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It is shown by means of a model that the renormalization and unitary gauges for non-Abelian fields

can be connected by a point transformation, and this fact is used to construct a formal proof of
renormalization in the unitary gauge. The formal proof is then verified by demonstrating that for a
fourth-order on-shell scattering process the S matrix calculated directly in the unitary gauge is exactly

eqoal to that calculated in the renormalization gauge. The calculation is refined to the point where it
becomes purely graphical and this allows one to see by inspection how the cancellation of divergences

occurs in the unitary gauge, and to trace this cancellation to the spontaneous-symmetry-breaking

mechanism in the Lagrangian.

I. INTRODUCTION

In a previous paper, ' which we shall refer to as
paper I, it was shown for an Abelian model that
the renormalization and unitary gauges' could be
connected by a point transformation, and this fact
was used to construct a formal proof to all orders
of renormalizability in the unitary gauge, and to
verify the proof in fourth order by means of an
explicit calculation. In the present paper we show
that the same procedure can be applied to a non-
Abelian model.

In the Abelian model the mechanism by which
the cancellation of divergences in the unitary
gauge (and ghosts in the renormalization gauge)
takes place was made transparent by reducing the
calculation to a purely graphical one. In the pres-
ent paper we repeat the reduction of the proof to a
purely graphical one, but we also go a step fur-
ther. That is to say, we group the graphs so that
they exhibit in a very obvious way the crucial
role that is played by the scalar-vector interac-
tion which is induced by the spontaneous-symme-
try-breaking mechanism, and so would not be
present in a "naive, " gauge-noninvariant Lagran-
gian.

For the explicit calculation, by which we verify
the equality of the S matrix in the renormaliza-
tion and unitary gauge in fourth order, we shall
use the canonical interaction Hamiltonian for-
malism. The reason that we prefer to use the
canonical formalism, rather than, say, a disper-
sion calculation, ' is that it all, ows us to insert re-
normalization counterterms in the Lagrangian in a
simple gauge-invariant way, and to calculate from
first principles not only the Feynman graphs with
structure, but also to calculate all the renormal-
ization constants in each gauge. The calculation
of the renormalization constants actually requires

also that we take into account the fact that the

gauge transformation is for second-quantized
fields, and it is here that the point transforma-
tion plays a role, because, as we shall see, the
point transformation allows us to calculate the
correction due to second quantization in a simple
way.

In practice, what we shall show is that the dif-
ference between the S matrices calculated in the
unitary and renormalization gauges is zero. It
turns out that to evaluate the contribution to this
difference from various graphs, we do not have to
actually calculate any Feynman integrals, but only
to use their invariance under translations in mo-
mentum space. Thus, any form of regularization
which preserves this translational invariance of
the Feynman graphs will suffice. We rely on the
fact that at least one such regularization scheme
(i.e. , dimensional regularization) has been shown

to exist. '
The non-Abelian model which we shall consider

is a very simple one in which we have an SU(2)
gauge group carried by a fermion doublet (e, v),
a vector-meson triplet A, and a scalar triplet Q.
The fermion-vector-meson interaction is vector-
ial, and the nonconservation of the fermion cur-
rent J„results not from axial-vector coupling,
but rather from a mass difference ~ = ~,—m „which
we assume for the fermions. The fourth-order
process which we shall use to verify the formal
equivalence of the S matrices in the unitary and

renormalization gauges will be e - v scattering.

II. BASIC LAGRANGIAN AND COUNTERTERMS

The unified gauge theory which we shall con-
sider is given by the broken SU(2)-gauge Lagran-
gian
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do not contribute to the process which we shall
consider. Finally, having written the term
—,'6atr[D„, v]' in this form in (2.3) to display its
manifest invariance we note that it contains the
kinetic term ~6a(s„@)'. Hence, it will be more
convenient in practice to make a wave-function
renormalization (1+6a)'" p- tp to obtain a conven-
tional kinetic term for |II when M is added to Z.
This renormalization is accomplished in the La-
grangian by making the substitution

Under a gauge transformation the fields trans-
form as follows:

((I)-S), D~ -SD~S ', 7T-S7)S

m Pll
v = r ~ g ——r, - (1+ba) '" 7 ~ y ——(1+6a)"'7,

= (1+6a) '"v . (2.4)

where (2.2)

i Y, (x)
0

+6btrv'+6ctrv' — (A& )'.5p (2.3)

Here T are the Pauli matrices, (Q) =0, m„e, g,
m, and K are constant parameters, and the last
term is arranged so that it has no linear terms in

the fields, but has a mass term ——,~'p3' for p3.
The field A„' is massless and is coupled to a con-
served current, and hence may be regarded as a
photon field. The fields Q„g, are the massless
Goldstone bosons, and the unitary and renormali-
zation gauges will be taken to be the gauges P,
= Q, =B„A(3)=0 and 9& A„=O, respectively.

The mass -renormaliz ation counterterms which
we choose for the Lagrangian (2. 1) are

M, = 6m, if' —6m PvP+ —tr[D„, v]
g 5a

III. ANOMALOUS RENORMALIZATION, POINT

TRANSFORMATION, AND RENORMALIZABILITY

IN THE UNITARY GAUGE

There is one further renormalization that we
must perform before using the Lagrangian g+ M
in an explicit calculation. This stems from the
fact that the broken-gauge transformation which
takes us from the renormalization to the unitary
gauge is not really a classical transformation. A

convenient way to take this into account is to re-
gard the transformation as a point, rather than a
gauge, transformation, as follows: Let g, W„'",
8~, and 0 be the values of ~, A ', A„', and ~ i
the unitary gauge (where P, = &p, =a„B„=0) and P,

Q be their values in the renormalization
gauge (B„U„=O). Then it is easy to verify that at
least classically these two sets of variables are
connected by a point transformation, namely,

These counterterms are manifestly invariant
under the broken gauge transformation which
takes us from the renormalization to the uni-
tary gauge, since the first five terms are mani-
festly invariant under any broken gauge trans-
formation, and A„' is the same in both gauges.
[We could actually take the self mass of the pho-
ton field A„' to be zero by using the usual gauge-
invariance arguments of @ED, but we find it
more convenient to insert the counterterm 5p, in

(2.3).] The first two terms in (2.3) provide mass-
renormalization terms for e and v, and thereby
also induce the charge renormalization
—6m (g/2m)gr PP. The 6a and 6b, and 6c terms
provide mass counterterms for the A„' ' and p
fields, respectively, inducing in the same way
some meson charge renormalizations and inter-
actions (we shall see later that the linear terms
in 5b trm' cancel against normal ordering and self-
mass terms). We omit @' renormalization terms
in (2.3) (other than those induced in 6c) as these

et,ig/2fff) v' P (3.la)

T '
Q ——T =e i~ fft p g — T e-('&/2ffi)7 p

(3.lb)

e(ic'/2m)v' ' p & 7 e -(ic'/2m)7' p

(3 2)

(ig/2m)T gr 2 gr 2 g )
-(ig/2m)7 ~

P

2e '~ 2~'T 8 (3 lc)+ le ~ C

where the p are three fields which are determined
in terms of the given variables in the two gauges
by Eqs. (3.lb) and (3.lc). In second quantiza-
tions, however, these equations do not quite suf-
fice, because Eq. (3.1b) does not guarantee that
the fields Q and cr can have zero vacuum expecta-
tion value simultaneously (and in general they will
not). Accordingly, we must modify Eq. (3.1b) to
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(3.3)

where m is a constant determined by the condition
(lP) =(o}=0 or

m7 =~e"'~' "' 'm7 e "'~' "'mT3 —g e 3 / ~

and where

w = 7' Q —mg '(1+5a)'~ r2, 82 A2 =0

)7 =r, (t)2 —mg '(1+5a)'"7, , S„A"„'=0
(4.3)

We then have four equations for the four unknowns

(p, m), instead of three equations for the three un-
knowns p which we had in the classical case. For
the process which we shall consider, it suffices
to determine m up to second order in g. To this
order we obtain from (3.3)

2

m= m 1+—,p'p (3.4)

goiving (3.1b} to lowest order we find

(3.5)

1V. FULL LAGRANGIAN

which with (3.4) determines m to the required or-
der.

Thus, the correction due to second quantization
is to make the replacement m-m in f for the
unitary gauge. Since this replacement is to be
made in the unitary gauge only, we call it an
anomalous mass renormalization. If we include
the anomalous mass renormalization, we see that
the renormalization and unitary gauge Lagrangians
are connected by a point transformation. Hence,
by the formal equivalence theorem for point trans-
formations, ' the S matrices constructed with the
two Lagrangians will be exactly the same to all
orders. It follows that the S matrix will be re-
normalizable in the unitary gauge since it is re-
normalizable, by definition, in the renormaliza-
tion gauge. Thus, we obtain a formal proof of re
normalizability in the unitary gauge (and unitarity
in the renormalization gauge) to all orders by re-
ducing the proof to the formal equivalence theo
rem for point transformations.

In our later calculation we shall verify that this
formal equality of the S matrices does indeed hold
for fourth-order Feynman graphs.

where f» = 8„A,—s„A„and the vector-meson mass
)). is given by p, =(e/g}m.

In the renormalization gauge we have A„'"
= U'„'", where B„U'„'"=0, whereas in the unitary
gauge we have $, = $2=0 but B„A„"0. If, in the
unitary gauge, we adopt the Stueckelberg formal-
ism and write

A(1, 2) U(1, 2) g(2, 1)1
V V

p
2V

L,, becomes

I 2
= —2 f2„~ fq„+ )|)(i jil —m2 —2mr2})l)

(4.5)

+ l 2 [( fl (1)
)

2 + ( U (2)
)2]

+ —'[(8 4) )'+(8 8' )'+(8 8' )'] ——'s'(Q )

(4.6)

which is the same as in the renormalization gauge,
except that y '" have been replaced by 8 '".
Thus, the kinetic part of the Lagrangian is for-
mally the same in both gauges.

In the sequel it will be convenient to consider e
rather than p as the dependent variable, i.e. ,

e =()2/m}g, (4.7}

as we can then make an expansion in powers of p,
'

and obtain results for each order of p.
' separately.

in the renormalization and unitary gauges, re-
spectively.

Let us consider first the kinetic part of this
Lagrangian

I,2
= —212 „~fq „+p(t 3 —m2 —2 mr2))t)

+ -')2'[(A'")'+ (A"')'] + 2 I 5, 0 I' —2&'(4 "'}'
(4.4}

Collecting the results of the last two sections,
we see that we can write a total Lagrangian

I. = —
w trI'„„I'„,+ $(iQ —M2)(l)+ G)l)weal)+ 2 tr [D„,w]'

+B trw'+ C trw' —25)((A(„")', (4.1)
where

Mo= mo —Omo,

B= (1+5a) '(ka. '+ 5b),
(4.3)

V. INTERACTION HAMILTONIANS

We now come to the main part of the paper which
is the comparison of e-v scattering to fourth order
in the two gauges. For this purpose, we need to
write down the interaction Hamiltonian

2K'int ~ int +hint

2

C = (1+5a) ', s'+ 5c
16

(1 + 5a) '"
2 m

in each gauge, where h;„t is a term which comes
from the presence of derivative couplings, the so-
called Faddeev-Popov term. ' This term can be
calculated using the path-integral method of Fad-
deev and Popov, or by deriving X;„t directly from
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the Lagrangian, using the canonical formalism and
cancelling the "surface terms" against the non-
covariant parts of the propagators, so as to ob-
tain covariant Feynman rules. ' Let us first con-

sider the renormalization gauge, for which we let
X" "=U' " W"'=B„, y'=(I/vY)(4"'~i4"')
/[3&=p where 9& U& =9&B„=O. Then from the La-
grangian L in (4.1) we easily obtain

(L, =P —
@, ~ +G I ~, P+ie(f„„(B)U„U„'+f„„(U')B„U„+f„„(U)B, U„']

g 2—[(U'. U )'+2U-' ~ U B' (-U')'(U-)' —2B U B U'] 2ie[(-U„Q' U„'@ )a„o+-B„P 5„@']

+2U'. U P+Q —2 cr- —— B U Q++ O'Q
g 2g

+i)( 5m, +~ 5m7, )g+B trw'+Ctr 'il+&e'&r' —&5pB', (5 2)

where we have used B„U& =0. Then expanding this expression up to the order required for fourth-order
e-v scattering, and normal ordering the result, we obtain

2 2
—ie[f„„(B)U„U„'+f„„(U')B„U„ +f„„(U )B,U„'] — :o':— o:Q'p

+2ie(U„g' U„'@ )S-„o+2ieB„P 5„@'+2epo:U' U: epB„(U-„Q'+U„'P )

t' 5„m, 0
25Rkgo 2 bsk(l@'I'+ l4 I )+ 25sklB + 25RP2(IU I'+ IU'I').0 5„m„

Finally in this gauge we have the standard result"

k,„,=i e [0"'(U„'s„c-—U„s„C'}+B„(A s„c'—0's„C )+ (U„-O' —U„'0-)s„C"'],

(T(A', 0 )) = (T(C', C~)) =0,
d4) —ka ~ (g -y)

(T(Q'(x), C'(y))) =i5"

(5.3)

(5.4)

where O', C' are ghost fields [and, as a consequence, any 0-C loop acquires an extra factor of (- 1) in a
Feynman calculation]. The renormalization constants appearing in (5.3) are given by

1
ORE, =5m + yam,

5Rm„= 5m, —yam,
1

5sk, =45b+ bc+a'ba+2e'(U" U)- 2., (o') —,(p'p ),

5„k, =455+, bc+e'(B')+e'(U'U )-, (o')-, (4'P-),

5s&i=5~+
2

«'U )-2e'(4'0 &

3e'

3 2 32
5„p,, =- p'5a+ (U'U )+ (B B) —e'( ) —o(pe'p ),

(5.5)

where bm~, 5m, 5a, 5b, and 5c are the original constants inserted in (2.3). If we demand that 3C,„, have
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no term linear in the fields, i.e., that Xa =0, then we have the condition A. =0 where

O=X=- —46b+, bc —2eV(U'U )+—((ee) —(vv)}+ (3(a')+2(p'p )),
m 8m + - g

2 2m
(5.6)

which fixes the value of the renormalization parameter 46b +(8m'/g'}bc, which is the free parameter ap-
pearing in the (4C)' mass counterterm.

Turning now to the unitary gauge, and using the Stueckelberg' formalism (4.5), and also A„'~ = B„and
Pt" =o as before, we see from (4.l) that

v2$+ —&28„y, ) (o O)

+ie f„„(B)U„-+—8-„U„'-—8'„+f„„(U'}B„U„-+—'8-, +f „„(U }B„U-—'8+

(U„'—8'„)(U„—&,) 2(U„'-—8',)(U„+—8 „)8'

U'„——O', U +—9 ~ —28~ U~+ —6 „B„UU-—0',

+e cr ——cr +, +2 I9'6) U„'- —6}'„U„+—g,

~m „ l ~ K 5p,+ P ) bmo +— — 1 — m+m v'3& P+ Btr% +C trw'+ —o ——B .
2 m I 2 2

(5..7)

Expanding (5.7) to the required order and normal ordering,

vYU + v28 -„q,—) -f o 0)

I

—ie f„„(B) U„ + 8 „ U„' ———8', „ +f„,(U')B„ U„ + 8, +f„,(—U )B„ U„'- —8'„

~: 8'y 8 „: —
4 ( U' ~ U )—,(8'„8 „)——( B ) +, ba + 2 ( 8' 8 ) + ( &y' )

S,m, 0
-Xa —g P —'bvb, a + 'bv—

-„p,B + —'b—
v p, ,()U'('+

~

U ('}.
0 O, m„

(5.8)

h„„=2ill'(0/1 (1——
)

Z
2Z 64(P) a C 64(O) a2 +. . .

m m' (5.9)

Using standard results we see that in this gauge
are no Faddeev-Popov ghosts, but that there is a
Faddeev-Popov or Lee-Yang term of the form

The term proportional to 0 in the unitary-gauge
interaction Hamiltonian is given by [ X+(2ig/m)
x 6'(0}]g=Acr, where X is the coefficient of the
linear term in the renormalization gauge. By
choosing the renormalization constant to make the
linear term vanish in the renormalization gauge,
it automatically vanishes in the unitary gauge.

The counterterms for the unitary-gauge inter-
action Hamiltonian are given by
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2

5em, =bmo+ pbbs- (8'8 ),2m

8
5ek, =45b +, 5c+e'(B B)+e'(O' U )

2

5em„=bmo- ~5m+ —(8'8 ),
2 2 2 2

&4'@-) —2, (a'&, (5.12}

2

5vk, =5ek, +, 5'(0}m'

24m 3e /P=45b+ ~ 5c+5atP+2e'(U" U ) — ~ (o')
2p,

3 &8'8 )+ a &8;„8,„): ~ 5'(o}

bvy, , =5g+ (O' U )+, (8 „8'„), (5.10)
e2 3e2

since the parameter 45b+ (Sm'/g'}5c for the g
field in the renormalization gauge has already been
fixed by (5.6}. We have verified by direct calcu-
lation that all these consistency conditions are
satisfied, and as an example we derive (5. lie) in
Appendix A. We should like to emphasize that all
the terms proportional to ( 8 8 ) in (5.11) originate
from the anomalous mass renormalization ex-
hibited by the point transformation in Sec. III.

3g + 3$
5eij, = —p'5a+ (O' U ) + (B B)4 4

3 2

-2e'(8'8 )+, (8'„8 „)— e( o),

2

b„m. =5,m. — (e'e-),2' (5.1la}

where we have absorbed the term proportional to
o in (5.9) into the o mass counterterm.

From (5.5) and (5.10) it is clear that the input

parameter can be chosen so that the second-order
self-masses of 0, P, U, and 8 vanish in either
gauge. However, if me require that they should
be chosen so that the self-masses of these par-
ticles vanish in both gauges simul, taneously, me

see that we have the consistency conditions

Vl. FEYNMAN VERTICES

The Feynman vertices for the Hamilto~ia~is
3C";„, and X,„, are shown in Fig. 1. We wish to
compare the Feynman graphs for fourth-order
e-v scattering calculated with these tmo sets of
vertices. For this purpose, we shall consider
only the difference between the graphs in the tmo

gauges. The advantage of considering only the
difference is that the differences between the cou-
plings in the tmo gauges are such that they just
cance1. propagators, and so the difference between
two graphs mith a given number of propagators is
a graph with a lower number of propagators (and
a larger number of lines entering at each vertex},
i.e. , what we call a "short-circuited" graph. For
example, from the algebraic identity

2

b, m„= b, m„+ (e'e-),
2m

2 2

5ek, =bek, +, (-2(8'8 )+(y'Q ))

28 2+, ( 8'„8 „}+ 2i ~ 5' (0},

5vi, = 5ai, +2e'& 4'4-&+ ', (8-.8'„),

(5.11b}

(5.1lc)

(5.11d}

v 2 k + v 2 m = v 2 [ —( 8' - k —m, }+ ( g —m„}]

we obtain the graphical identity shown in Fig. 2(a}
and hence the "short circuit" shown in Fig. 2(b).
If one defines suitable auxiliary vertices for all
such short-circuited graphs then, as we shall see
in the next section, the "short-circuited" graphs
all cancel by inspection, and so the S matrices are
the same in the two gauges. The required auxil-
iary vertices are as shown in Fig. 3. Where any
ambiguity might arise, me have always chosen the
momentum to be in the direction that the negative-
ly charged particle mould travel.

5~g, =beg, -2e'&8'8 &+e'&P P )+, (8' 8 „), VII. EQUALITY OF S MATRICES IN THE TWO GAUGES

(5.lie}

where 5~ and 5„denote the self-mass calculated
from the loops, i.e. , without the use of counter-
terms. Furthermore, me have the condition that
in the unitary gauge the loop contribution to the
self-mass of the 8 field must vanish, since there
are no counterterms for this field, and in the re-
normalization gauge we have the condition

In this section we give a graphical proof of the

equality of the S matrices for e-v scattering in

the two gauges by expanding the differences of a,ll
the contributing graphs in terms of short-cir-
cuited graphs, which can then be seen to vanish by

inspection.
There are three typical kinds of graphs, namely,

two-particle exchange graphs, graphs with loops,
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FIG. 1. Feynman vertices for the Hamiltonians X&~f and Xj f.

and graphs with triangles (third-order vertices).
We have already indicated in the last section how

the two-particle graphs can be expanded. To show
how the other two types of graph are expanded,
we take a typical example of each kind and carry
out the expansion in detail in Appendixes 8 and C,
respectively. All other expansions are obtained
using the same general procedure, except for the
fermion-wave-function renormalization graphs,
which are obtained by the same procedure as in

paper I for the Abelian model. Hence the details
of the expansions are omitted.

The differences between the graphs contributing

to e -v scattering in fourth order in the two gauges
actually fall into five groups, for each of which
separately we have equality of the S matrices. The
groups are the following:

(1\ neutral scalar exchange, which occurs only
in order zero in p, ',

(2) neutral vector exchange in order zero in p',
(3) neutral vector exchange in order p' and g',
(4) charge scalar exchange in order zero in g',
(5) charge exchange (both scalar and vector)

in order g' and p, '.

FIG. 2. Graphical identity and "short-circuit" diagrams.



G. B. MAINLAND AND L. O'RAIFEARTAIGH

Orher Order
2

6

2PJ K

Ord. er
2

2p K 2P mUU

FIG. 3. Auxiliary vertices.

The graphs corresponding to these five groups are
displayed in Figs. 4-6. In these figures 6 denotes
the difference between a graph in the unitary gauge
and the same graph in the renormalization gauge.
Figure 7 illustrates graphically the meaning of b,

for a typical Feynman graph. In Figs. 4 and 6 the
loops with the letter g inside are the Faddeev-
Popov ghost contributions. It is interesting to note
that the Faddeev-Popov contributions are among
the few contributions of order p.'. There is a fac-
tor & attached to all meson loops because half their
contribution belongs to the corresponding upper
vertices, but in some cases this factor & does not
appear explicitly because it is canceled by a Wick
combinatorial factor 2. In all the figures the in-
verted graphs (i.e. , the graphs with third-order
upper and first-order lower vertices and denoted
by I for the two-particle exchanges) are omitted
on the understanding that similar results hold for
them also, and in the case of Fig. 6 the left to
right mirror image graphs are omitted on the
same understanding. In all loop graphs, it is
understood that the on-shell self-mass has been
subtracted in both gauges, as justified by the re-
sults stated in (5.11) and (5.12).

One can see by inspection that the auxiliary
graphs in Figs. 4-6 exactly cancel, thus establish-
ing the equality of the S matrices to fourth order
in the two gauges. What is more interesting than
the simple fact that the graphs cancel, however,
is that we can see explicitly the mechanism by
which the cancellation comes about and relate
it to the spontaneous-symmetry-breaking mech-
anism for the Lagrangian. That is to say, we can
see by inspection that what happens in each table
is that the difference between the most structured
contributions to the scattering, namely, the two-
particle contributions, is completely canceled by

the contribution from the meson-meson interac-
tions, which, if we recall, were induced without
any free parameters by the spontaneous-symme-
try-breaking mechanism. The remainder of the
meson-meson interaction contains only vertex re-
normalizations, which are then canceled by other
nonstructured contributions such as the fermion
wave-function renorrnalization and the anomalous
charge renormalization induced by the counter-
term —5m(g/2m)/vs of Sec. II. In this way we see
very clearly how the meson-meson interaction
which is induced in a unique way by spontaneous
symmetry breaking, and would not be present in a
"naive" gauge-noninvariant Lagrangian, con-
tributes in such a way as to make the unitary
gauge renormalizable and the renormalization
gauge unitary.

APPENDIX A

The graphs contributing to the U-particle self-
mass which are different in the unitary and re-
normalization gauges are shown respectively in
Figs. 8(a) and 8(b). Evaluating these graphs we
obtain the following contributions:

Unitary gauge [Fig. 8(a)]:

p Q y2 ~2 2

p2y I2

Renormalization gauge [ Fig. 8(b)]:

P„„(k)g' 8, k„k,

(Al)

(A2)

where the second graph in Fig. 8(b) is the Faddeev-
Popov contribution and J -=fd' k(/2w)', P„„(k)
=g„„—(k„k„)/k', k'=k-q, q'= p'. Subtracting (A2)
from (Al) we obtain
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FIG. 4. Neutral exchanges.

I(&v 4 2
—4 II~) Zpv

IIIV (k k 2k P 2 kIIkv

Using the symmetry of the regularization prot. e-
dure to shift the variable of integration from k to
k' =k -q and then dropping the primes we obtain

g„„(k'—2k p,
' k„k„k'

k2k t2 k2 k2k I2

+4 II V

(&.+ e.)(&.+ e.) (A4)

Finally, dropping the terms proportional to q„and
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FIG. 5. Charged scalar exchange in order zero.

p„because q ~ U= 0, and using symmetric integra-
tion we obtain

as required.

APPENDIX 8

=g„„[—35'(0) —4ig'(9'6' )]

(A5)

As an example of a meson-loop calculation we
consider the difference shown in Fig. 9 which
yields the contribution

41 ' ~,(5)~~ (5) pu. (k')(( ' - k "}'-
I

'1
+Pap) e~ k'(k " ')

where J, J~ are neutral fermion currents and k'=k+5. This can be written

2 ~„,(k )&„(5)&,(5), ";,' ', [(k"—p')(k" +p' —25'),+5' —25'p']

~„(5)~,(&) "k2 (k" +P.' —25'}+4g'Z„(5)Z,(5} 1 —, , ""„,. (B1)

The first term can be further simplified by writing
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k

(a)

FIG. 7. 6 of a typical Feynman graph.

(b)

FIG. 8. Three Feynman diagrams contributing to the
U-particle self -mass.

=,I (g„,— &„' z. (k'* ~ v* —2&*),

where in the last equation we have simply dropped the primes on k„', k,' because (k„' —k„)J"=6„J"=O.
Therefore (B2) becomes

(B3}

and using symmetrical integration this expression reduces to

(B4)

Thus, the final result is

54 g)))1 4 k2 8)))) k2 i k2k &2 k2k i2 i k2(k12 2) k2(kI2 2}

(B5}

Equation (B5) is expressed in terms of graphs in

Fig. 10.

APPENDIX C

As an example of a triangle graph, we consider
the graph shown in Fig. 11(a). Evaluating this

graph, we get

responding term in the numerator, we obtain

m p.
'

~ ps„(k) p„(k')
2 &8 k2 kg2 2

4m'
J( g'Ps)) (k) P (k, )n'

(C2)

Ps. (k) P..(k')
~(k,.

'92

where

J.s = U(P)~, &, ~'V(~).
me

J~

! yak'

Cancelling the denominator k" —p,
' with the cor- FIG. 9. 4 of a meson loop.
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self-mass
terms

D

FIG. 10. Equation (BG) expressed graphically.

Expanding P„„(k'), we get

4m'' ps„(k) p„,(k'), 4m', ' p 8(k) 4m'' pz„(k)k„'k'
g2 f)fe y2 g2

But now from the definitions of J ~ and P~„we have the identities

k ' J g
= m Js+ U(p)y s U(q),

where

1
~e=U(P) p p

ysU(&)+P —m,

and

Ps„(k)k „' =P8„(k)q„.

Hence, for the last term in (C3) we can write

4 g' Ps (k)a!k' .4 'w' Ps k)kt! 4 . W' — s
( ) JPa. (&l'I.

q2
kk""

7l q2

Furthermore, since the last integral in (C6) can be a function of q8 only, we have

r P(s)k„qq8 q„p„„(k)q„
y2y I2 ~2 pe t2

(C4)

(C6)

(C6)

{c7)

Combining all of these results and using U(P)ysU(q)q8 = mU(P)U(Q), we obtain the following contribution
corresponding to Fig. 11(a),

4m'' Ps„(k) p„(k'), 4m'' P„B(k)
&8

which is equal to the contribution from Fig. 11(b). These results are used in Fig. 6.

(b)

FIG. 11. 4 of a triangle graph.



G. B. MAINLAND AND L. O' RAIFEARTAIGH

G. B. Mainland, L O'Raifeartaigh, and T. Sherry, Nucl.
Phys. B79, 503(1974).
Q. 't Hooft, Nucl. Phys. B35, 167 (1971); Q. 't Hooft
and M. Veltman, i'. $44, 189 (1972); B. %. Lee and

J. Zinn-Justin, Phys. Rev. D 5, 3155 (1972);B. W. Lee,
in Proceedings of the XVI International Conference on
High Energy Physics, Chicago-Bataeia, l972, edited
by J. D. Jackson and A. Roberts (NAL, Batavia, Ill. ,
1973); E. Abers and B. W. Lee, Phys. Rep. 9C, 1
(1973); S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967).

T. Appelquist et a/. , Phys. Rev. D 6, 2998 (1972); 8,
1747 (1973); S. Borchardt and K. Mahanthappa, Nucl.

Phys. B65, 445 (1973); S. Baran and A. Barut, Nuovo

Cimento Lett. 8, 716 (1973).
48. Borchers, Nuovo Cimento 15, 784 (1960); J. Chis-

holm, Nucl. Phys. 26, 469 (1961); S, Kamefuchi,
L. O'Raifeartaigh, and A. Salam, ibid. 128, 529 (1961).

~L. Faddeev and V. Popov, Phys. Lett. 25B, 29 (1967).
SE. S. Fradkin and I. V. Tyutin, Phys. Rev. D2, 2841

(1970).
~A. Salam and J. Strathdee, Nuovo Cimento 11A, 397

(1972).
8E. Stueckelberg, Helv. Phys. Acta 11, 299 (1938).


