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We discuss the validity of the naive Ward-Takahashi identities and trace identities for arbitrary n-point
functions (n-pf’s) of scalar, pseudoscalar, vector, and axial-vector currents and the improved energy-
momentum tensor, thus extending the previous investigations in a unified way. We show that the validity of
the naive Ward-Takahashi identities of the energy-momentum tensor implies the satisfaction of those of the
vector currents. This removes an ambiguity concerning the minimal sets of anomalous current Ward-
Takahashi identities. We find that all the anomalous Ward-Takahashi identities for the broad structure of n-
pf’s are again restricted to the axial-vector current of n-pfs of abnormal parity in a well-defined pattern, and
the trace identity anomalies occur only in normal-parity n-pf’s. We give all these anomalies. Our results show
that there are no new anomalies associated with the inclusion of the energy-momentum tensor in the n-pf’s.

I. INTRODUCTION

It has been known since 1969' that canonical field
theories exhibit anomalous behavior. To state it
more explicitly, relations derived from canonical
rules, such as the Ward-Takahashi identities of
currents, trace identities of the energy-momentum
tensor,? etc., may not hold in explicit calculations
because of the singular nature of products of field
variables. The singularities are the usual ultra-
violet divergences in the momentum-space ap-
proach or the short-distance singularities in the
configuration-space approach.® Thus, modifica-
tions to the canonically derived relations, which
are called the anomalies or canonical anomalies,
are necessary.

The existence of canonical anomalies has many
implications both on phenomenological considera-
tions and on basic properties of field theories in-
volving fermion fields.!"® Independently of whether
or not anomalies are a basic property of certain
fundamental physical theories, they place con-
straints on the structure of field theories, the
major theoretical laboratory available to us so far.
A prominent example is the construction of a re-
normalizable theory of weak and electromagnetic
interactions. The requirement of the absence of
an axial-vector anomaly through cancellations
puts constraints, admittedly loose, on the mini-
mum number of sets of fermions and on their rel-
ative coupling strengths to other fields involved.®

Anomalies of n-point functions of currents with
arbitrary internal symmetry have been investigated
extensively in various approaches.””'® The main
ingredients of most of the approaches are regular-
ization and renormalization.!! A consistent
scheme of regularization is needed to define the
divergent Feynman integrals of the n-point func-
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tions (n-pf’s). This may result in a large number
of anomalies which are called the naive anomalies.
But not all of the naive anomalies can be taken
seriously, as they are regularization dependent
(see Sec. III). The next step is renormalization,
that is, introduction of counterterms, either di-
rectly to the Lagrangian’ or to the momentum-
space representation of the n-pf’s themselves.®
The counterterms, satisfying all the general
properties of the original amplitudes,’? are chosen
so that there is a minimum number of Ward-
Takahashi identities (WTI’s) which are anomalous.
This last criterion is not sufficient to eliminate
all the ambiguities since there exists more than
one minimal set. The different minimal sets

have different counterterms leading to different
anomalies. This has been discussed in detail in
Ref. 8, in which two minimal sets are obtained.
One set has anomalies restricted to the axial-
vector current WTI’s (AWTI’s), agreeing with the
result of Ref. 7. The other contains vector current
WTI (VWTI) anomalies as well. In both minimal
sets, all the anomalies are constrained by those
of the 3-pf’s (AAA) and (AVV). Therefore, all
the canonical anomalies of currents are related

to the two basic ones in (AAA) and (AVV).

In this paper, we shall extend the previous work
to include in the n-pf’s of the improved energy-
momentum tensor,®® its trace, and the currents
of an internal-symmetry group. Our purpose is
threefold:

(1) By extending n-pf’s to include the energy-
momentum tensor, etc., which give rise to many
more WTI’s, we can investigate the anomalies
for a broader structure in a unified way.

(2) We want to determine whether or not one of
the minimal sets is selected in this broader
structure of n-pf’s so that the ambiguity concern-
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ing the minimal set is eliminated.

(3) We want to see whether or not there are new
anomalies. By this we mean the anomalies which
are not constrained by those of the n-pf’s involving
currents only as determined in Refs. 7 and 8.

In Sec. II, we state the model field theory
employed, including the regularization scheme,
and list various WTI’s and trace identities (TI’s).
Using the regularization scheme, we calculate
the anomalous WTI’s and TI’s. In Sec. III, the
counterterms are determined so that the “physi-
cal” amplitudes have minimal anomalous WTI’s
and TI’s. The anomalies are listed in Sec. IV.
Here we also discuss their general properties,
and compare our results on trace anomalies with
those of Ref. 2. Concluding remarks are drawn
in Sec. V. General expressions of naive WTI’s
and TI’s containing the energy-momentum tensor
are listed in an appendix.

We have left untouched the phenomenological
applications of anomalies in this work. Rich
sources of information for the broad range of
applications can be found in the literature.?***

We also ignore the problem of higher-order cor-

rections to the anomalies.! Our attitude towards
this is similar to that of Ref. 2, to which we refer
the reader for a discussion.

Il. REGULARIZATION AND THE ANOMALOUS
WARD-TAKAHASHI AND TRACE IDENTITIES

We take the free spinor field theory with SU(3)
internal symmetry. The SU(3) currents are de-
fined by

A=A T (), a=0,1,...,8, (1

@1)*6(k+q, ++* ++q,) 65, (k)i $(q,) - * 5 nlgn)

e)\P

Fxp(p.q)

q
p

FIG. 1. Momentum assignment of exp-w-z vertex. The
Feynman rule is given in Eq. (4).

where Y(x) is the free spinor field, a column ma-
trix in the internal symmetry space, and A® are the
Gell-Mann matrices. The currents are
F4(x)=S5%x), P%x), V§(x), and Af(x) for I';=1,
ivs,7,, and y,y;, respectively. The symmetric
energy-momentum tensor is

Oy p=36[P¥20,¢ =3, P\ + (A — p)]

- %gXp(i$7“8u¢_ia“$7'p¢_Zmizp)a (2)
with the trace
6=6L=miyp=mV6S°, 3)

where S° is the unitary singlet scalar current.
The Feynman rule for the 6,,-y - vertex is
given in Ref. 15. For completeness, we give it
here in Fig. 1, with

r)\p(p!q)zi‘)/k(pp"'qp)"'%‘Yp(p)\'*'q)\)
-38\,(B+d -2m) . (4)

The Feynman rule for the trace of the energy-
momentum tensor, as indicated in Eq. (3), is
proportional to the scalar-current-y-y vertex.

An n-pf involving 6, ,(x) and ji(x) is defined by
the connected part of

= [ dxdy, - -+ dy, e et et 0) TH 6y, (975 3)) - 5 43EI0), (5)

where T* is the covariant T product.’®* The loop momentum integral representations of the n-pf’s
(O, (R)j%(g,) -~ -j4(g,)) can be easily found using Eq. (4). For examples,*

1-pf

<ex‘,(0)>=.ifl Tr[Ty, (1, DS(D)], (6a)
2-pf

(6rp (R I(=R))=3Tr(x, + clxa)flTr[Pxp(l,l+k)S(l+k)I‘18(l)], (6b)
3-pf

(63, (RY 4D 2(@)) = 4i TE (A, Xy + €,CATAT)

X j Tr[Ty, (- q, I+ p)SU+P)T,S(DT,S(I - q) + ¢,6, T, (1= p, 1+9)S(1+q)T,S()T,S(1 - p)],

(6c)



etc., where

S()=(F-m)™".
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(M

c; is the charge-conjugation parity for ji: +1 for A, S, and P and -1 for V. In the above expressions,
charge-conjugation invariance is assumed and incorporated. The above representations of the n-pf’s
(6a)—(6c) are not well defined since the integrals are divergent. We shall discuss shortly the regulariza-

tion scheme which makes them finite.

The general expressions of the naive WTI’s and TI’s for arbitrary n-pf’s, by (5), are given in the Ap-
pendix. They are derived in Ref. 15. A few examples of simple cases are shown below.

Tensor Wavrd-Takahashi identity (TWTI)

B 65, (R)VE(D)V} (q)) = =ik + ), (Vi (p + RV} (@) =ik +@) o (Vi (D) V] (g +R))
+ 2k, (V5 (0 + RV(@)) = 2igp  k( V(D +R)V3 ()
+ 5k, (V5 (PIVh (g +R)) - 3ig,, kO(VE(P)VE(g +F)) . R

Vector Ward-Takahashi identity (VWTI)

P 6y, (R)VE(D)VE (@) = 3ipa(VE(p +R)VE (@) + 3ip, ( VA(p+R)VE(g))
—ig o V(P +R)VE() + ' (65, (RIVE (D +q)). (8b)

Axial-vector Wavd-Takahashi identity (AWTI)

p* (05, (R)AL (DA} () = 2ip (AG (D +R)A} () + 5iD,(AS( P+ R)A} (q)) — ig, p (A% +R)A) (q))
- 2mi( 6, ()P (P)AS (q)) +2mg, ( PO p+ )AL (@) + [ (6, ,(R)VY (p+q)).  (8¢c)

Trace identity (TI)

&2 (65, (RVL(PIVE ()= (6(RIVL(PIVD (@) = Bi[(VL(p+ BRIV (@) +(VE(PIVE (g +F)) | (8d)

In each of the expressions above, it is understood
that k+p+q=0.

Following Ref. 8, we shall use the scheme of
universal regularization, which is of the Pauli-
Villars type,' with, however, all the logarithmic
terms being discarded. This simple scheme elim-
inates all the divergences which occur in the n-pf’s
for n <6 and is sufficient for the discussion of
WTI’s and TI’s. We refer to Ref. 8 for the details.
Let us further remark that our choice of this par-
ticular scheme is due to the fact that we shall
make use of the counterterms of Ref. 8. We shall
come back to this point later. Now, the WTI’s
and TI’s are relations among the universally
regularized Feynman amplitudes.

It has been shown in Ref. 8 that, in the univer-
sally regularized scheme, the resultant anomaly
of an axial-vector WTI, which is called the naive
anomaly, is proportional to the coefficient of the
1/m term of a certain n-pf in the WTI. The naive
VWTI’s are satisfied automatically. In the present
case the navie TWTI’s and VWTI’s are satisfied,
with anomalies occurring only in AWTI’s and TI’s.
To be precise, let Az(6,,jf--+j5) and
A)(6y,(R)A%L(p) -+ -j2) denote the respective naive
anomalies of the TI, g*?(6,,ji---j?), and the
AWTI, p*(6,,(R)AL(p)-++ji); then

A6y i3 i8) ==V6(S% T i) ym (9a)

and
84 (65, (R)AL (D) 3= -+ 7)
=2i (65, (P (P)j1 i | 1/m
=28\, (Pk+P)j T i) | 1ym» (9D)

where (-++)|,,, is the coefficient of the 1/m
term in a large-m expansion of (-++). Now, in
the universal regularization scheme, the canon-
ically derived (naive) relations, such as Egs.
(8c) and (8d), need modifications, namely A
or Az added to their right-hand sides.

The calculation of the 1/m terms of the tensor
(m+1)-pf (6,,7%9+*js, Eq. (9b), is similar to
that of the corresponding current n-pf (j%---j%),
given in Ref. 8, with the insertion of the 6,, ver-
tex, Eq. (4), in the momentum loop integration
of the latter. Further, they both have the same
internal-symmetry structure, as 6,, is a unitary
singlet. The 1/m terms which contribute to the
TI anomalies can be taken from Appendix A of
Ref. 8, pp. 1502-1503. Tables I and II list re-
spcetively all the anomalous AWTI’s and TI's
obtained in the universal regularization.
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TABLE I. Universally regularized n-pf’s with tensor 6, , which have naive AWTI anomalies

(i.e., 1/m term contributions).

3-pf (6AA)

4-pf (8AAV) (BASP) (8AVV) (BAAA)

5-pf (6AAVV) (BAPSV) (6AAAA) (BAASS) (6AAPP)
(BAVVV) (BAAAV)

6-pf (BAAVVV ) (BAAAAV) (8AAVSS) (6APVVS) (BAAAPS)
(6AAVPP) (6APSSS) (BAPPPS)
(BAAAAA) (6AAAVYV) (BAVVVV)

IIl. DETERMINATION OF THE COUNTERTERMS and

The large number of anomalous WTI’s and TI’s
obtained in Sec. II by means of the universal reg-
ularization method cannot be taken seriously. The
anomalies thus obtained are in fact regularization-
dependent; different regularization schemes lead
to different sets of naive anomalies. For instance,
in the universal regularization scheme, the 3-pf
(6x,(R)A%(p)P°(q)) satisfies the naive AWTI. It is
anomalous,’ however, when calculated in the di-
mensional regularization scheme.?® Therefore a
“renormalization” procedure is needed to redefine
the anomalies to make them at least independent
of the regularization scheme. As discussed in
Ref. 8 this procedure consists of the following
steps: (1) add counterterms to the n-pf’s and (2)
adjust them so that there are a minimal number
of anomalous WTI’s and TI’s. The counterterms
are local polynomials in the fermion mass, m,
and the external momenta involved in the given
n-pf. They have to have the same dimensionality,
the same evenness and oddness in m, and all
other general properties, including the internal-
symmetry structure and the crossing properties,
as the n-pf’s themselves.

Let us denote the counterterms for ( 6,,j¢-* i b
and (j$-++j%) by 8(6y,j 8-+ +7 ) and 6(j5- -5,
respectively. Then we define the “physical” am-
plitudes as

“ 9>\p.7‘¢;“'j:>”=<6)\pj:” 'j:>R+6(9)\pj‘;°”j:)
(10a)

“Gleeediay =Gt iR+ 0(it e 0iy),  (10b)
where (j4--+j2), is the universally regularized
amplitude.® Now, expressing the WTI’s and TI’s

in terms of the physical amplitudes, we obtain a
new set of anomalies for all the identities:

Aa(8y, ) =A4(6y, * ++ )+ 5(LHS) - 5(RHS),
(11)

Br(6y,+ ) =8p(6,, - ++)+6(LHS) - 6(RHS),
(12)

where A/, and A7 are given by Egs. (9a) and (9b)
and 5(LHS) and 6(RHS) are the sum of the counter-
terms of the individual n-pf’s entering respectively
the left- and right-hand sides of the WTI’s and
TI’s.

We determine the counterterms, 5(j9%---j%) and
6(6x,j9**jn), by attempting to satisfy as many
naive WTI’s and TI’s as possible expressed in
terms of the physical amplitudes. We begin with
the 2-pf ( 6, ,(k)S®(~k)) and work up to the 6-pf’s.
Let us remark that, for the dimensionality reason
and the fact that they are local polynomials,
6(6),j%++j3) and 8(j---j%) vanish for n>5.

The actual process of determining the counter-
terms by minimizing the number of anomalies is
tedious but straightforward. Its logical steps
have been discussed in Ref. 8; we shall omit all
the details here and present only the results and a
few remarks.

TABLE II. Universally regularized n-pf’s with tensor 65, which have naive TI anomalies.

3-pf (oVV) (8AA)

4-pf (BVVV) (OVAA)Y

5-pf (VVVV) (OVV AA)
(BAASS) (BAAPP)

(ePPPP)

(6SS) (6PP)

(BVSS) (6VPP) (0ASP)
{6V VSS) (6VVPP) (BAAAA)
(v ASP) (6SSSS) (6SSPP)




We find that all the naive TWTI’s and VWTI’s
can be satisfied with the “physical” amplitudes.
Let us elaborate on this point. The TWTI and the
corresponding VWTI are intimately related; the
appearance or absence of an anomaly in one has
a similar effect on the other. Hence, the satisfac-
tion of the naive TWTI’s, which can be thought of
as expressions derived from Poincaré invari-
ance,?! requires that all the VWTI’s be satisfied
in their naive forms. It turns out that we can use
directly the expressions of 6(j%:--ji) of Ref. 8
except for a constraint relating their parameters
a, and a,, which we found here [see the remark
(2) below |.

A few remarks are called for:

(1) All the counterterms can be expressed in
terms of four parameters a,, a,, a,, and a, intro-
duced in Ref. 8 through the consideration of the
current WTI’s only. Hence the extension of the
n-pf’s to include the energy-momentum tensor and
its trace does not further complicate the structure
of the counterterms.*?

(2) The requirement of the naive TI’s for
(6,,(k)S%(~k)) in order to minimize the number
of anomalous TI's implies that a,=3a,. Therefore
only three undetermined constants appear in all
the counterterms.

(3) For the abnormal-parity series, the require-
ment of the naive tensor WTI’s implies that all
their counterterms, 6(AVV), 6(AAAV), and
8(AVVV), vanish.??

AL(AVY) = =3yd*"€, 050 °s®,
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IV. DETERMINATION OF THE ANOMALIES

Using the results of Secs. II and III, i.e., the
1/m terms and the counterterms, we are equipped
to determine the WTI and TI anomalies from Eqgs.
(11) and (12).® We discuss them in turn.

A. The Ward -Takahashi identity anomalies

As discussed in Sec. III, the tensor WTI’s and
hence the vector WTI’s satisfy the naive forms
expressed in terms of the physical amplitudes de-
fined by Eqs. (10a) and (10b). Explicit calculation
also shows that all the normal-parity n-pf’s re-
tain their naive forms of AWTI’s. Anomalies
occur only in the AWTI’s of the following two sets
of abnormal-parity n-pf’s: the set containing the
energy-momentum tensor, (6AVV), ( 6AAA),
(BAAAV), (6AVVV), ( 6AAAAA), (BAAAVYV), and
(6AVVVV), and the set containing internal sym-
metry currents only, (AVV), (AAA), (AAAV),
(AVVV), (AAAAA), (AAAVV), and (AVVVV).
Their anomalies arise simply from the 1/m terms
of (6PVV) etc., and (PVV) etc.

The second set above is Bardeen’s minimal set.
We discard another minimal set of Ref. 8 because
it contains anomalous VWTI’s and hence anomalous
TWTI’s. In the following, we list all the 14 anom-
alies®*+2%;

AA(HAVV)=3iyd“b°{g>\p€uoa5[)°‘(q - S)B - %[gy )\eop aﬁpasﬁ +go)\€upa6 paqﬁ +(A"’ p)]}:

AL (AAA) =34 ,(AVY),
AL(BAAA) =44 ,(BAVY),
A (AAAY) = = biye,or o XS,

A4(BAAAY) = = §3{ g3 p€uor al2X “+ 8,5 + L€, g X, + (X = p)]

- %[gx:/ € orak o‘(—W1 +W2) +g>\u€vprozka(W3 +Wz) +8xr€vopa ka(Wl +4W2 - Wg) +(A - P)]}y

AA(AVVV) = —g_iyeuaraya)

(13)

AA(GAVVV) == :_y{ng;Jev crcx[Ya + (_Wl +W2 +W3)ka]+ %[éuor)\yp + ()\¢-p)]

- %[g)\u €orpo ku(_Wl +W2) +g)\o£upraka(W2 +W3) +g)\'r€uop aka(Wa - W1) + (A‘“ p)]}>
AA(AAAAA) = £ 9€,6:nZ%%% +23 more terms with vo7y permuted with bcde ,

A (BAAAAA) = -3ig, ,0,(AAAAA),

AA(A.AAVV) = %yeuorn[zab‘:de"'zabdce +Zacbed +Zacebd+ 3Zabdec +Zadcbe - (d- e)] ,

8,(6AAAVY) = ~3ig, ,0,(AAAVY),

ALAVVVY) = = £ 9€,4,7,2°°°% + 23 more terms with vo7n permuted with bcde,

A (BAVVVV) = =3ig, ,0,(AVVVV),
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X, =W (t-q),+W,(dt+q+5),+Wy(s=1),,
Y = =W, (t+q),+Wyq +5),+Wy(s+1),,

=
1

1= Tr[X A A g = ATNTAIAT ], (14)
Wo=Tr[ XA XA = ATAAIN ],

Wi =Tr[ A2 X A = AIAINAT ],
Z0%8 = Tr[ A, A A Ag e + ATATATAINT ], etc .

In the above expressions the energy-momentum
tensor carries the tensor indices Ap and momen-
tum k; the vector and axial-vector currents carry
the vector indices u, v, o, 7, and n; the momenta
are p, q, S, t, and #; and the internal-symmetry
indices are a, b, ¢, d, and e in that order from
left to right.

One can show that the tensor-related anomalies
are completely constrained by those without the
tensor 6,,. The presence of the energy-momen-
tum tensor does not introduce any new anomalies
to the AWTI’s,?® and the well-defined pattern of
anomalies in the AWTI’s containing only internal
symmetry currents holds in the broader structure
when the symmetric energy-momentum tensor
is included. In this sense, we argue that all the
axial-vector anomalies are determined by those
of (AVV) and (AAA).

The axial-vector anomalies of n-pf’s involving
only internal symmetry currents have been suc-
cinctly summarized in Ref. 7 by means of the
anomalous divergence. One is tempted to do the
same in the present case. However, we found that
the presence of the energy-momentum tensor
vastly complicates the structure of the anomalous
divergence; the result is unilluminatingly involved.
We shall not present it here.

B. The trace identity anomalies

The trace identity anomalies are a completely
different story. We first summarize the main
features and then list all the trace anomalies
(there are no trace anomalies occurring in n-pf’s
for n = 6 because of their lack of 1/m terms and
counterterms):

(1) There are two sources for the trace anom-
alies, the 1/m terms defined in Eq. (92) and the
counterterms.

(2) Except for the trivial cases, (6,,(0)) and
( 6x,(k)S°(=k)), in which we can adjust the
counterterms so that they are free of trace anom-
alies, the absence of trace anomalies is a result
of the absence of both 1/m terms and counter-
terms, e.g., (6,,AAA), (6,,AAAV), etc.

(3) Trace anomalies occur in all the following
three possibilities: (a) from the 1/m terms alone,
eg., (6,,VV), (6,,AVV), etc; (b) from the
counterterms alone, e.g., (6,,AP), (6,,VAP),
etc; (c) from both the 1/m terms and the counter-
terms, e.g., (6,,5S), etc.

(4) In contrast to the axial-vector anomalies,
which are restricted to abnormal-parity n-pf’s,
the trace anomalies occur only in n-pf’s of normal
parity.

There are totally 25 anomalous TI’s; we list
their anomalies below?5:

n=3
AL (8VV)=2iy8°% (g, q - Pyd,)
Ar(6AA)=AL(6VV)+124y6°m?g,,
Ar(6AP) =-6y5"mq,, (15a)
Ar(6PP) = -3iy6®°p-q,
Ar(6SS) = —ip6°%°(12m> +3p - q) .

n=4
Ar(OVVV)=2iyf*[g,,(q - D)o +&uo(P - )

+&o(s—q)],

Ap(8VAA) = AL (OVVV),
Ap(8VAP)=6y/®°mg,,,
Ap(6AAS) = - 12yd ®mg,,,
A7 (6VSS) =3iyf (g - 5),,,
Ar(6VPP)= AL (6VSS),
Ar(6ASP)=3iyd ™ (q - ),
A, (6SSS) =18yd ®°m ,
Ar(6SPP)=3A,(6SSS) .

n=5
Ap(BVVVV) =3iy[ g,y 8or W, + W, - 2W,)

+8ur8uo(Wy = 2W, +W,)
+8u08y~ (=2W + W, +W,)],

Ap(BVVAA) =AL(8VVVY),
Ap(BAAAA) =AL(OVVVY),
Ap(6VVSS) = —Biyg,, (W, +W, - 2W,)
Ap(6VVPP) =AL(0VVSS), (15¢)
Ar(6VASP) = 3yg,, W, - W, +2W,),
Ar(6AASS) = -3iyg,, (W, +W,+2W,),
Ap(6AAPP) = A ,(6AASS)
Ap(6SSSS) = §iy(W, +W, +W,),
Ap(6SSPP) = %iyW ,+W, -W,),
A(6PPPP)=A,(6SSSS),

(15b)
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where
W =TrAa A Mg+ AIAAIAT ],
W, =Tr[ A A0 A, +ATATATAT], (16)
Wy =Tr[a A X Ag +AIATATAT ).

The assignments for the vector and internal-
symmetry indices and the momenta in the above
are the same as those given following Eq. (14).
The anomalies arising from the counterterms and
from the mixture of the 1/m terms and the coun-
terterms are indicated with carets and underlines,
respectively. The rest are from the 1/m terms
only.

The trace anomalies listed in (15) are related
to the canonical trace anomalies of Chanowitz
and Ellis.> Their naive trace identities obtained
directly from the scale transformation are of the
following form:

(O (p) - 385
si(4-n-32 iy )P 3P
= 1
= Ap(6§5 e i), (17)

where

P,,=—(P;+' ¢ '+pn-1) .

Equation (17) can be obtained from the tensor
WTI’s and TI’s as follows: Differentiate the tensor
WTI with respect to k,, the momentum carried

by the energy-momentum tensor, and set k,=0;
then eliminate the term g*f( Orplplectifn) by
means of the corresponding trace identity. The
canonical trace anomaly of Ref. 2 is just

—-A7(6i§L =+ +j4n).*" In the derivation of the canon-
ical trace anomalies in Ref. 2, it has been assumed
that the canonical anomalies are constrained by

the relations derived from the chiral symmetry.

In the present calculation we did not make this
assumption, calculating directly from the definition
of the anomaly according to our regularization
procedure, independent of the chiral symmetry.
OQur result, nevertheless, verifies the assump-
tion of Chanowitz and Ellis. In the absence of new
anomalies, the agreement of the present results
and those of Ref. 2 is, of course, expected in

view of the general result of Wilson,?® which is
valid to all orders in perturbation theory.

V. CONCLUSION

By introducing the symmetric energy-momentum
tensor into the free spinor field theory with inter-
nal symmetry, we have extended the investigation
of canonical anomalies in both WTI's and TI's. In
this broader structure we have found that the va-
lidity of the tensor WTI's, which we argue is a

consequence of the Poincaré invariance,? forces
the validity of the vector WTT's. This removes
the ambiguity present in the literature concerning
the presence of anomalies in the vector WTT's,
and provides a basis for Bardeen’s minimal set

of anomalous axial-vector WTI’s involving sym-
metry currents only. The inclusion of the energy-
momentum tensor does not complicate the struc-
ture of the axial-vector WTI anomalies; the anom-
alies possess the same well-defined pattern as
those without it, which are restricted to the ab-
normal-parity n-pf’s containing only vectors and
axial vectors. Further, we have found that all the
axial-vector anomalies are constrained by those
of (AAA) and (AVV). Therefore, the inclusion of
the improved energy-momentum tensor does not
give rise to new anomalies.

The trace anomalies are a different story. There
are many anomalous trace identities, totally 25,
which are restricted to normal-parity n-pf’s only.
The sources of the trace anomalies are the coun-
terterms, the 1/m terms defined in Eq. (9a), or
both, in contrast with the case of the axial-vector
anomalies, defined in (9a), which come from the
1/m terms alone. Similarly to the case of the
axial-vector anomalies, the presence of the trace
anomalies cannot be blamed on the failure of the
symmetry transformation which generates the for-
mal relations (in the present case, the scale
transformation). This can be easily seen by no-
ticing the fact that 19 of the trace anomalies are
still present when the fermion mass m is set equal
to zero.

Finally, let us notice that there exists an anom-
aly-free trace relation,

g . . &= s
£1(0, (015D izn(p)) == [Hn-)+ ;ngp-l]

<G (B + +ign(p,)),
(18)

which can be obtained from the anomalous trace
relation of Ref. 2 [i.e., Eq. (17)] and that used in
the present work by eliminating the term
<9(0)ju“11(P1)° o °j‘f:(p,,)). This relation follows, of
course, from the tensor WTI by differentiating it
with respect to k, as explained following Eq. (17).
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APPENDIX

In this appendix we list the general expressions of the WTI's and TI's of the z-pf’s involving the energy-
momentum tensor and internal symmetry currents.'®

Tensor Ward-Takahashi identities

ENO(R)j2(D)* = 54(g)) = =ik +D) S J2(p+R)* + i (@) = + + » - iR+ @) TR(D)" * * 58 (g + k)

+ 5N (T G (R 4) =5 @)+« + 3RNE G A) 7 5(a+ ), (a1)
where
(5,0 | 8,8 ~858, for Vand 4, (A2)
0 for S and P.
Vector Ward-Takahashi identity
PO (R VE (D) 23 2(q)* * )= 3i(&n o + &1 88 — 281p 8tV 2 (R +1)B* « 5 2(g)+ + *)
PR +f°bb'<exp(k)"‘j:'(ﬁ )t e, (A3)
Axial-vector Wavd-Takahashi identity
PO (RIAL(B) = *72(g)" > *) = 3il @r o5 + & 8Eper— 288N IFKA (R +)P > 23 () = )
+2mg\ P+ +3)(q) * *) = 2mi 0, (RIP (D) * 7, (g)* **)
(AV(b+a) 14
I i g ay
poeey g)\p(k)... , P forj,f= . (A4)
doe’ P (p+q) st
=S (p+q) P?
Trace identity
g0, (k)i D)+ = <12 (@) = VB m(S°(R)j§(D)* * *7p(@)) - 3i[( (D + k) * Gb(@)+ * * +(ig(): * i plg+R))]. (A5)
In all the above n-pf’s, 4-momentum conservation is understood, i.e.,
kR+p+ecc+qg+°°°=0. (A6)
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