams of Fig. 8(b) and 8(c) are
their own crossed diagrams.

We could go on systematically and calculate these
four twelfth-order diagrams. However, since the
calculations are somewhat tedious we will proceed
directly to a diagram (Fig. 9) of particular interest
which has been discussed incorrectly in the lit-
erature. ' This twentieth-order diagram is surely
one which should be considered in an attempt to
study the interaction of two Reggeons. The cal-
culation of the s-~ behavior of this diagram is
somewhat subtle. We carry it out in Appendix F
and find that it behaves as

—ig2os 'In's f(Z}. (3.6}

Moreover, f(X}does not have a natural repre-
sentation in terms of an amplitude in transverse-
momentum space.

By itself the diagram of Fig. 9 is one power of
lns smaller than the twentieth-order double Man-
delstam diagrams [(3.2) with m+n = 6] . However,
(3.6) is one power of lns larger than the sum (3.5)
of all four double Mandelstam diagrams which
must be added together to obtain the correct sig-
nature factors. This clearly indicates that in addi-
tion to the diagram of Fig. 9 we must consider
other diagrams as well.

We obtain further insight into the diagram of
Fig. 9 by straightening out the top and bottom lines
as shown in Fig. 10. (There are, of course, 3

g20s 'In's f (Z}, (3.7)

where f (Z) is real and is representable as an am-
plitude in transverse momentum space (Fig. 14).
Now when we add the four s —u crossed diagrams
we lose a power of lns and gain a factor of i so the
final result is proportional to

—ig20s 'In's f (3) . (3.8)

This has exactly the same power of lns as does the

other possible ways to straighten out these lines
and each way must, in general, be discussed sep-
arately. See Appendix F.) In this form it is clear
that we should consider the signature partner dia-
gram obtained from Fig. 10 by

(a) transposing at the upper end the two interior
vertical lines,

(b) transposing at the lower end the two interior
vertical lines, or

(c) transposing the two interior lines at both the
top and the bottom.
These diagrams are shown in Figs. 11, 12, and 13
(see Appendix G}. Furthermore, there are the
additional diagrams obtained from these by s —u

crossing.
These diagrams are treated in Appendixes F and

G. It is found that each of these non-Mandelstam
diagrams is of order g' s 'ln's. We also find that
the diagrams obtained by transposing the upper
or the lower interior pair of lines are both purely
imaginary in leading order. However, if both the
upper and the lower ends are transposed, there is
also a real part to the amplitude. When we sum
these four amplitudes together the imaginary parts
cancel and the result (G10) is of the form

(a) (b)

(c)

FIG. 8. The four twelfth-order diagrams which are
comparable to the twelfth-order double Mandelstam dia-
grams of Fig. 7.

FIG. 9. A twentieth-order diagram that contributes to
Reggeon-Reggeon scattering.
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pi) il,4 P,1 ~P-,4 P,iig
a&

11'

lj1I44 6- 3;5,6

l
Qa
45

5J

ps'%7

Ia+
-7,9

Ptj16P g 1-6,8 g '8
a', 03
6,9 8,9

911pi
Cg

9

FIG. 10. The diagram of Fig. 9 redrawn in a useful fashion. The Feynman parameters indicated are used in the cal-
culation of Appendix F.

p)~ 1,4

a,
l,4

1)IP

y, &14&% Si

71ig

@8,9
al

6,9

Pj18
alI

8,9
Qa
9

9 (Pl

FIG. 11. The diagram obtained from that of Fig. 10 by transposing the two inner vertical lines at the top.
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PI'2;O
l,2

y) I ig,5;6
a'6

p5)(6,7

PI)(6,9
a'~l
6,9

a$

gi ip'

FlG. 12. The diagram obtained from that of Fig. 10 by transposing the bvo inner vertical lines at the bottom.

sum (3.5) of the double Mandelstam diagrams of
twentieth order.

In general, the class of contributing diagrams is
described as follows:

(1) Draw 4 vertical lines from the upper hori-
zontal line.

(2) Connect the outer two lines by a horizontal
line.

(3) Draw any number of horizontal lines between
lines (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), and (3, 4)
in any order whatsoever.

(4) Join the 4 vertical lines to the bottom hori-
zontal line in such a fashion that the outer two
lines are connected by a horizontal line.

As in the previous example, when we add to-
gether the amplitudes of the diagram and its sig-
nature partners we obtain a result which is pro-
portional to the amplitude of the transverse dia-
gram obtained by contracting all horizontal lines.

The sign of all contributions is the same. This
is a reflection of the fact that P' is a theory of
attractive bosons.

C. Integral equation

The sum of all these contributions is given by
an integral equation analogous to that of Sec. II F.
In particular, consider the amplitude obtained by
cutting a transverse diagram at the bottom. Call-
ing this amplitude f(k„k„k„k4},with

k, +k, +k, +k, =Z, (3 9)

fbi (ki, ki ) =fbi (ki, ki) . (3.11}

Then for the Mellin transform 9R( j) we have, with

g=j+3, (3.12)

we have, for given ~,

f(k„k,k, k~) f„(k„=k,) +f „(k„k) +f„(k„k4)

+f„(k„k,) +f„(k„k,) +f„(k„k,),
(3.10)

where
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(3.13)

where

f(k, k') = Q f, ,(k, %') .
&~ l(t' +q

(3.14)

Furthermore, calling f(,")(k„k,} the amplitude in 2(n+4)-order perturbation theory, we find

f(1) f(1) f(1) f(1) f(1) 0 (3.15a)

f'„"(k„k,) = —2s ir.'g 'n'(Z k——,k, ) .

Then the f, ",) satisfy the recursion relation

(3.15b)

f(""(k k') f( '(k"k')

f(n+ 1)(k

f(n+1)(k

f(n+ 1)(k

f( n+ 1)(k
(~+ j) k

k ')

k') = g 'a(Z —k —k )

f(,")(k, k')

f(")(ki k')

f(")(k k')

fi(4 (k, k')

f„"(k, k')

0 0 0 0 0 1 f„"(k", Z —k —R' —k")

0 0 0 0 1 0 f,i (k", Z —% —R' —k")

0 0 1 0 0 0 f2(i)(k", Z —k —k' —k")

0 1 0 0 0 0 fi(",)(k", Z —K —k' —%")

1 0 0 0 0 0 f„"(k",Z —k —k' —ft")
L

0 1 1 1 1 0 f,", (k, k") +f,,"'(k', k")

1 0 1 1 0 1 f,,"(k, k")+f„"(k', k")

d 2k"
~f-1g2 . . . ~, ~„, — 1 1 0 0 1 1 f(1~)(k, k"}+f(4)(k',k") . (3.16)

1 1 0 0 1 1 fi(",)(%, %")+f(i",'(fc', E")

1 0 1 1 0 1 f(,")(%,(t") +f(,")(R', %")

0 1 1 1 1 0, f(4 (k, k")+f,4 (k', %")

Summing (3.] 6) on n from 1 to ~ and using the initial condition (3.15) we obtain
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f ia(»

fi,(k,

f„(R,
f„(k,
fa4("

f,4(k,

k')

k')
[1—1 'a(n —k —k')]

k')

—2w'if 'g'n(Z —k —k')

+ (-lg2

0 0 0 0 0 1 f„(R",Z-R —k'-%)
0 0 0 0 1 0 f„(k",Z —k —0' —k")

Ip 0 0 0 1 0 0 fg4(k y
ZL % k % )

0 0 1 0 0 0 f„(k",Z —R-R'-%")

0 1 0 0 0 0 f~4(k", d-]t-%' —k")

1 0 0 0 0 0 f~4(k", Z —k —k' —k")

0 1 1 1 1 0 f„(k,k")+f,~(k', R")

1 0 1 1 0 1 f„(k,k")+f,~(k', k")

d~ItI' 1 1 1
g 18 3 k/f Q ~ (+ g g/ k//), ~ 2

1 1 0 0 1 1 f,4(%,, k") +f„(k',k") . (3.1&)

1 1 0 0 1 1 f~~(k, k") +f~~(k', k"}

1 0 1 1 0 1 f,~(k, k")+f,4(k', k")

0 1 1 1 1 0 f,~(k, k")+f„(k',k")

We may now add together all six of these equations and obtain the desired equation for f(R, R ) of (3.14)

f(R, %')[1 —& 'a(Z —k —k')] = —2m'ti 'g'a(d, k —k')-

d'k~ 1 1
18+i k//2+~ (d Q kI kgb)g ~ [f(% y

n k % k )

+ 2[f(k', k") +f(k, k")]) . (3.18)

It is instructive to consider what this equation
becomes if we consider summing only the Mandel-
stam graphs. Then the term containing f(%, k')
+f(k', k") is omitted, and calling the resulting
function f„(k,k') we see that f„(k,%') obeys an
equation that depends on k and k' only through

k+k'=q .

Therefore, calling

fs(q) =f~(&, k')

we find from (3.18) that

(3.19)

(3.20}
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p, ii]4

7iii4A~
5;5,6

p6}(6,7

I
h

Pi}i6,9
I

~l

6,9 6;8,9

9iiP~

FIG. 13. The diagram obtained from that of Fig. 10 by transposing the inner vertical lines both at the top and at the
bottom.

f„(q)[1—g 'a(Z-q)]=-2w'i& 'g'a(&-q)

+fs(&-q}&

(3.21}

To solve this write the companion equation with
q-d-q,

f„(Z-q)[1—g 'a(q)] = —2w i& 'g a('q)'

+fs(q)& 'a(q) (3 22)

Eliminating f„(Z-q}between these equations, we
get

—2w'ig 'g'a(Z —q)
1 —g '[a(X-q)+a(q)] (3.23}

Therefore using this in (3.13}we obtain the known

result for the sum of the double Mandelstam dia-
grams

FIG. 14. The transverse diagram for the function

f {b).
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& =2a(0) . (3.25)

This branch point is expected to remain in the full
amplitude N(j). However, included in %(j) are
all diagrams which convolve a single elementary
particle with the sum of all three-line graphs dis-
cussed in Sec. II. We have seen in Sec. IIQ that
these three-line graphs lead to a three-particle
Regge pole at a,(Z). Therefore, the convolution
of this three-particle pole with an elementary par-
ticle gives a fixed cut at

& =~,(0). (3.26)

We do not know n, (0) exactly; however, a more
sophisticated variational calculation than that of
Sec. IIG shows that

o,,(0) & 2a (0) . (3.27)

Therefore, the "Reggeon-Reggeon" cut is not the
right-most branch cut in the j plane.

IV. COMPARISON WITH GRIBOV'S REGGEON CALCULUS

We have now seen explicitly that in Q' theory
Mandelstam's diagrams are not nearly enough to
study the s-~ behavior of the scattering ampli-
tude with either three- or four-particle interme-
diate states. In the case of three-particle inter-
mediate states, if only Mandelstam's diagrams
are taken into account, the amplitude behaves as
the convolution of a Reggeon and an elementary
particle. In fact, due to the non-Mandelstam dia-
grams the discontinuity across the cut starting at
j =-2+a(0) is different from that given by the
Reggeon-particle convolution and, in addition,
there is at least one pole that lies to the right of
-2+@(0) if Z is not too large. Moreover, in the
case of four-particle intermediate states, the
branch point is not at -3+2a(~j2) but is at a lar-
ger value. In this case, the discontinuity across
the branch cut is of course also different from
that of the simple convolution of two Regge poles
obtained by summing only the double Mandelstam
diagrams.

As presented in Sec. II (and III} each of the 3

(or 4} particles in the f channel are treated on an
equal footing as is natural and as required by Bose
statistics. This leads to an amplitude determined
through an integral equation which describes the

d'q a'(Z —q) a(q)
16w' 1 —t' '[o(Z-q)+a(q)] '

(3.24)

We conclude by discussing the singularities of
3R( j). When 2=0 we see from (3.24) that 3)I„(j)
has a branch point at

mutual interaction of the 3 (or 4) particles in the
space of transverse momenta. However, it is
also possible to proceed in a somewhat different
fashion by first summing over the repeated inter-
actions between pairs to produce Reggeons. We
discuss here four points of view in connection with
this approach.

(a). The calculations of the preceding sections
demonstrate that these repeated interactions of
Reggeons are just as important as the term which
contributes to the single two-Reggeon (or Reggeon-
particle) term. A great deal of effort has been
spent in the past several years in the nonperturba-
tive study of these repeated interactions of Regge-
ons in the t channel. ' '" However, most of this
work deals with systems having a triple-Regge
vertex. From Sec. II and III here, we find no
triple-Regge vertex in the P' problem under con-
sideration, but find instead a four-Regge vertex
describing the scattering of two Reggeons to two
Reggeons. Furthermore, even in the weak cou-
pling limit and to the leading logarithm a,pproxima-
tion, this four-Regge vertex must be taken into
account. A four-Regge vertex has been considered
before in a nonperturbative fashion, "but the the-
ory presented there would also seem to allow the
coupling of 1 Reggeon to 3 Reggeons which is not
relevant to the present P' problem. A further de-
tailed investigation to clarify the situation would
seem desirable.

(b) One can attempt to be more phenomenologi-
cal and say that we should now multiply the Man-
delstam discontinuity formula by some new func-
tion in order to get the correct discontinuity. The
hope may be realized that, at least when no addi-
tional poles appear, this new function is qualita-
tively simple. To pursue this approach, two lines
of attack can be tried. First, on the basis of the
diagrams studied in this paper, we may study this
ratio of discontinuities, perhaps even numerically.
If the result is simple and appealing, it may be
tried on cases of more physical interest. Second-
ly, it is very interesting to look for somewhat dif-
ferent versions of Q' theory where perhaps no
three-particle Regge pole is present. If such
cases can be found, it is then possible to learn
about the effect of the three-particle Regge pole
on the ratio of discontinuities. In particular, can
the sign of this ratio change T

(c) One may force the amplitude into the form of
the convolution of a Reggeon and a particle (or
of 2 Reggeons) at the expense of using much more
complicated (and s-dependent) vertex functions
for the coupling of the external particles to the
Reggeon-particle pair or to the two Reggeons.
The possible structure of these vertex functions,
usuually called N, has been discussed by Gribov,
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Pomeranchuk, and Ter-Martirosyan' and by
Gribov. ' It would be illuminating to apply these
formalisms to Q' theory and find out what addi-
tional information, if any, need be added to re-
gain the results of Secs. II and III.

(d) Finally, we may argue that (P2 theory has no
relevance to hadron physics. In some sense this
is surely correct. However, our Q' calculations
are for processes where only 3 or 4 particles are
exchanged in the t channel. Reggeon calculus
would seem to be not inapplicable to such process-
es. Therefore the usual objection to ft)' theory
about the instability of a system of attractive
bosons against collapse is perhaps not a serious
source of difficulty.

Qn the other hand, P' theory in the weak cou-
pling limit suffers unavoidably from the problem
that the Born approximation is larger than the
single-Reggeon (ladder) approximation by a power
of s and that the diagrams with 3 particles in the
t channel are down from ladder graphs by another
power of s. The renders discussion of the rela-
tion of P~ to Reggeon calculus somewhat uncer-
tain. To overcome this problem a systematic
study of some other field theory is essential. The
most natural candidate is perhaps quantum elec-
trodynamics.

+O(1). (A3)

Here the integral of the first term vanishes by
closing the contour in the upper half plane, while
the second term gives

I = 2x-i (P —1) '(a+ it) «" +O(l) (A4)

as a-0. The larger ReP is, the smaller the rela-
tive error becomes.

APPENDIX B

In this appendix we study the behavior, as s —~
with fixed t, of the tenth-order Feynman diagram
of Fig. 2(a). This is the lowest-order non-Man-
delstam diagram that we need to consider. This
diagram is redrawn in Fig. 15 in a more sym-
metrical fashion. Our asymptotic evaluation will
be carried out by means of Feynman parameters.

The amplitude for this diagram is

Since the corresponding integrations over (-~,-x, )
and (x„~)are both bounded as a-0, we get from
(A2)

I = (« —-1}' J d*(x ~ 'x) '[(xx, ~ x ~ (x)-"

—(-xy, +a+is) «"']
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APPENDIX A

(10) ( )
A ~(&+ 1)

(sD, +uD„+iD(—m'D + ie)' '~ ~

(B2)

In (B2), & stands symbolically for all the Feyn-
man parameters, including all the &, &', P, P',
and y of Fig. 15. As s -~ with fixed t, u is ap-
proximately -s; hence the coefficient of s is
Ds Du ~

In (B2), A, D«1 D„,D, , and D„arefunctions of
all the &'s. They can be described in a number of

The following integral appears repeatedly in the
Mellin transform of both Mandelstam and non-
Mandelstam amplitudes a,

l,2
a,

X2 Y2

dx dy(xy+a+ic) «,
Xy

(A1)

where ReP &1, and x„x2 py and y, are all fixed
positive numbers. We want to evaluate I approxi-
mately for small a.

Integration over y gives

-j.I =-(p —1) ' dxx '[(xy2+a+ie)
Xg

—(-xy, + a + i a ) «"] .

7i2;3

pi)(3,4

a,
l,5

3a'

2,4

(A2) FIG. 15. The Feynman diagram studied in Appendix B,
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ways. For example, A is given by the sum of all
the cuts that leave the diagram connected, where
D, , D„,and 8, are respectively the sum of all the
cuts in the s, u, and t channels. " We find it con-
venient to use instead the determinantal form
originally given by Chisolm. " In fact, for some
of the more complicated diagrams to be treated
in later appendixes, we have not been able to carry
through the analysis in any other way.

The determinants are in fact those from circuit
analysis. We begin by choosing independent loop
currents. For the diagram of Fig. 15, there are
four such loops, indicated by "1," "2," "3," and
"4" in the figure. If any loop current in a line is
in the direction opposite to the arrow for the line,
then we add a minus sign in front of the number
for the loop current. Treating the Feynman pa-
rameters as resistances, we can write down from

circuit analysis the 4x4 matrix, where the diago-
nal element ~&~ is the sum of all the Feynman pa-
rameters in the )th loop, while the off-diagonal
element ~» is the sum of all the Feynman param-
eters common to the jth and kth loops (with a
minus sign if the loop currents are in opposite
directions). The determinant of this matrix gives
A.

To obtain D, —D„,we add an extra row and an
extra column (column 5) to the above 4x4 matrix.
The (5,5) element is zero, the (j,5) element is the
sum of the Feynman parameters in the jth loop
which are also in the top line of the diagram, and
the (5,j) element is the corresponding sum using
the bottom line of the diagram. Note that the
arrows in the top and bottom lines are both from
left to right. D, -D„is given by the determinant
of this 5&&5 matrix.

n, +& +&, +p +pm

1 Pl

~i+4
~, +~,'+p, +p, +y

o", +o', + p,'+ p'+y

(yt PI

1 P1

~1+~2+ ™~+P1+P2

1+ ~2

0 (as)

We shall not write down D, and D at this stage because they are not needed in their full form. We merely
note that they are not zero even if we put all the o' and ' to zero.

As a first step, we subtract column 5 from column 1, and subtract row 5 from row 4. Thus

+p

o', +&,'+P +P +y

o.", ++, +P'+P,'+y 0

&,'+ p,
' + p' 0

I I
Q1 yA~

(a4)

We proceed to evaluate this determinant explicitly

D. D. = y(o—', P. -~,P, )(~,'P.' ~.'P,')+ (&,P. &.P, )&.'—A, + (&,'P,' ~.'P,')o.A. + ~.~.'A. ,

where

Ai =(~a+~a)~i+(oi+~s+~i+I s+y)~2»

A, = (o,'+ p, )~, + (o., + o,'+ p, + p, +y)~„
and

A. = ~, ~,'(S, + P,') - ~,~'y ~, +'(~,'oa,' +P,') +~,'~+, ( +0o, + O, )

A more useful form of (a5) is

D, D„= r(&,P, -&,0,-—n, A, /—r)(~,'0,' ~,'0,' —&,'A, /r)+ &,&,'&Ir,

where

(a5)

(as)

(89)
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8 =A, A +@A,

=[(, p.')(,"p.).y(p. p,')], ,"[(;,p,
'

p,')(, ;.p, .p ).r( ~;. ~ "p p" p p')]

(B10)

Since D, -D„is the coefficient of s in the denomi-
nator of (B2), the most important contribution to

comes from the region where D, -D„is small.
From (B9), D, -D„=Oif

Since

f r(2 —q)r(11 2+ q)
(n —1)!

or

OI, =OI, =P, (B11)
we get from (B2) that

yA-2+ Lg-&+2- ( (B18)

(B12} („1,r(2 —t)r(3+ g)

or

or

,p. — .p, — .~./r =,
=0

n, p, —n, p, —a,g, /y = a,'

(B13)

where

d[a)A'~ (Zn —1)
0

x (D, —D„+te)-"'(D+ te)-'-',

(B18)

=0
7 (B14) D = (4m —t)D„+tD, —m0D„. (B20)

o v%

or

a,'p,'- a,'p,' a,'A, /y=a,
=0 (a18)

In order to get the asymptotic behavior of 8," ' for
large s, we need the behavior of Ã,""(f)for small

In view of (B11)and (B12), let

OIz = p~x ~2 =p~2

(B18)

and

I I I
~x =p ™i~

(B21)

101(t') = t((10)S1 ~ dS
0

(B17)

The leading contribution comes from, roughly
speaking, the region where (Bll)-(B18) are simul-
taneously satisfied. Such cases are conveniently
treated by the method of Mellin transform

Def ine

such that

Ot~ + Q2 —
Q~ + Q'

(B22)

This kind of change of variable is called scaling.
Since p and P are small, we can carry out these
two integrations to get, for small

1

(I,""(f)-+t' ' da, da, da,'da,'dn, dn,'dP, dP, dP, dP,'dP,'dP,'dy&(1 —a, —a, )&(1 —a,' —n,')
0

x5(I —a n' —p —p - p —p,
' —p' —p' —y)A 'D

x(-y(n, p, —a,p, —a,[(n,'+ p, )a, +(n,'+ p, + p, +y)a, ]/yj

x [n,' p,
' a,'p,' —a,'[(n, + p,')a,'+ (a, + p,'+ p,'+ y) a,']/y)

+ n, n,'f[(a, + p,')(a,'+ p, ) + y(p, + p,')] a, a,'+ [(a, + pl + p,')(a,'+ p1 + p, )

r( +, na,
'

+~ p, ~ p,'+ p, + p,')] n, n,'

+ [(a,'+ p, )(a, + p,'+ p,'+ r) + r(p,'+ p,')] a, a,'+ [(a, + p,') (n,'+ p, + p, + r)

+ r(p, + p, )]a,'aJ/r+ I&) "', (B23)
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where

and (B24)

Di =DI n = n = n'= ~'= p ~
2 1

If we identify the quantities in the first two braces of the last factor in (B23) with the x and y of Appen-
dix A, i.e.,

x=a, p. n.—P, a,—[(n'. +P.)n, +(n,'+ p, +P, +r)n. l/r

aQd

y = n,'p.' n,'-p,' a,'-[(a. p.')n,' + (n. +P,' .p.
' + r)n.']/r,

(B25}

then we get from (A4) that

1

7s,
"o' (1') -—

p si g
p d a, da,' d p, d p, dp, d p,

' d p' d p,
' dy 0 (1 —n, —n,' —l3, —p, —p, —p,

' —p,
' —p,

' —y) A, '(D,

+is�

) 'y '
0

x[p, +Pp+n, (p, + r)/ y] ''[P,''+P'+ n,'(P, +y)lr] '

x(non,'y '([(ao ~Po)(no+ P,)+y(Po+l3,')]a,on,'o+[(np+P,' yPp)(no y P, ~l3o)

+ y( s+ s + 4 + Pi + Pp+ Ps)] zo ao

+ [(n,'+ P,)(a, + P,'+ P,'+ y) + y(P,'+ P,')1n,.n.'.
e[(n, + p,')(n,'+ p, +P, +r)+r(p, +P, )]a,',n„)+i&) '

where n„,a,o, n,'„and a,', are obtained from (B22) and (825) with x =y =0.
It is now clear that the leading behavior of g1"'(&) for g small is from a, -a,'-0. Thus

1

&,""(K) ', vi-K -'— dP, dP. dP, dP,'dP,'dP,'dr&(1 —P, —P, —P, Pi —P—
&

—
Pp r}Ao'D—o

'
0

x Gp, p,'+r(P, +P,'}]P,P,'+[(P,'+P,')(P, +P,)+r(P, +P,'+P, +P,'}]P,p.
'

+[P,(p,'+P,'+r)+y(pi+Pp)lapp+I po(pi+Po+y)+r(pi+Pp)lpipp] ',
where

(B26)

(B27)

and

3 3

D, =D,I., „,=, .

(B28)

Explicitly

J3, P~ + P3+y

0 P'+ P,'+ y P'

P,
'

P,'+P,'

and

=the quantity in the curly brackets of (B27), (B29}

Do = t[pgppp, (p,'P,'+ Pop,'+P,'g) + Pi pi po(pipp + P,P, + P,pi)

+ r[p, p,'(Pg + P,)($ + Pp) + Pgpppo(pg + Pp) + P,'P,'P,'(P, + P, ) + P, p, p,'P,']1

—m2A
0 ~

The desired asymptotic behavior of g,""then follows from (B27) and (B17) as
1

S,"P'--+p vis '(lns)' dP, dP, dP, dP,'dP,'dP,'dy&(1 —P, —P, —P, —P,
' —P,

' —P,
' —y)A, 'D, '.

0

(B30)

(B31)
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When rewritten in terms of momentum integrals,
(B31)with (Bl) gives (2.7).

The derivation of (B31) is somewhat tedious al-
though straightforward, Let us add the following
remarks to clarify the situation.

(a) The leading contribution comes from the pinch
s ingularity

x=y =0, (as2}

as given by (B25), together with the end-point
s ingular it y

(B33)

(D+is) ' ~.

(b} Even for this relatively simple case, the
formulas involved are quite lengthy. Since the
corresponding formulas for more complicated dia-
grams are not manageable, we develop in Ap-
pendix C a better formalism where, instead of
direct expansion, properties of determinants are
used. Since the machinery for this formalism is
fairly complicated, we have avoided using it here.

(c) Without additional work, what can we say
about terms of the order s 2(lns)2 in &,"0)? In terms
of Mellin transform, we have to deal with terms of
order & '. They can come from, for example, the
expansion of the factor I'(2 —f)1"(3+(), or from the
region of large p, or large p', or large Q, . All
these contributions have the property that the coef-
ficient of & ', when divided by the coefficient of
P 4, is real. There is only one way to get a ratio
that is not real, namely from the last factor of
(B19)

where y,""is the integral over P, P', and y that
appears in (B31), and the constant is purely real.
Equation (2.7') follows from (B34).

(d) What does the present consideration say
about the crossed diagram shown in Fig. 4(b)?
Let us define a corresponding 8,",", then

y(lp) y(10) )

1C 1 iS tC' (Bs5}

8"0)-—'ni S '
lc 3B

&( [(lns)2S,""+ const )( (Ins)'+O(lns)].

(as 7)

Since the constants in (B34) and (B37) are the
same, we get finally

e(10) ye(10) 1 02s-2(inc)2S(10)
1 1C 12 1 (B38)

APPEND1X C

In this appendix we study the behavior, again for
s ~ with fixed t, of the twelfth-order Feynman
diagram of Fig. 2(b). The amplitude for this dia-
gram is

sg(12) 5)(I 6v2)-5g 12ii(12)

where

(C1)

Therefore the Mellin transforms are related by

(as6)

We see from (B19) that this change of sign has two
effects: a cancellation of the factor e ' ~ dis-
cussed in the last paragraph, and a complex con-
jugation to restore the signs of i &, Therefore,
by (B34)

We see from (B30) that for physical values of mo-
mentum transfers t & 0 and hence D0 & 0. We there-
fore get a factor e "~. Therefore (B31) can be
improved to be

~ (10) 1
pZS1 3B

&( [(Ins —i v)2S,"0) + const x (lns)' +O(lns }J,

(Bs4)

8()2) 'd( } ~'5(Z( —I)
(sD, + u D„+t D, —m'D + i e )

~ ~

(C2)

Figure 2(b) is redrawn as Fig. 16, where the Feyn-
man parameters and the choice of loop currents
are also shown.

Since there are five loop currents, we need to
write down a 6x 6 determinant for D, —D„,

Ds-D

Q,+Q,+Q,+P,+P2

Q1 I 1

Q1+ I| 1

Q,+ Q+ P,+ P 3+ Is 4

Q3+ Q3+ Q+ P4+ P4+ P

Q+ P4

«Q /
3

Q+ P4

Q 1+ Q+ PI+ P3+ 134

Q1 ~1

I
Q1

-Q 1
3

Q1 I 1

Q1+ Q2+ Q+ PI+ ~2

I /Q1+ Q2

Ql+ Q2
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The prescription for writing down this determinant is exactly the one used in Appendix B. Once more we
subtract the sixth rom from the fifth rom and the sixth column from the first column to get

as+P1+Ps Q1 ~l -Qs Q1+ Q2

D4-D„=

P1 a1+a+ P1+ Ps+ P4

as+ Qs+ Q+ p»+ p4+ y

a+ P4

Ias

a+ PI

a 1+a+ P1+ Ps+ P4

at

~Q I
S

Q1 Il
a+ P', + P' 0

Q1+ Q2
I I

(C4)

This is the determinant that we shall concentrate on.
What we need is a procedure that can be generalized to deal with more complicated cases. For this pur-

pose, we introduce the following notation: Q,,.. .~ &,. . .&„means the minor obtained from the right-hand
side of (C4) by omitting the s rows a„a„a„.. . , a„and the s columns b„b„b„.. . , b„.Thus for example

QS t 1+~2 a,+P, Q1+ Q2

P, a,+ a+P, +Ps+ P» Q+ P»

SSs45 -as Q+ P4 a,+g+a+P, +P,'+y 0
(C5}

12, 16

a+P a,+ a,'+ a+P,+P4+y

a+ P4

I-as

I-as

Q1+ a+ P1+Ps+ P4 Q1+ P1

a+ P', + Ps

I Ia1+ Q2

(C6}

and

125B 5145S

a+P» a,+Q,'+a+P»+P»+y

a+ Pl (C7)

(Ds +6)+1256, 1456 +56,45+12,16 '

Let us consider this 5 in three special cases.
First, suppose we replace the (3.1) element

(C10)

It is also convenient to use the special notation
that 0 is the determinant with the last row and
the last column omitted:

(C6)

Furthermore, let A,, .. .+ & . ..,„denote the cor-
responding minor obtained from 0:

8 ~ ~ ~ ag 0 ~ ~ ~ bg +e ~ ~ ~ egg 51 lge ~
1 1 1 2

(C&)

We are now ready to study D, -D„onthe basis of
(C4). Consider FIG. 16. The Feynman diagram studied in Appendix C.
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(which is -a, ) of the determinant in (C4) by zero.
Then

and

5 = Q3Q3Q5, (C20)

DS Du 3456,2345 +12,16 ~

56,45 3456,2345 1256,1456 & (C12)
3 6 (+1256, 1456} (+58,45+12, 16 a3n3a 6 } '

(C21)
and hence

i5 =0. (C13)

Secondly, suppose we replace instead the (5, 3)
element (which is -a,') by zero; then

With (C21), we are ready to discuss the behav-
ior, near &=0, of the Mellin transform of the am-
plitude

g 12342 1236+56,45 &

12,16 1234 6 1236 1256 ~ 1456 &

(C14)

(C15} r(2 —g)r(4+ g)
5t

and we again get (C13). Thirdly, suppose we re-
place the (4, 2) element (which is a) by zero, then

14 123,126 456, 345 &

12 ~ 16 124566 13456 123 6 126

56645 12356612456+4566345 1

345602345 12456 0 13456 12356 ~ 12456 ~

(C16)

(C17}

(C18)

(C19)

and we get (C13) once more. Since 5 is zero in all
these three special cases, 5 is in general of the
form

1
x dIa} A' 6(Q a- I)

p

x(DB D„+is)-"~(D+i8)

(C22)

where D is given by (820) with the D„,D„and
D for the present diagram. Since D, -D„=Oif
wither ot, =@2=0 or u,'=Q.2=0, we use the change
of variables (821) and (822), and first integrate
over p and p':

1

ff ~1~ 1(&) -2'6 g
2 d a,d a2d a,'d a2da3da3da dP, dP dPBdP4dP, 'dP'dP, 'dP4dy5(1 —n, -a2)6(1 -a,' -a2)

p

x 6(1 -ao-a3-a-p, -p -PB-PB-P,'-P2-p' P4-y)A, (D,+-i 8) ~[( DBD„), +i6] + ~, (C23)

where the subscript 1 means the following:

Al = Ala =n =a '=n'=o
1 2 1 2

Dl =Din =n =n ~ =n ~=0 I1 2 1 2

(C24)

(C25)

The second step is to define

I~m P %8,45/+1256, 1456
p-6 p

and

(C27)

(D,-D„),= lim (pp') '(D, -D„). (C26) I -140
P 12,16/ 1256, 1456

p I~ p
(C28)

integrate over a, and a,' by (A4), and then integrate over a„n,', and a:
1

g I12~(g)- ,' vi t B—dp,d-p dp3dp4dp', dp2dp3d4dy(p, + P2) '(p,'+ p2) '5(l-p, P2 P3 P4 p,
' -P2 -P3 -P4-y)----

xA64(Do+is)~ (6 t+ie6) "~, (C29)

where lim (pp') '6
p~p p&~p

(C31)

and

Ao Aln =n =n =a'=n'=a'=a=a i
1 2 3 1 2 3

Do =Din =n =a =n'= '» '= nona
1 2 3 1 2 3

(C30)

al Pl/(Pl+ P2) 1

a,' = Pl/(Pl+ P2)

(C32)

In (C31), the superscript A means that the quan-
tity is evaluated at
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Qf3 =O.3'=Q=0. (C33}

where the subscript 0 means o.1 Q2 Q3 Q Q2

Q3 Q 0. At this stage, we can use Jacobi' s
identity for minors

Also note that, in writing down (C29), we have
made use of the fact that ~& )~a 1-~& )~a ) =~&a g, (C36)

1255145,643 =a 3 =a =0 (C34)

= (8;8,)-'(8,"8.')-'

[+ (035,45012 ~ 13 0125,14503,3}]0

=(P,+P, ) '(Pl+82) '

f+ ( 3,4 2,3 02,403,3)]01 (C35)

It remains to find 60. For this purpose, some
matrix manipulation is necessary:

0 + ( PP ) (+1258,1456'45 ~ 13
P~0 P &~0

+356, 145 125,136)

=(8,+P, ) '(Pl+8,') '

[+ 1 ~1256~ 1456+36,36 +356y456+128, 136)]0

5.=(8,+8,) '(Pl+8,') '((2 '&&..,..).
(81+82) ' (Pl+ 82) (+ 0~1235,1345}0

=(P1+P, ) '(Pl+8,') 'A. (C3'7)

This is the desired formula.
For t&0,

2ADo ~ "0+iDB~a =a =a =a'=a'=a'=a=0
2 3 1 2 3

(C38)

if negative. If we define

for any determinant 0, provided that i &k and

j & /. Therefore

then

1

d81(f82d83{f84{f81dP2(f83{f84{fr5(1 81 P2 -PB-P4-P1-P2 -PB-84-r)-A0'(-Do} '-
0

(C39)

8 (12)(g) ~w3f -Bs-(2$8{12)
1 10 1

This implies that

(C40)

8(' = —
lo 4)

wis [(lns-iw) 8, '2 +constx(lns) +O(ln2s)], (C41)

where the constant is real.
For the crossed diagram shown in Fig. 2(b), the corresponding 81(,'2) is given by

8„"'= —
4

wi s '[(lns)'8, "'+constx (lns)'+O(ln's)], (C42)

and hence

8 " +8 "'=———w's '[(lns)'8 " +O(ln's)].1 1
1 1C yQ 3t 1

E(luation (2.12) follows immediately from (C43}.

(C43)

APPENDIX D

We apply the formalism of Appendix C to the twelfth-order diagram of Fig. 2(c). The amplitude for this
diagram is

3g ( 12 ) 5}(16 w
2 )-58 128( 12 )

where

0
" ' (SDB+ 34DB+ fD5- 1)3'Da+ iE}'

Figure 17 is the same as Fig. 2(c) with the Feynman parameters and loop currents added on.
For this case, similar to (C4), D, D„is given by-

(D2)



12 MANDELSTAM DIAGRAMS ARE NOT ENOUGH TO. . . 569

Q 1 ~l

p~ (r ~+ &+ p~+ ps+ p~

Qs

Q3+ Q3+ p~+ p@+p

I
Q3

Qs+ Q+Pz.+P3+ P4 Qj.+Ps

(r~+ Pi+ jg 0

I
Ql

I IQ1+ Qg

Equations (C10)-(C21) and (C24)-(C28) apply here without any modification at all. Equations (C22) and
(C23) also hold if il,") is replaced by 8P2). However, since (C34) is not satisfied in the present case,
(C29) is replaced by

82(' )(t) —~~wf g
~ dP, dP dP~dP4dP, 'dP'dP'dP4dy(P, +P ) '(Pf+P') '5(L-P, -P -P -P~-P,'-P2'-P~-P~-y)

XA,4(D,+is)~ ((-5, i+)«"~

where A„D„and5, are still given by (CSO)-(C32). This minus sign with 5, is neatly compensated, be-
cause (C35}holds here if the left-hand side is replaced by -5,. This change in sign is due to the fact that
the (5,3) element of (DS) is a,', while that of (C4) is -a,'. Therefore, for the present diagram we get

5.=(P-,+P.) '(Pl+0,') 'A. (D5)

instead of (CSV).
The similarity between the diagram under consideration and that treated in Appendix C goes even fur-

ther. If we contract all the Q and Q' in the diagrams of Figs. 16 and 17, the results are identical. There-
fore both A, and D, are entirely the same for the two cases, and the right-hand sides of (C29) and (D4) are
identical. Therefore

Sg('»= Sg(")[1+0((Lns)-'))

and

Sg,""+Sg (',"= (Sg,'"'+Sg,",")[1+0((Lns)-')]. (OV)

APPENDIX E

We next apply the formalism of Appendix C to the twelfth-order diagram of Fig. 2(d). The amplitude for
this diagram is

Sg (12) 5)(15v2)-5+ 12(L(12)

where

(E1)

(„) '„[) 'A(5gu- )1

o (sDg+ ((D„+IDg —sl D~+ EE)'~~ ~

Figure 2(d) has been redrawn as Fig. 18.
For this case, similar to (C4), D, D„is given by-

(E2)

~3+&i+4 Ql j 1 Q1+ Q2

Ds D„=

PL Qg+ Q3+ P&+ Ps+ P4+ X

I
Qs

Q3+ Q+ p4+ p4

I
Q3

Ql+ Q+ P~+ P3+ P Q ~+ P~

a,'+ P(+ P,
' 0

Qg+ Q~
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Although it is possible to treat this determinant directly, we can save a great deal of writing by inter-
changing the second and the third columns. I,et us add a minus sign to every element of the new third col-
umn to get

D, -D„=

Q3+ p~+ p2

-Q3 Q3+ Q+ pg+ p4

I
Q3

Q i+ Q+ pi+ p3+ p Qg+ pi

Q1+ Q2

(E4)

~Q I
3

I
Q1

a~+ P,'+ ti' 0

I I
Qg+ Q2

The similarity between (E4) and (C4} is now strik-
ing. In particular, the crucial elements at the
(3, 1}, (4, 3), and (5, 3) positions are identical.
Therefore, the entire analysis of Appendix C
goes through with no modification. The final re-
sults for 83~"~, 8„",and their sum are given re-
spectively by the right-hand sides of (C41), (C4&),
and (C43).

Unlike the previous case of Appendix D, both
D, and Ao are given by different formulas in the
present case than those of Appendix C.

APPENDIX F

Specifically we shall find the asymptotic behavior,
for large s and fixed t, of the contribution from
the Feynman diagram of Fig. 9. This is a twen-
tieth-order diagram, and gives the effect of
Reggeon-Reggeon scattering. The matrix element
is

3)t(20) 9 ((lgv ) 9g20f (20)

where

A'5(~ —1)
(sD, + uD„+tD, m'D„+—ie)"

In this appendix, we generalize the method of
Appendix C to deal with the Reggeon-Reggeon cut.
This generalization is not completely straight-
forward.

Instead of starting with the non-Mandelstam
diagram of the lowest possible order, we prefer
to treat here a case of particular interest.

This diagram of Fig. 9 is redrawn as Fig. 10.
With the choice of loop currents shown D, —D„

can be expressed in terms of a 10& 10 deter-
minant. Analogous to (C4), after subtracting the
tenth column from the first column and the tenth
row from the ninth row, the result is

P)) I,2

@)2,3

P '()-34

a,
l,2

a,
I;3

a
2,4

a3I

3,5

P3&)2

a'

3 i)'f

5i)p'

7&)2W

a,
l,2

4,5

a3
I,-3

Ia3

FIG. 17. The Feynman diagram studied in Appendix D. FIG. 18. The Feynman diagram studied in Appendix E.
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+

+
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+
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+
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We encounter here the first difference between
four-line diagrams and three-line diagrams. The
right-hand side of (F3) is zero if one of the follow-
ing four sets of conditions is satisfied:

where 5t is the quadratic part, which is of the
form

5' =d, od085, + d, od 75, + do, d0658+ d, d~54, (F15)

1=+2 =Ot3 =0

~.=P, =P2=0,

~t ~t ~t —01 2 3

(F4)

(FS)

(F6}

and 6' is the cubic and quartic part, which is of
the form

=4f90d81(d0856+ "9756}+ 08"97(d9067+ d9 58}

and
+ dood8 idood9769 . (F16)

+I Pt Pt 0 (F7)

However, A, which appears in the numerator of
(F2), also vanishes if (F4) and (F5) are both sat-
isfied, or if (F6) and (F7}are both satisfied.
Therefore the leading contribution to I," comes
from 4 independent regions in the vicinity of the
following points: (1) (F4) and (F6), (2) (F4) and

(F7), (3) (F5) and (F6), and (4) (F5) and (F7).
These four regions need to be studied separately.
For definiteness, we shall treat here only the
first region.

Consider the difference

1 14909 1690 20980 2909690 l409 180 & (F17)

S'
2 14909 1690 29970 290s690 1499 170 & (F18)

3 1490~ 1690 309 18 390~ 169 140 ~ 180 &
(F19)

and

These 6, can be written down explicitly by direct
expansion. I et S' have the same meaning as S
except that the (2, 10), (3, 1), (10, 8), and (9, 7)
elements are all set equal to zero. Then

4 1490~ 1690 39 ~ 17 ~390 ~ 169 1499 170 * (F20)

1490~ 1690( 4 8 } +90y69+14 ~ 10 7 (F8)

where the subscript 0 is used to designate the
tenth row or column. Similar to the treatment in
Appendix C, we consider two special cases.
First, suppose that the (2, 10) element 4f,o (which
is equal to n9) and the (3, 1) element d„(which is
-a4) of the determinant are both replaced by zero,
then we have

1 ~090 ~ 124909 16890 &
(F21)

2 9 ~ 0 124909 16790 &
(F22)

3 091 l34909 16890 &
(F23)

Jacobi's identity may be applied to each of these
four b's to give respectively

23567890s23456789 14,1p ~ (F9)
—mt

4 99 1 13490916790 ' (F24)

90969 23567890s23456789 1490s 1690 &

and hence

(F10) In order to go further, we consider, correspond-
ing to the pinch singularity, the special case
where

6=0. (F11) dip ~ dl1 i d4p p
(F25)

Similarly, when the (10, 8) element d» (which is
a8') and the (9, 7) element d~ (which is -o.4') are
both replaced by zero, then

dos = P. d963 d09 = P d99 .

Let &" be D' when (F25) is satisfied,

8 l4 12345678s 12345780 90, 69 &

14 9 10 12345678 9 12345780 14909 1690 0

(F12)

(F13)
then

+ l(F86) 1

~tt (it 1+tt
pp f- 90

(F26)

and hence we get (F11)again. Thus 5 vanishes
when d,o=d„=0or d«=d~ =0. We can therefore
expand 5 with respect to these four elements

1 Qtt
091

(l4~I) 1~8 (F27)

)t+ $lF (F14) and hence
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I I
(F25) 0&0 20 08 12490, 16890 ~ 20 97 12490' 16790 I 31~08+13490o 16890 ~~ d31d97 134g0 lb790 }

~l/
Oy0

~3+~5+ &3+~4

~4+ ™6+~5+ ~6

u,'+P, +y, as+a,'+u, +n,'+P, +P,'+y, +y,

I
Qe

-Q I
5

~'+Q'+P'+|3'

~3+&S+&3+&4

I /= X)o 0 -A3Q 5%3 Q 5

&4+&6+&5+ ~e ~s

Ps

~I ~I+~/+p/+p/

I I I—}(f Q3otsQ4 Qe

~4+&6+| 5+L 6 -&6

-Ck 5 A 3 +f|5 +p3 +p4

I I+ &~4~6Q3 ~s

n, +ns+j33+ p4 -p3

Qe +p7

ae n4+ne+~s+~e

+ }L'»4&6~4 ~e

+3+ Q 5+ P3+ P4

~s+~s+y2

«Q I
5

~ I p/
5 3

&3+&S+&3+~4

(F28)

After this rather lengthy study of the s coefficient D, —D„,we are now ready to study the asymptotic
behavior of I,"when s- ~ with fixed t. It is convenient to define the Mellin transform slightly differently
as

T'*4(&) = f &'*"s' 'dl
0

instead of (B17). By (F2}

T'|2"(g}=, d(u'IA'5(go. —1)(D, -D„+ie)"~(D+ie) ' ~,r 2-gr 7+g)

(F29)

(F20)

where D is still defined by (B20). As discussed after (F7), there are four independent regions of contri-
bution. We shall concentrate on region 1, and call the contributions from region 1 to I~20~ and I,'0)(l), re-
spectively, I~2'il and T',"~(g}.

The change of variables (B21) and (B22) is generalized to

and

Ql=PQlq Q, =PQ» Q, =PQ» Ql -p/QI Q I —p/Ql Q I p/Q I

(Fs1)

Q1+ Q2+ Q3 =Ql+ Q~ + Q3

For small &, we get by carrying out the p and p' integrations

T'", ;,'(~)-,—,', C-' d dna mdpdp'dr~(1-Qa-Qo -Qp-Qp'-Qy)~(1-g~)~(1-~)

x A '(D +ie) ' '[(D, -D„),+ie] (F32)



574 BABBY M. McCOY AND TAI TSUN WU 12

where ™& +90,99~&1490~ 199O
p~p

(F36)

da = da, dn, da„
da. = de4dn, dn

„

(F33)

A la =a =a =n'=a'=a'=o
1 2 3 1 2 3

(F34)

etc. Similar to (C24} and (C25), D, and A, are
defined by

and

I-1
14 ~ 10) 1490,1690 '

p ~ p

Unlike (C34), the above denominator &1490,1990
does not have a definite sign. We therefore define

and 149P 169P ' (F38)

(F35)Dl a 1= no= ao= a[= aq nq==01

while (D, —D„),is defined by (C26).
In view of (F8), we define, analogous to (C27)

and (28),

Because of (F14)-(F26), n„n,', n„and n,' are
all small in the important region of integration.
Thus 5 may be replaced by 5' and the integration
over ai and n'I gives

&';;,'(~)-- ~ »f, 'I d-,d,'d ~dpdp'drs(I Za -Za' -Zp -Zp' -Zr)-

x l&)490.10~i(P1+ p.} '(PI+ P9) '&1'(D)+ f') "'("4+&') "'
where

A
6„'= lim (pp'} '6'

P~p P ~P

and the superscript A here means (C32) without (C33).
Equation (F28) can now be used to yield

(F38)

(F40}

('(() „,w,

*((-*-J-au uci'au a 49 4A41'( ()Z(P-E Z()~)( 1() ) (() ~ () ) A-:'(0' '~-('~)-"', I

xlD,'„,„„l(a[A,Q,Q,Q,'a, +A, (p', + p,') 'a, n,a,'a,'+A, (p, +p, ) 'n, a,n,'a,

+A4(P1+ po} '(P1+ po} 'Q4aon4ao~+fe) "', (F41)

where A„D„andD',49Q „„arerespectively A, D, and D]49Q 169p with all a and all n' set to be zero. In
(F41),

A, =r, (P, + P, )(P,'+ P.' ),
Ao =P7 (Po+Po)(P9+ P4 ),

A. = P,(P. + P.)(P.'+P.'),
and

A4=ro(P9+ P4)(P9+ P4)

are all non-negative. Here X is, from (F38), simply

(F42)

P7+ r, P7 + P7 + )'1+ r 2
A. =sign of

=sign of (y,y, —P,P,' }

=sign of (A,A, -A,A, ).
In view of (F41}, let us take X =+1 and consider the following integral

(F43)

1

cT(f) = daodn4daodaodao da4 duo dao (A)aoaoao no+Aononoa4no+A9Q4nono ao+A4Q4aon4 no ) (F44)
p

when f is a small positive number. If we scale with respect to the pairs (a„u,), (a„a,), (a,', a,'), and

(a,', n,'), then
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I

J(g) = g du3duddu, du, du,' du4 du,' du,' 5(1 —u, —u4)5(1 —u, —u, )5(1 —u,' —u4 )5(1 —u,' —u,' )

) 3 5 3 5 3 3 5 4 5 3 4 5 3 5 3 4 5 4 5 } (F45)

We can still scale with respect to the pairs (u» u, ) or (u4, u, ), and (u,', u,') or (u4, u,'). These four regions
are all the same, so we get

1

J(&)- 5
' du, da. ,du,'da. ,' 5(1 —u, —a 5)5(1- u,' —u,' )(A,u, u,'+A, u, u,'+A, a,u,'+A4u, u,') "~

0

du, du,'[A4+(A, -A, )u, +(A, A,-}u,'+(A, -A, -A, +A4)u, u,']

= g '(A, A, -A,A, ) ' ln[(A, A, )/(A, A, )] . (F46)

Finally the substitution of (F46) into (F39) yields

((', (()-n—„,i f(dddd dyn() —'Ed —Ed'-Zy)n '&, 'l)n(yy, ) —)n(d 5 )l, ' (F47)

and hence

I,', -
7 (252

vis '(lns)

7 7 2

dp, . dp7dp,
' dp7'dy, dy26 1 — p, — p,'- y, Ap Dp ln y,y, —ln p,

'
1 1 1

(F46)

This is the desired answer for region 1.
The most peculiar feature of this answer is that it cannot be naturally represented in transverse-mo-

mentum space. This and other related questions are studied in Appendix G.

APPENDlX G

In this appendix we discuss the important and
interesting problem of summing over the signature
pa~1ners of a diagram. Suppose we are given a
four-particle diagram and one of the important
regions of contribution, as discussed, for ex-
ample, after (F7}. Draw the diagram such that
each of the Feynman parameters that appear in
the top and bottom lines is small. The signature
partners are defined to be those three diagrams,
together with their respective important regions
of contributions, that differ from the original dia-
gram only in that the connections to the middle
segment of the top and/or the bottom line are
reversed. This is best illustrated by an example.
Consider the diagram treated in Appendix F with
its first region of contribution; then we obtain
from Fig. 10 the three signature partners as
shown in Figs. 11-13. In relation to the I,'0, of
Appendix F, let the corresponding contributions
be I,I, and I ) ~, where t and t' desig-
nate transposing lines respectively in the top and
bottom lines of the diagram. We are interested
in the sum

I(20) I(20) + I(203 + I(203 + I (203
1518 131 1 ~ lf 15lf 151«

Let us first compare Fig. 10 with Fig. 11. If
we write down a 10&& 10 matrix for the diagram
of Fig. 11 in a way similar to (F3), the result
differs from (F3) in the following ways: First,
the (2, 10) element is u, instea-d of u» secondly,
the (1, 2) element is also -u, instead of u„
thirdly, the (4, 10) element is u, + u, instead of
u„fourthly, the (4, 4) element has an additional
+u» fifthly, the (1, 4) element has an additional
+u» and finally, the (2, 4) and (4, 2) elements
both have an additional -a, . Let us recall at this
point that for this first region of contribution,
the variable n, is scaled twice; first with a, and
u, as given by (F31), and again with u4 in the
evaluation of Z(f) defined by (F44). Therefore an
additional a, reduces the size of the integral by
at least a factor of (lns)'. For this reason, a
reference to (F15) shows that only the first dif-
ference listed above is significant. Therefore,
the effect of transposing lines at the top of the dia-
grams is to change the sign of a, . Similarly, the
effect of transposing at the bottom is to change
the sign of n,'.

In order to get the high-energy behavior of
I "), I~l'„,andI,",«. from I(', we need only to
replace the J(1) of (F44) by, respectively,
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