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In the context of gauge theories with spontaneous symmetry breakdown induced by the Higgs phenomenon, a
simple theorem is stated which gives conditions under which pseudo-Goldstone particles may occur. These
conditions are broader than the occurrence of accidental symmetry and contain the latter case as a special
instance. We analyze an example in which the gross features of the vector- and the scalar-meson mass spectra
are determined by quantum effects.

I. INTRODUCTION

Field theories which contain spinless particles
which are massless to zeroth order in a "natural"
way' but which acquire mass due to radiative cor-
rections may be of physical interest for several
reasons. First, they may give a clue as to the
occurrence of low-mass particles such as pions. '
Secondly, they may possibly play a role in the
understanding of CI' violation as a natural quan-
tum effect. ' The natural occurrence of such par-
ticles has been realized in the context of gauge
theories with a spontaneous symmetry breakdown
generated by the Higgs mechanism. Namely, as
was noted by steinberg, ' such particles may occur
if the scalar field potential of the Lagrangian ex-
hibits an accidental symmetry, i.e., a natural
symmetry which is larger than the gauge symmetry
of the theory. We shall denote this potential by

V(P, a), where P is a vector whose components
ft)~ are the set of scalar fields and where n denotes
the set of parameters which enters in the poten-
tial. Note that the presence of accidental sym-
metry is a property of V which is independent of
n (Of course .the ot are subject to the condition
of strict renormalizability of the theory. )

It is the purpose of this paper to state a theorem
which broadens the options for obtaining naturally
particles of this kind and to give a few examples.
Once again, gauge theories with Higgs particles
provide the frame; the accidental-symmetry case
as defined by Weinberg' is contained as a subclass
in our case. In order not to be overcrowded with
new nomenclature we shall again denote such par-
ticles a.s pseudo-Goldstone bosons (PGB's), the
term coined originally' for the more specific acci-
dental-symmetry case. Our general theorem
covers in particular the instances noted by Hal-
pern, ' by Danskin, ' and by Lieberman where such
PGB's were obtained seemingly without any deeper

reason, and also the local unlocking discussed by
Duncan. ' As will soon be evident, our arguments
simply derive from an examination of the content
of the Goldstone theorem itself.

Let G be the local gauge group of the theory with
dimension D(G). Let S be the surface in Q space
(a finite-dimensional vector space) on which the
potential V(Q, a) assumes its minimum value in the
tree approximation. That is to say, when the
scalar fields Q; develop a zeroth-order vacuum
expectation value (P;)„„=P.;, then RES. Any trans-
formation ~G carries S into itself. The vacuum
expectation value breaks G down to a subgroup Gq
[with dimension D(G q}] which is the little group of
the vector X. Let Sz be the D(S&)-dimensional sub-
space of P space spanned by the tangents to the
surface S at the point X. Observe that the struc-
ture of S depends in general on the n in V(@, o.)
(see Sec. III). Moreover for fixed o., hence fixed
S, D(Sz) may depend on the particular choice of
LES (see Sec. IV).

Theorem. The number of spinless particles
which are massless in the tree approximation and
which are not absorbed by the vector gauge fields
is at least as large as the number n defined by

n=D(S),) —D(G)+D(G~) .

n is potentially the number of PGB's. It depends
on the detailed particle content of the theory
whether all n are PGB's or whether some (or all)
of them are in fact true surviving Goldstone bo-
sons (GB's). (Examples are known' where a theory
contains both PGB's and a true GB.) With this
provision well in mind we shall, for brevity only,
refer to n as the number of PGB's.

In a large subclass of theories, the surface S
can be generated by acting on any A. in S with a
group G„.„.[with dimension D(G„,, )] of linear trans-
formations mapping S into itself. Let G.,. q [with
dimension D( G „, q}] be the subgroup which leave s
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A. unchanged. Then

D(S i) = D(G,„,.) —D(G,...~),
so that

n = D(G„,„)—D(G„,„z)—D(G) +D(Gz) . (3)

V;(p(t), n)=0. Differentiating with respect to t

we obtain

V;t(g(t), n) y,'(t) =0,
and therefore

Often [as for the familar SU(2}XU(1) modelsj
G„, = G, G„.„. &

= Gz, but this is not always so.
Indeed it is our main allegation (and examples to
be given will illustrate this) that G„„, which we
will call the vacuum symmetry, may be a larger
group than the symmetry G of the theory as a
@hole.

As is well known, for the case of accidental
symmetry there exists a formula' analogous to
Eq. (3) for the number n'of ,(potential) PGB's,
namely

n' = D(G') - D(G'x) —D(G) +D(G ~), (4)

II. PROOF OF THE THEOREM

The tangent space S ), may be defined by con-
sidering the set of differentiable curves p, (t) [for
every t, tj(t) is a vector in P space with compon-
ents p, (t)j such that p(t)~S for t=[0, 1], g(0) =1,
and the limit

p'(0) =lim p. '(t) (5}

exists and is nonvanishing. The vector p, '(0) is a
tangent to S at X, and the set of all such curves
generates all tangents. Now since S is the surface
of minimum potential, V, (P, n) =0 for PHS [we
use the notation V, , . . . ; (P, n)
=&"V(p, n)/&p; ~ ~ sQ; f. In particular

where G' is the accidental-symmetry group and

G), the corresponding little group. Since G' is a
symmetry group of the entire potential V(P, n),
it clearly contains G. In turn, G, .„. must contain
G'. The existence of a nontrivial G', that is a G'

which is larger than G, corresponds, for the cases
analyzed in the past, to G„„.= G'~G, in obvious
notation. In this sense, the accidental-symmetry
equation (4) is a special case of Eq. (3).

We shall next do three things: First, we shall
prove the theorem (Sec. II). Secondly, we shall
exhibit situations where G„,, ~G even though there
is no accidental symmetry at all, thereby estab-
lishing that accidental symmetry is a sufficient but
not a necessary condition for the presence of
PGB's (Sec. III). Thirdly, we will analyze an ex-
ample where n&0 but where the surface S is not
generated by a vacuum symmetry G„„.,-, so that
Eq. (1) applies but not Eq. (3) (Sec. IV).

V„(A, n) ij, ,' (0) = 0 . (6)

III. VACUUM SYMMETRY

In this section we give an example of a model
with no accidental symmetry but a nontrivial G„,.
The models with PGB's mentioned earlier4 ' will
readily be seen as belonging to this subclass
G,a,.~G. The example we have chosen to discuss
next is not constructed to resemble physics but
rather to be as simple as possible as an illustra-
tion of vacuum symmetry.

But V;~(X, n) is the zeroth-order mass matrix of
the spinless mesons, so Eq. (6) implies that each
tangent to S at ~ is an eigenvector of the meson
mass matrix with eigenvalue zero. Therefore
there are at least D(S~) massless spinless mesons
in the tree approximation. Since D(G) —D(G&)
Goldstone bosons are absorbed by the Higgs mech-
anism, there are at least D(Sq) —D(G) +D(Gq) spin-
less mesons left massless in the tree approxima-
tion, and the theorem is proved.

Consider a change of the parameters o, in the
potential, so that V(P, n) —V(P, n'). This change
maintains the symmetry G (a.nd any global sym-
metries of the full theory). The surface of min-
imum potential will change to S'. We will say that
S is a natural surface of minimum potential if for
any sufficiently small change in a, the resulting
surface S' is similar to S in the following sense:
There exists a one-to-one and onto map of
X~S-X'&S' such that G~=G~ and D(S&) =D(Sz ).
In other words, S is natural if its shape is main-
tained for a range of n, even though details (such
as the length of vectors ~&S) may change. If S is
natural, the masslessness of the spinless mesons
associated with S & is also natural. In general, it
may be possible to find special choices of the pa-
rameters n for which there are additional mass-
less mesons, not associated with Sz. The second
derivative of V may vanish in some direction even
though V is not constant over any finite interval
(for instance, consider a massless scalar field
with quartic interactions). This is why we have
been careful to state our theorem only as an in-
equality. But we suspect that any such situation
is unnatural in the sense that if the parameters in
V are slightly changed, the spinless mesons not
associated with Sq will not remain massless.
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The gauge group is SO(3) &&SO(3) &&SO(3) = G. The
scalar mesons are three real 3 xs matrix fields

and Q3 1 which transform as (I);f - U& Q; fUf,
where U„U„and U, are independent real 3 XB

orthogonal matrices. In other words, the scalars
transform like (3, 3, 1) + (1, 3, 3) +(3, 1, 3) under the
gauge group. The potential (with I the 3 &&3 unit
matrix) is

I'(e, ~) = o ([tr(e 0; —~'f}]'+[tr(e.,e; ~'f)]'+[tr(e„e,', —~'&)]'k

+ ~.I [tr(4 .4 '. —~'»] [tr(4.,C —~'»]+[tr(4..4.'. —~'f)] [tr(6 4.;—u'I)]

+[tr(4, 0' —~'f}][«(d-0'- l 'f}])

+ .( [(4.4'- 'f}']+ [(e..4'. — ' }']+ [(4, 6'- ' }']]

+& {tr[(4' 4&. —u'f)(0 0 —p'f)]+tr[(4, 4., —p' )f(4 0.—p'I)]

+tr[(4, 0' —u'f}(CA., —~'f)]) . (7)

This is the most general quartic potential con-
sistent with gauge invariance and with the addi-
tional discrete symmetries $12
and Q,2- —p, 2

If o., &( a, [ (or n, &-,' o, &0) and a,&[ n, ), the po-
tential is minimized [V(oto} =OJ when

o o

(ot») = g 0 cose sine

0 —sin& cos]9

(10)

T T T T T T 2
4124 12 ~12412 423423 4 23423 431431 431431 I I.

The condition (8) is unaffected by multiplication
of any Q;; on the left or right by an orthogonal
matrix. Thus G„„=SO(3) xSO(3) xSO(3) xSO(3)
&SO(3) XSO(3): The symmetry of the surface of
minimum potential is larger than the symmetry
of the potential as a whole. A particular choice
of vacuum expectation values X satisfying (8}
breaks the vacuum symmetry down to the diagonal
subgroups G„„,q = SO(3) &SO(3) &SO(3) (if (Q) = po,
where 0 is orthogonal, multiplication on the left
by a general orthogonal matrix U and on the right
by 0 UO leaves (p) unchanged). Thus D(Sq)
=D(G„„)—D(G„.„., q) =18 —9 =9. So nine spinless
mesons are massless in the tree approximation.
For example, if (Q») = (Q») = (Q») = I, the anti-
symmetric parts of the P's are the nine massless
fields.

Just as in an accidental-symmetry situation, the
minimization of the zeroth-order potential is not
sufficient to determine the physical structure of
the theory. In the present case, this can be seen
as follows. We can use condition (8) and G and
the discrete symmetries to choose

(9)

Then (P») cannot in general be completely dia-
gonalized, but we can put it in the form

where the angle 8 is not determined by extremal
conditions in the tree approximation. If ]9= 0,
G&=SO(3) and there are three massless vector
mesons and three PGB's. For other values of 8,
Gq = SO(2), and there is only a single massless
"photon" and one PGB.

Thus the angle 8 has to be determined by the
quantum corrections to the potential, as discussed
by Coleman and Weinberg. ' We have described
earlier' another situation where an angle was to
be determined by radiative corrections; it was a
case of accidental symmetry, and we had occasion
to note at that time that the qualitative properties
of the vector-meson mass spectrum depended on
quantum corrections to the potential. Not only is
this also true here, but in addition something new

happens. Indeed, now not only the vector-meson
masses but the scalar-meson masses as well de-
pend on 8. Hence scalar-meson loops must be
included in the Coleman-Weinberg sum to deter-
mine 8.

It should be clear from this example that vac-
uum symmetry is a straightforward extension of
accidental symmetry which considerably expands
the options for producing PGB's. We have exhib-
ited the simplest of an infinite class of theories
of this kind. Such models can be constructed with
almost any gauge group of the form g&g~g&
The cyclic symmetry is not essential; some of
the subgroups need not be gauged (as in the pseudo-
Goldstone pion examples), etc. There are also
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many examples which do not have the simple cyclic
structure of the model discussed here.

IV. A PECULIAR EXAMPLE

In this section we give a particular example (its
main virtue is again its simplicity) in which the
surface of minimum potential is not obtainable
from a vacuum symmetry. The model'0 has a U(1)
gauge group and four complex scalar fields P]
Q„and Q, transforming in the same way under a
gauge transformation: Q, —e' (II)„. The potential is

+3 40 4k

This is the most general gauge-invariant quartic
potential with the following properties: It is sym-
metric under permutations of the four fields; the
quartic terms are invariant under independent U(1)
transformations of each of the four fields,
f,- e' "(Ir),. The last condition is renormalizable
because the gauge couplings are also invariant
under the larger global symmetry U(1) &&U(1) XU(1)
xU(l). Thus all terms of dimension 4 in the La-
grangian have this symmetry and it is only broken
by one of the mass terms, " the n, term in Eq.
(11).

If Qy A2 and n, are positive, the surf ace of
minimum potential for V(P, a) given by Eq. (11)
is defined by

k=1 to 4

(12}

To understand what is going on, we can look at a
part of the surface of minimum potential in the
plane 8, =8, +84 —2n shown in Fig. 1. The two
solid lines are distinct branches of S, 8, = m,

8, = 8, —w and 84 = m, 8, = 8, —m. The dotted point
(0, v, v) is the intersection of these branches. The
other dotted points are intersection points of the
branches in the 8, = 8, + 8, —2m plane with other
branches not in the plane. All the dotted points are
physically equivalent because of the permutation
symmetry.

Since we have already removed the degree of
freedom associated with the gauge symmetry by
choosing (P,) = p, , the dimension of the slice of the
tangent space shown in Fig. 1 is D(S ~) —D(G)
+D(Gq) =D(S q) —1. In other words, it is the number
of PGB's. Except at the dotted points, the slice
is one-dimensional and there is one PGB in accord
with our naive counting. But at (0, v, w) the slice
is two-dimensional and there are two PGB's. The
dotted points correspond to the degenerate situa-
tion in which all four vectors are parallel, and at
these special points there are two different direc-
tions along the surface of minimum potential.

The existence of separate branches of S inter-
secting at isolated points is what keeps us from
being able to define a vacuum symmetry in this
situation. Any single branch is generated by a
U(1) symmetry [plus the U(1) of over-all rotation],
but this U(1} is not a vacuum symmetry because
it does not map the other branches into themselves.

(Tr, 2

We can think of the (II}'s as vectors in the complex
plane. Then Eq. (12) implies that the four vectors
have the same length g and that their vector sum
is zero. Thus the four vectors must form a par-
allelogram. At first glance, one might expect two
massless mesons in the tree approximation cor-
responding to the two degrees of freedom of the
parallelogram, rotation and deformation. But as
we will see, more careful analysis is required.

There is, of course, always one massless me-
son arising from the breakdown of the U(1) gauge
symmetry. We can "factor" the corresponding
degree of freedom out of the surface S of minimum
potential by using the gauge freedom to choose

&e, e

FIG. 1. & in the 92 =83+ 64-2~ plane. Coordinates are
labeled (02, 03, 84).
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V. CONCLUDING QUESTIONS

The present investigation raises two questions,
one new, one old. The first one is: Now that
broader conditions for PGB's have been obtained,
how near are we to having not only sufficient but
also necessary conditions for the naturalness of
particles whose mass vanishes, but only to lead-
ing order? The second one is: Are such particles

needed in the description of such physical phenom-
ena as mentioned in Sec. I? The answer to either
question is presently beyond us.
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