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The two principal string approaches to a more realistic dual resonance model are discussed. Firstly, Nambu's

proposal of 1974, identifying the Dirac magnetic-monopole string with the dual string, after spontaneous
breakdown and the Higgs mechanism in a strong-coupling limit, is investigated. The mathematics underlying
Nambu's rather intuitive derivation has been further investigated by Balachandran, Rupertsberger, and
Schechter (who put in the vector mass by hand) and independently by Jevicki and Senjanovic (who fully exploit
spontaneous breaking and the Higgs mechanism). Here we show that in a leading approximation to the
Nambu monopole action the phenomenologically desirable linearity of the leading Regge trajectory seems to be
badly violated. Secondly, alternative quantization procedures for the original 1970 Nambu relativistic string action
(area of the world sheet) are treated; in particular, a timelike identification of the string time v which has
recently been advocated by Patrascioiu, by Rohrlich, and by Goddard, Hanson, and Ponzano. The most novel
of these discussions seems to be that of Rohrlich, who uses a quite different representation for the canonical
algebra and the Poincare group. Here we demonstrate, however, that the usual unphysical level spectrum with a
massless first excited state emerges as a fully consistent solution even in this approach, and that probably no
other solution exists. Finally, the various Nambu string approaches are compared to other attempts to
discover the "right" model of strong interactions.

I. INTRODUCTION

The reinterpretation of dual resonance models
as a theory of interacting strings reveals an ap-
pealing physical and intuitive picture of the hadron
internal structure. From the string viewpoint it
has been possible to reproduce faithfully all re-
sults, at least at the tree-diagram level, previous-
ly known in the conventional dual theory.

The usefulness of the string approach would,
however, be even further enhanced if it could lead
us in some new direction towards more realistic
models. It is natural, therefore, that extensive
efforts have been made by theorists towards this
goal; the two principal approaches are (i) the
magnetic monopole string and (ii) the use of alter-
native quantization procedures. In the present
paper we shall treat both of these possibilities.

In the first method, the basic idea due to Nambu'
is to identify the Dirac monopole string' with the
dual string. For massless photons the Dirac
string is unphysical but if one arranges that the
gauge vector field acquire mass through sponta-
neous breakdown and the Higgs mechanism then
the string becomes a physical entity and in the
strong-coupling limit of very large vector masses
(m„) and Higgs scalar masses (rn~) becomes es-
sentially identical to the dual string. The strong-
coupling limit involved is of the type first sug-
gested by Nielsen and Olesen the mathematics
underlying Nambu's result has been studied by
Balachandran, Bupertsberger, and Schechter4
(who put in the vector mass by hand) and indepen-
dently by Jevicki and Senjanovii. '5 (who use the

Higgs mechanism). In Sec. II we study the clas-
sical leading Begge trajectory of the magnetic
monopole string. As already mentioned, in the
"sharp" string limit of infinite m~ and m~ the
trajectory is linear but it is shown that keeping
the next-order terms in m ' and m~ ' where the
string is not purely one-dimensional leads to non-
linearity. It is found that for reasonable values
of the relevant parameters, the degree of non-
linearity is phenomenologically unacceptable when
compared, for example, with the degree of linear-
ity implied by the observed masses of the p, f,
and g mesons.

The second method reverts to the original
Nambu string action' proportional to the area of
the world sheet, and emphasizes identification of
the string-time variable 7 with the coordinate
component xo rather than with the lightlike x, .
This has been studied by Patrascioiu, ' by
Bohrlich', and by Goddard, Hanson, and Ponzano. '
The most novel of these is the center-of-mass
approach advocated by Rohrlich in Sec. III we
analyze the structure of the Hilbert space spanned
by the center-of-mass physical states. It is
shown that for general ground state mass this
space comprises a purely transverse space to-
gether with just one extra physical state at the
first excited level. If the first excited state is
massless, however, the space is purely trans-
verse and consistent with Poincare invariance
for space-time dimension d = 26 as in the conven-
tional case. For more general ground-state mass,
it appears that the single extra state is inadequate
to allow a realization of the Poincare generators.
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Finally, in Sec. IV we compare the string ap-
proach to alternative methods of finding the
"right" model for strong interactions.

ll. MAGNETIC MONOPOLE STRING AND

NONLINEAR REGGE TRAJECTORIES

a Higgs-type theory with vector mass m„Higgs
scalar mass ms, Nambu' has arrived at the
following expression for the classical action which
will be the starting point of our present discussion.

For a string between two massive magnetic mono-
poles of mass ~ and magnetic charges g, —g in

do d7 J q" «")a„x-x)J'~,"

d7' d&, «2(0, 2 )6 (x(0, 7' ) —x()l, 7' }}«2(w,7' )

07 ) + dT„x m7'„

I
xp —~ps)

xp ~p o~

one can evaluate

(3}

(4)

where 4 is a Jacobian and

d4k e t'». r
(x) = (2)'f 4' Ill'

is the Green's function for the vector field. The
scalar mass ms does not occur explicitly but is
related to the transverse cutoff in k„as explained
below.

The physical meaning of the three terms in Eq.
(1) is as follows: the first is the Yukawa interaction
between surface elements, the second is the
Yukawa interaction between the magnetic currents
of the monopoles, and the third is the mechanical
mass term for the monopoles.

The expression is formal to the extent that the
first two terms diverge but as explained by Nambu'

the divergence is controlled by a cutoff in the
transverse momentum k at 8=ms'. Then, by
choosing at a point (&, 7'} on the world sheet a co-
ordinate system where

can be treated similarly. Then we find that the
coefficient multiplying this term becomes

1 d4k de'»' 1
(2w)4 8-m ' (2x}2 k2+m '

1
34m

(2)2)2

s
k +m1,m~

ms -mvtan
(2w) mv

with

g [(«, «()2 «2«d2]l(2
2pN

(12)

(10)

where we chose the frame with x&(0, &()) = &2()

Now, from the Nielsen-Olesen approach, ' we
expect that ms =mv, and both are large; therefore,
mv'» ms, and the second term becomes negligible
compared to the first. Thus, in this lowest ap-
proximation the action becomes

fl

d7 da'g+L, +L2
0

ddd d(X' —d)d( ' ')= ——)d 1+,)
x2 xo 1 ms

4m m

so that the first term in Eq. (1) becomes precisely

I. =)}f[x'(0, ~}]'~'

I,=M[«'(x, ~)]~'

(13)

(14)

1
dods[(x x')'- x2«"]~2,

2KC
(6)

where

a =
2m 2 ln 1+m'2

The second term in Eq. (1), describing the
Yukawa interaction between the monopole currents,

Although the nonlinearity of this system dis-
allows superposition of special solutions and
hence precludes finding the exact solution, one
can find the classical leading Regge trajectory. "
From experience with the M =0 case we know that
this corresponds to the rigid-rotator mode which
may be solved exactly as follows.

The equation of motion follows from Hamilton's
principle of stationary action
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8 Bg B Bg
+—,=o (0«r(w),

87 Bx Ba Bx' (16)

(17}

Bg . Bg0= 68= d7 do —.6i+, 6x'
Bx'

+ . '- 6x(o, v')+ . 5x(w, r)
81 . BL

(15)
giving

In particular, the energy is

E = 6' cr
0

7r

d(T
2wa '(1 —p'cd')'r'

p * ~*I'(~l ~ '( -')1)

1 27t a'M(d
sin '(rdR} +,

17TQ' (d (1 —R~)

(so)

(31)

(32)

sg 8 8L
(cr= w).Bx' 87' Bx

(18)
The angular momentum is

(19)

(2O)

(21)

Separation of the 0', v variables is according to

Now we adopt the gauge where 7 = x, to eliminate
the time component. Then we have

L, =M[1-x'(0 r)]"
M[1 x (w r)] l

$=[(x x'}2+x"(1-x'}]~'

der(x, rp, —x,6', )
0

(33)

dcr»z, , +M[5(cr) + 5(w —cr)] (34)

2M R
sin '(&dR) ++R(1 —rd'R')'~' +,

27TH 4P t'1 R2(d»i~

(35)

x = p(cr)(cos~&, sin cLr&, 0), (22) A convenient parametrization is

corresponding to uniform rotation about the 3 axis.
Because of repararnetrization invariance of Eq.
(1) the results will not depend on the form of p(rr)

provided it is analytic.
One then finds

t = 2wa'M/R,

&($)=- sin '(1+ $) 'r',
m

whereupon

(36)

(37)

8 Bg 8 Bg
B7 Bx Bg Bx' (23)

J=, (1 + $) —1'+ v $
2KCR

a'E =,(1+$)Y 1+2 R

(S8)

MHp
~
' = . ~ .)4,, (coster, sinter, 0),1/2

(1 —&p')'i'
(cosrdr, sin», 0),2w

and then Eqs. (1'l), (18) imply that

a p(0) = -&op(w) = &uR (say},

where

eR = [1 + (w a'M&u)2]'i' —w a'M &a.

(25)

(26)

(27)

(28)

The root of the quadratic is chosen such that
~R &1, corresponding to velocity of the end points
smaller than that of light.

The four-momentum density is

t}g xr'r(x - x' ) —xrr x'
2w a'[(» ~ x')' —x 'x"]+'

+ ~"[6(cr) + 5(w —cr)]. (29)

)gy2 (cos&&, sincrn', 0) (24)
(d PP

2n e'1 —aP

so that Eq. (16) is satisfied identically. At cr= 0
one finds

At low e'E' the leading trajectory is curved
downwards, and the intercept is lowered. Let us
agree to adopt the viewpoint (for the lack of some-
thing better) that quantum fluctuations will raise
the classical intercept by one unit in J, as in the
M =0 case. Then we may choose a value"'" of M
(- 550 MeV), such that J(& = 0) = —

& classically, as
a reasonable value.

With such a choice the Regge trajectory appears
on a Chew-Frautschi plot as indicated in Figs.
1(a) and 1(b). The two principal branches are in-
dicated and we see that the degree of nolinearity
is phenomenologically unacceptable compared to
the timelike region of, say, the observed P-f-g
trajectory where a linear formula J= ~ +0.88M'
gives the correct masses of the three mesons
p, f, g all to within an accuracy +3% in mass.

Of course, this is only a leading approximation
to the action, Eq. (1), and we may put the magne-
tic monopole mass M =0, for example. But then
to the next order inm~ ',m„' the Yukawa term
of Eq. (1) has an exactly similar effect. The non-
linear trajectories imply that any S-matrix ele-
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ment is likely to be, at best, much more compli-
cated than the familiar dual resonance models.

III. ALTERNATIVE QUANTIZATION PROCEDURES

Let us return to the original Nambu action'

(40)

l5—

IO—

(a)

It is generally convenient (and presumably non-
restrictive) to exploit the (cr, r) reparametriza-
tion invariance such that

x' +x" =0 )

x-x'=0
(41}

(42)

I

20

But there still remains a freedom in the iden-
tification of &. Several authors"' have sug-
gested the identification of T with xo (time)
since one suspects that the reason one finds
only the standard solution (i.e. , corresponding
to the Veneziano model spectrum of massless
first excited state and space-time dimension
cf =26) after the identification & = (I/~2)(x, +x~),
despite the fact that solutions with intercept
a(0) & 1 and cf & 26 are consistent with the gauge
conditions and positivity, is because the light-
like identification is itself restrictive. Thus,
one would like to obtain the cr(0) & 1, d & 26
solutions by avoiding the lightlike identification
of the string time 7.

Along this line of thought, there have been
contributions by Patrascioiu, ' Rohrlich, ' and

Goddard, Hanson, and Ponzano.
Patrascioiu' has pointed out the singular na-

ture of the lightlike gauge but did not explicitly
construct a Poincare-invariant physical Hilbert
space.

Rohrlich' has suggested enmeshing the canon-
ical algebra and the Poincare algebra as
follows. We take X&, P& as "center-of-mass"
or global coordinates of the system satisfying the
noncovariant commutator

-I 0

-I 5—

I 5—

I. O—

0.5-

(b)

I I

0.5 I.O l.5
I

2.0 g& E

[Xrr, PJ= rgrr v —r=Ãvo
Po

and where (p" =x")

p 1X =— dcrx"(cr, 7),
0

(43)

(44)

-0.5- i

—I.0

1
der p"(cr, 7), (45) —

I 5
oo Q'

ffx"(o, ~}=X"+P"r+ — —cosncre '"'.
n sc'0

(46)

Here the space components x', p', e„satisfy the
usual commutation relations (with o„commuting

FIG. 1. (a) Chew-Frautschi plot corresponding to
Eqs. (38) and (39) of the text; (b) same as (a) with en-
larged scale.
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d~-.' ~" P' (47)

The coordinate conditions

&.x'=p x'+x' p=0
+x' =p +x' =0

become then

(48)

(49)

with X",P"). The Poincare algebra is guaranteed

by asserting that the Lorentz generators are

e, !f,x& =x[f,x&, (60)

into irreducible subspaces" with respect to the
generalized projective algebra. Here i,j
= 1, 2, . . . , s with s = (d —1}, the number of space-
like dimensions.

Let us write a general Fock-space state as
$

(59
r, i r

so that

1
f.„+ ~ (a„P+P n„}=0,

2~K
(50)

(51)

1((=g r)(„';
r, i

then the number of states at level N is (f')(N),
where

(61)

L„=:2 e - O.„
m&0

(52)

Z„ly&=0, n»-l,

~n=:2 ~m ' ~n-m:
m s('

(53)

(54)

In the case where we identify 7 x', then +'„=0
and one arrives eventually at (for P'= 0, center-
of-mass system);

[p(~)] =II(1-x)- =gd()(~)x".
t'=l E=o

We now define

Z'=Z +a-a~'&,l 1

g&t gt +g .a(&)t

(62)

(63)

(64}

where 8 is an arbitrary unit vector. Then, since

as the gauge conditions on the physical states.
Normal ordering of Zo gives an arbitrary c num-

ber m,'
[g &{1)i] (m+ 1 )1/2a(mr a)(

[gt e(1)(] ( 1)il2g(m-v)it (66)

I'= mo'+ Zo (55) we have

Thus far, therefore, Hohrlich's approach suffers
no restriction on m,' or on the space-time dimen-
sion d. We return to this later.

Goddard, Hanson, and Ponzano' have also stud-
ied the identification &-x'. By leaning heavily on

the dual model physical state construction they
show that the standard solution can be obtained.
In their work, however, a simplicity assumption
is made concerning the Poisson brackets of the
physical-state creation and annihilation operators;
a certain auxiliary vector is chosen to be lightlike,
but from experience with the dual model" we know

that this auxiliary vector is associated with the
mass of the first excited state. Hence one suspects
that this assumption has prejudiced the solution
and that by relaxing it the n(0} &1, d&26 solutions
might be found in a more thorough treatment.

The most novel of these three papers is that of
Rohrlich, ' since a different representation of the
Poincare group is used. Hence we will here com-
plete the analysis of this case.

It is useful to decompose the Fock space F
spanned by the operators

[Z, Z,']=(m —1)Z, „—(m+1)' '& a' '" (6'f)

[&t ~'] (m+1)~t +(m 1)i(2()t ~ a(~ "t. (68)

Now consider the subspace built on the vacuum
state as follows (the notation is clumsy but accu-
rate):

~ 0 &
= II(~')"'[(&')(" -'~(" -'"

k=2

x (&,')""' '"ll 0), (69}

N= ip,
f=l

('i0)

The notation in E(l. (69) means that if i(, =0, the
expression in square brackets is unity, if Ql 1

it is Z, , if ((, ~ 2 it is (2,)"i 'Sit. Now the num-

ber of states o, N, O, a& with given N is simply
dc)(N). The first state (N=1, )((, =1) is physical;
all others are spurious.

At %=1, we now construct the remaining physi-
cal states orthogonal to states built on the vacuum
state. On these we then build irreducible sub-
spaces of the type

[s((w) si{rt)t]

gf(n)
n

a'&"&t = vn a'

(56)

(57)

(58)

!o, ~+1,1, ~& = II(S,')"(!y, 1, ~&.
k~1

Proceeding iteratively we set up a general irre-
ducible subspace on a physical state !{t,¹,e& at
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level Z, =E by

The subspaces are irreducible in the following
sense: By operation with the generators of the
generalized projective algebra we can get from
any state of the subspace to any other state but
we cannot move outside of the subspace nor can
we move from a state in F, but outside of the sub-
space, back into the subspace.

The number of I 4i, N, o & states at the level N is
pg, where

eo

M '=~ (ZtA'"" —A""tZ )n n
n= 1

(80)

where the Z„are constructed as in Eq. (52) but
replacing the S-dimensional o.' by the (S-1)-
dimensional A™,that is,

g g [y(y+a}]1/2g(r)t .A(r+n)

r=1
n-1

——,
' g [y(n —y)]'i'A~' A" "' (81)

and for the remaining generators of O($) (involving
a longitudinal direction L, arbitrarily chosen)

d (N) =Pp d"'(N m), -

which has the solution

p d($1)(N)

since, in general, it is easy to show that

d&$&(N) =g d' "'(n)P'(N-n}

(73)

(74)

(75)

One then finds that (cf. Rebbi, Ref. 6)

[M 'M i]

2[20 2$ (s 1)]M

—[—„(s—1) —1]g n'(A&"" tA&"» —A&"» tA&$»)
n=1

(82)

All of the I &, N+N', N', a& states are spurious
except one,

z,'lo&,
so that the number of physical states at level
L, =N satisfying Eq. (53) is given by

dt' '&(N)+6

(76)

(77)

[A($» A($»t]-6 (78)

as usual. It is well known how to realize the
Poincare generators on these operators: For the
subgroup O($- 1), one writes

M ii g (A($)i tA($» A($» 1'A{$»)

n

(79)

Thus, we have the curious situation that the solu-
tions of the center-of-mass gauge conditions are
isomorphic to purely transverse states, except
that there is just one additional physical state, at
the first excited level. We know physically that
this extra state must be present for a massive
vector first excited state; a Priori one might have
expected more additional states, but the above
analysis is rigorous and accurate.

So far we have taken general m, ' in Eq. (55). For
the special case m, '= —1, however, an anomalous
situation exists. It is simplest to discuss the
anomalous case first. Here the first excited state
is massless and we cannot transform to P'=0.
Hence one must use Eq. (50) rather than Eq. (53)
at this level whereupon the additional. physical
state goes away, leaving a purely transverse phys-
ical Hilbert space 6' spanned by (s —1)-dimensional
operators

so that the algebra closes only if $= 25 (d= 26).
Therefore, the purely transverse physical space

is consistent with Poincare invariance only if
~=25. This standard solution is hence one consis-
tent solution of the Rohrlich approach. The inter-
esting question then is the following: Is there any
solution when mo'0 —1& Although we cannot prove
the impossibility of such a solution rigorously,
let us now show that it is unlikely.

We have the problem of modifying the genera-
tors, Eq. (81), such that the final term in Eq. (82)
is removed. The only extra freedom is given by
the occurrence of one extra physical state, which
we write

One may therefore attempt to write

M~'=M '+(A'i tA" ' —A""tA"' ) (85)

But detailed study shows that one cannot modify
M" in any way that Eq. (84) is satisfied. This
leads to the conclusion that the single additional
state, designated in (83), is inadequate to allow
the O($-1)-O(S) extension.

(83)

We may try to extend the O($ —1) algebra im-
plied by Eq. (80) to an enlarged O($} algebra in
the weak sense that
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We cannot rule out the possibility of a solution
for the following reason. We have taken, as the
g„ in Eq. (81), a bilinear representation of the
generalized projective algebra identical to that
occurring in the gauge conditions Eq. (53); there
seems to be no a Priori reason why these repre-
sentations should be identical and hence the
representation in Eq. (81) could be quadrilinear
(for example). It is not impossible, although we
believe it unlikely, that consideration of such
representations could lead to a e(0) &1, d&26
solution.

IV. SUMMARY AND DISCUSSION

The two principal methods, currently under
study, of obtaining a more physical dual resonance
theory from the string approach are the magnetic
monopole string and the alternative quantization
procedures.

The magnetic monopole string is based on a
strong-coupling limit of a spontaneously broken
local field theory. One possibility here is that by
stopping short of the strong-coupling limit —that
is, finite m„and m~ —one mill maintain consisten-
cy in the original space-time dimension d=4. The
string will then be "fuzzy" rather than a "sharp"
one-dimensional object. But the price paid is that
the action and equations of motion become non-
linear and this precludes a general solution.
More serious, as we have seen, the original linear
Regge trajectories which are attractive phenome-
nologically become badly distorted.

The alternative quantization procedures suppose
that the restriction to a massless first excited
state in the relativistic quantum string is imposed
by the lightlike identification of the string time &.

The simplest solution to a timelike identification
of & is, however, always of the same character,
although in the different formulations of this there
is almays a technical algebraic assumption that
might allow ~(0) &1, d «26 solutions to have es-
caped. But are these more complicated solutions
worth finding~ The answer is probably not, since
it seems very likely that they correspond to the

unphysical types of solution hinted at already by
studies" of the operator formalism in the original
Fock space. For a more realistic model, one al-
most certainly needs to add extra degrees of free-
dom which are absent in the elegant Nambu action,
Eq. (40).

To put the string approach in context we should
recall that the four methods currently under study
for obtaining an even better dual resonance model
are (i) writing S-matrix elements with physical
intercepts directly, " (ii) spontaneously breaking
existing dual models by exploiting the tachyon as
a virtue, " (iii) writing new realizations of the
generalized projective algebra in an operator
basis, and (iv) investigating strings. It is natural
that the last is the most attractive since it is most
closely allied to field theory; from the S-matrix
viewpoint, however, the first tmo have certain
advantages such as ensuring good analytic and
asymptotic properties.

What is needed in the string approach appears
to be a "sharp" one-dimensional string with some
unknown additional degrees of freedom going be-
yond anything described in the present paper or
any of its references. It is already established
beyond question that the Nambu action provides
a profound understanding of the known dual model;
its general features such as the one-dimensionality
and the topological properties of the string inter-
actions will probably persist. The "right" model
of strong interactions requires an essential modi-
fication to the string (extra degrees of freedom)
that no author at present seems able to provide.
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